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Exact emergent higher-form symmetries in bosonic lattice models
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Although condensed matter systems usually do not have higher-form symmetries, we show that, unlike 0-
form symmetry, higher-form symmetries can emerge as exact symmetries at low energies and long distances. In
particular, emergent higher-form symmetries at zero temperature are robust to arbitrary local UV perturbations
in the thermodynamic limit. This result is true for both invertible and noninvertible higher-form symmetries.
Therefore emergent higher-form symmetries are exact emergent symmetries: they are not UV symmetries but
constrain low-energy dynamics as if they were. Since phases of matter are defined in the thermodynamic limit,
this implies that a UV theory without higher-form symmetries can have phases characterized by exact emergent
higher-form symmetries. We demonstrate this in three lattice models, the quantum clock model and emergent
ZN and U(1) p-gauge theory, finding regions of parameter space with exact emergent (anomalous) higher-form
symmetries. Furthermore, we perform a generalized Landau analysis of a 2+1D lattice model that gives rise to
Z2 gauge theory. Using exact emergent 1-form symmetries accompanied by their own energy/length scales, we
show that the transition between the deconfined and Higgs/confined phases is continuous and equivalent to the
spontaneous symmetry-breaking transition of a Z2 symmetry, even though the lattice model has no symmetry.
Also, we show that this transition line must always contain two parts separated by multi-critical points or other
phase transitions. We discuss the physical consequences of exact emergent higher-form symmetries and contrast
them to emergent 0-form symmetries. Lastly, we show that emergent 1-form symmetries are no longer exact at
finite temperatures, but emergent p-form symmetries with p � 2 are.
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I. INTRODUCTION

A longstanding pillar for understanding strongly in-
teracting quantum many-body systems is to identify and
understand their symmetries. Indeed, symmetries provide
powerful constraints and universal characterizations of a sys-
tem’s dynamics and phases. This point of view has become
increasingly fruitful with modern generalizations of symme-
try [1–19] (see Refs. [20,21] for recent reviews). For instance,
topological order [22], which provided the first indication
that conventional symmetries [23,24] are not all-powerful, can
now be understood in a symmetry framework [2,8,12,20,25–
29]. These generalizations open up an exciting frontier for the
discovery of new phases of quantum matter and the concep-
tual organization/systematic understanding [16] of quantum
phases.

One of the simplest generalizations of symmetry is called
higher-form symmetry. For ordinary symmetries, charged op-
erators act on a point in space and the unitary operator that
generates the symmetry transformation acts on all of space.
Higher-form symmetries generalize this by allowing charged
operators to be extended [1–3]. For a p-form symmetry,
the charged operators act on p-dimensional subspaces and
the unitary generating the transformation acts on a closed
(d − p)-dimensional subspace of d-dimensional space. So, an
ordinary symmetry is just a 0-form symmetry.

Most things 0-form symmetries can do, higher-form sym-
metries can also do. For example, higher-form symmetries
can spontaneously break, giving rise to a topological ground
state degeneracy (gapless Goldstone bosons) when discrete

(continuous) [3,30–36]. Indeed, Abelian topological orders
reflect anomalous discrete 1-form symmetries spontaneously
breaking, and photons in a Coulomb phase arise from U(1)
1-form symmetries spontaneously breaking. A higher-form
symmetry can also have a ’t Hooft anomaly, providing
powerful constraints on the IR through generalized Lieb-
Schultz-Mattis-Oshikawa-Hastings theorems and introducing
higher-form symmetry-protected topological phases [4,25,26,
37–47].

These applications of higher-form symmetries make them
a powerful tool in studying quantum many-body systems.
However, unfortunately, models with exact higher-form sym-
metries are rather special and, in a sense, fine-tuned. So, it is
natural to wonder if they play a role in more typical, physically
relevant models.

One possibility is that while they may not be exact mi-
croscopic symmetries, they could still arise as emergent
symmetries. However, experience with emergent ordinary
(0-form) symmetries causes apprehension since their conse-
quences are typically approximate since they can be violated
by irrelevant operators.1 In other words, explicitly breaking
0-form symmetries creates O(Eγ ) errors at energy scale E ,
even in the thermodynamic limit. Amazingly, common folk-
lore suggests that this 0-form symmetry-based intuition does
not carry over to higher-form symmetries. They can constrain
a system exactly even as emergent symmetries, as discussed

1A counterexample to this usual rule are emanant symmetries [48].
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in the context of gauge theories [49–51] in early days, and in
the context of higher-form symmetry [20,25,36,48,52–56].

Here we investigate this robustness of higher-form sym-
metries in detail and from a lattice perspective, considering
bosonic lattice Hamiltonian models without higher-form
symmetries. These UV-complete theories are simple, well-
defined, and relevant to condensed matter physics.

For this class of models, we demonstrate how higher-form
symmetries can emerge and, when they do, why they constrain
the IR exactly. We find that at energies with the emergent
higher-form symmetry, the dynamics of states are affected by
the emergent higher-form symmetry as if it were an exact
UV symmetry. More precisely, any errors coming from the
higher-form symmetries being emergent below a finite energy
scale E are of order O(e−Lγ

), where L is the system size
measured by lattice constant, and thus vanish in the thermo-
dynamic limit. Our arguments apply to both invertible and
noninvertible higher-form symmetries.

Therefore phases of microscopic models without exact
higher-form symmetries can be exactly characterized by
emergent higher-form symmetries. To emphasize this, we
refer to emergent higher-form symmetries as exact emer-
gent symmetries. Consequently, to understand how emergent
higher-form symmetries characterize phases, one should first
partition parameter space by the theory’s exact and exact
emergent symmetries. These partitions then lay a foundation
for the system’s phases to be labeled and characterized using
generalized symmetries.

The rest of this paper goes as follows. In Sec. II, we show
that emergent higher-form symmetries in lattice models are
exact. We use the point of view that symmetries are described
by algebras of local symmetric operators [57], but also de-
velop low-energy effective Hamiltonians with the emergent
symmetries. In Sec. III, we consider three examples with ex-
act emergent higher-form symmetries: the ZN quantum clock
model and models of emergent ZN and U(1)p-gauge theory.
In Sec. IV, we use the concept of exact emergent symmetry
to perform a complete generalized Landau analysis of the
Fradkin-Shenker model with periodic boundary conditions.
We recover known results regarding the universality classes
of the phase transitions and make new predictions about
the phase diagram’s general structure. In Sec. V, we dis-
cuss general physical consequences of emergent higher-form
symmetries being exact. In particular, how exact emergent
higher-form symmetries can characterize phases of systems,
both when they are, and are not, spontaneously broken in the
bulk. In Sec. VI, we consider emergent higher-form symme-
tries at finite temperature, showing that only emergent p-form
symmetries with p > 1 are exact. Then, in Sec. VII, we con-
clude and discuss some open questions arising from this work.

II. SCALES HIERARCHIES AND EMERGENT
SYMMETRIES

Consider a lattice bosonic quantum system described by
the local Hamiltonian H and whose total Hilbert space V is
tensor product decomposable: V = ⊗

i Vi. Since H includes
the exact interactions at the microscopic scale and describes
the system at all energies throughout the entire parameter
space, we refer to it as the UV Hamiltonian, adopting the

FIG. 1. The parameter space of a many-body Hamiltonian can be
partitioned by its differing hierarchies of energy scales. A schematic
depiction of this is shown here. The parameter space is partitioned
into four regions, labeled I, II, III, and IV, with their differing energy
scale hierarchies shown.

language used in field theory. While, in theory, the system’s
physical properties can be extracted from H , this proves much
too difficult in practice [58].

A guiding principle to overcome this daunting problem
is the separation of energy scales (assuming no UV/IR
mixing [10,59–62]). We will always denote the lowest
energy scale as EIR and refer to the sub-Hilbert space
VIR = span{|En〉 | En < EIR}, where |En〉 is an energy eigen-
state, as the IR. Furthermore, we will always denote the largest
possible energy value as EUV. However, there can be other
interesting energy scales between the IR and the UV scales,
which we will call mid-IR energies Emid−IR and refer to the
sub-Hilbert space Vmid−IR = span{|En〉 | En < Emid−IR} as the
mid-IR. Generally, there can be multiple of these mid-IR
scales, and as demonstrated in Fig. 1, different regions of
parameter space will have a different hierarchy of energy
scales.

A. Exact emergent generalized symmetries

Low-energy eigenstates will often have additional struc-
tures absent from high-energy eigenstates. For example, these
additional structures could reflect the presence of new, emer-
gent symmetries, as depicted in Fig. 2.

It is nontrivial to systematically identify the scale hierar-
chies of a general UV Hamiltonian. Here we will specialize to
a typical situation where the UV Hamiltonian can be written
as

H = H0 + H1, (1)

where a mid-IR scale Emid−IR of H0 is known (e.g., an energy
gap of a quasiparticle) and both H0 and H1 are translation-
invariant. We assume H0 is not pathological in the mid-IR and
that the qualitative features of H resemble those of H0. For
example, H0 cannot have perfectly flat bands in the mid-IR
since they’d introduce exponential amounts of degeneracies
in the spectra, which will not arise in H since a generic
H1 will lift the degeneracy. Furthermore, we assume there is
a collection of mutually commuting local projection opera-
tors {Pi} acting only on degrees of freedom near site i such
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FIG. 2. The symmetries of a quantum many-body system gener-
ally depend on the energy scale of an observer. In particular, there can
be emergent symmetries at low energies absent from the microscopic
(UV) symmetries GUV. These can be generalized symmetries and can
be anomalous.

that V (H0 )
mid−IR is spanned by energy eigenstates of H0 satis-

fying 〈Pi〉 = 0. In other words, |ψmid−IR〉 ∈ V (H0 )
mid−IR satisfy

Pi|ψmid−IR〉 = 0, while Pi|ψ〉 �= 0 for |ψ〉 �∈ V (H0 )
mid−IR. Fea-

tures of H0 that emerge at E < Emid−IR are determined by the
constraint Pi = 0. In fact, as we will soon argue, these local
projection operators also determine the emergent symmetries.

We will assume H1 includes terms that mix states with
〈Pi〉 = 0 and states with 〈Pi〉 �= 0. Because of H1, energy
eigenstates of H are a superposition of states with 〈Pi〉 = 0
and states with 〈Pi〉 �= 0 and, therefore, the sub-Hilbert space
spanned by states satisfying 〈Pi〉 = 0 is not a mid-IR of H .
Consequently, it appears that any emergent structures arising
from Pi = 0 (such as symmetry) are destroyed by the H1 term.

On the other hand, if all parameters in H1 are much smaller
than those in H0, it is tempting to think that the mid-IR of H is
typically closely related to the 〈Pi〉 = 0 states. This intuition
motivates one to introduce the parameter s ∈ [0, 1] and family
of Hamiltonians

H (s) = H0 + s H1, (2)

from which the mid-IR of H can be constructed from the
mid-IR of H0 by slowly tuning s = 0 to s = 1 [50]. Indeed,
let us denote the nth many-body energy eigenstate of H (s)
as |ψ (s)

n 〉 and define the unitary operator Vs = ∑
n |ψ (s)

n 〉〈ψ (0)
n |

which satisfies Vs|ψ (0)
n 〉 = |ψ (s)

n 〉 and〈
ψ (0)

n

∣∣A∣∣ψ (0)
n

〉 = 〈
ψ (s)

n

∣∣VsAV †
s

∣∣ψ (s)
n

〉
(3)

for any operator A. Therefore the 〈Pi〉 = 0 sector of H0 is re-
lated to the 〈V1PiV

†
1 〉 = 0 sector of H . However, this definition

of Vs is unphysical since VsPV †
s is likely to be nonlocal even if

P is local. Reference [50] found a local unitary operator ULU

that approximates Vs very well while ensuring local operators
remain local when dressed. An explicit form of ULU is [63]

ULU = S ′
{

exp

[
i
∫ 1

0
ds′ Ds′

]}
,

Ds ≡ i
∫

dt F (t )eiH (s)t∂sH (s)e−iH (s)t ,

(4)

where S ′ denotes s′-ordering and F (t ) is a function satisfy-
ing a particular set of requirements, such as F (t ) = −F (−t )
which ensures Ds is anti-Hermitian.

Motivated by those results, here we assume that there exists
a proper local unitary operator ULU with the following prop-
erties:

(1) it maps a local operator Oi to a local operator
Õi ≡ ULUOiU

†
LU that acts on degrees of freedom near i (the

operator is fattened);
(2) it maps the nth eigenstate of H (0) to a super-

position of some eigenstates |ψ (1)
n′ 〉 of H (1) with energy

E (1)
n − δ < E (1)

n′ < E (1)
n + δ, where E (1)

n is the energy of the
nth eigenstate of H (1) and δ � Emin−IR;

(3) it does not break the symmetries of H0 and H1.
If such a unitary operator satisfying these properties does

not exist for a particular H in parameter space, it means that
the mid-IR does not exist at that point of parameter space (e.g.,
due to the gapped quasiparticles defining Emid−IR condensing).
The existence of ULU is a conjecture, and we will obtain our
results based on this conjecture. It would be interesting to see
if one could apply the mathematical techniques and proofs
developed in Ref. [64] to construct ULU rigorously.

Consider an eigenstate |ψ (0)
n 〉 of H (0) with energy

E (0)
n � Emid−IR, thus satisfying Pi|ψ (0)

n 〉 = 0. ULU will map it
to some eigenstates of H (1) with eigenvalues much less then
Emid−IR, which satisfy P̃i|ψ (1)

n 〉 = 0, where P̃i = ULUPiU
†
LU

is also a set of mutually commuting local projectors. This is
true for all mid-IR eigenstates of H (0), so the mid-IR of H
can be identified as the sub-Hilbert space spanned by the mid-
IR eigenstates of H (0) transformed by ULU. In other words,
the mid-IR states of H which span V (H )

mid−IR satisfy P̃i = 0.
Therefore any emergent low-energy structures of H0 specified
by the projectors Pi become emergent low-energy structures
of H specified by the projectors P̃i. Since {Pi} and {P̃i} are
related by a local unitary transformation ULU, we expect the
two exact low-energy structures to be equivalent.

This result was obtained in Ref. [50] for emergent Z2 and
U(1) gauge symmetry, and proved rigorously for the Z2 case.
In that case, the low-energy subspace satisfies the modified
Gauss law ρ̃i = ULUρiU

†
LU = 0 exactly and is exactly gauge

invariant. We believe such a result remains valid for more
general situations.

Having identified a mid-IR of H , we now identify its
emergent symmetries at E < Emid−IR. It is useful to adopt
the perspective that a symmetry is described/defined by an
algebra of local symmetric operators [57,65,66]. For instance,
if the UV symmetries are generated by the unitaries {Ug}, i.e.,
[Ug, H0] = [Ug, H1] = 0, then the associated algebra of local
symmetric operators is

AUV = {OUV | OUVUg = UgOUV ∀ g}, (5)

where OUV is a local operator acting on the full Hilbert space
V . Indeed, given A, one can recover the symmetry transfor-
mation operators by finding all operators that commute with
its elements.

In the mid-IR, operators that violate the 〈P̃i〉 = 0 constraint
are not allowed. Therefore the mid-IR symmetries are de-
scribed by the algebra of local symmetric operators

Amid−IR = {Omid−IR | Omid−IRP̃i = P̃iOmid−IR ∀ i,

∀ Omid−IR ∈ AUV}. (6)
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The symmetry transformations are then all operators that
commute with the elements of Amid−IR as well as the pro-
jectors P̃i. These will include the UV symmetry operators
but could include additional emergent symmetries, reflecting
the possibility depicted in Fig. 2. We refer to emergent sym-
metries identified by Amid−IR as exact emergent symmetries
to emphasize that at E < Emid−IR, they are equally impactful
as UV symmetries. Indeed, given only Amid−IR, one can-
not distinguish between UV symmetries and exact emergent
symmetries. Importantly, exact emergent symmetries are not
approximate symmetries.

The exact emergent symmetries found using Amid−IR arise
from the commuting projectors P̃i. Since these projectors are
local, 0-form symmetries will typically not appear as exact
emergent symmetries. Indeed, since the charged operators of
0-form symmetries are local, these projectors would likely
have to be nonlocal to forbid them from appearing in Amid−IR.
In other words, even weakly breaking a 0-form symmetry in
the UV theory, Amid−IR will typically include terms charged
under the symmetry, explicitly breaking the symmetry at all
scales. This recovers how emergent 0-form symmetries gen-
erally are not exact and instead approximate symmetries.

However, this description of symmetry is capable of de-
scribing all generalizations of symmetries. So, the exact
emergent symmetries can be higher-form symmetries.

The charged operators of higher-form symmetries are non-
local, winding around nontrivial cycles of the lattice, and thus
will never appear in Amid−IR. Therefore emergent higher-form
symmetries are always exact symmetries in the thermody-
namic limit since they cannot be broken by low-energy local
operators. In other words, emergent higher-form symmetries
are robust against translation-invariant local perturbations2

of the UV theory and, thus, are topologically robust. All of
this is true for both invertible and noninvertible higher-form
symmetries.3

To build some intuition for why this is true, we consider a
space-time picture [75,76]. Suppose H0 has a 1-form symme-
try, so loops carrying the symmetry charge cannot be cut open
by unitary time evolution, in (3 + 1)D. In space-time, it means
that its worldsheet will not have any holes. Turning on H1 and
explicitly breaking the 1-form symmetry, these loops can now
be cut open so their worldsheets will have holes. When the
perturbation H1 is small, these holes are also small and can
be coarse-grained away to yield a low-energy subspace with
only closed worldsheets and an exact emergent 1-form sym-
metry. However, when the perturbation is large, these holes are
larger than the worldsheets themselves, disintegrating them
by the Higgs mechanism and preventing a 1-form symmetry

2More precisely, any translation-invariant k-local perturbation
where k is much smaller than the linear system size measured in units
of lattice spacing.

3An exact emergent p-form symmetry below an energy scale
implies q-form symmetries (q < p) below that same energy scale
generated by “condensation defects” [8,67–71]. While these are q-
form symmetries, they transform p-dimensional operators. Therefore
they too are exact emergent symmetries even when q = 0. These
p-dimensional objects carry generalized charges of the q-form sym-
metry [72–74].

from emerging. It is straightforward to generalize this to a
general higher-form symmetry, and it would be interesting to
study this space-time picture further using the renormalization
group.

Furthermore, an exact emergent p-form symmetry below
an energy scale E in d dimensional space implies the exact
emergence of its dual symmetry below the same energy scale
E , which is a (d − p − 1)-form symmetry when the p-form
symmetry is discrete. When d − p − 1 = 0, this leads to an
exact emergent dual 0-form symmetry.

For lattices with vacancy defects, there can be nontrivial
p-cycles involving a finite number of p-cells. Then, operators
charged under an emergent p-form symmetry could appear
in Amid−IR, making it an approximate symmetry. However, if
the vacancy defect density is small, these nontrivial p-cycles
are also small. Therefore they will disappear under coarse-
graining, and the emergent p-form symmetry will become
exact.

Emergent higher-form symmetries, therefore, have an as-
sociated energy and length scale. The former is Emid−IR,
designating at which energies the symmetry emerges. The
latter is the length scale that the symmetry’s operators are
fattened by ULU. If this energy scale goes to zero (this length
scale goes to infinity), the symmetry is explicitly broken at all
scales (is no longer well defined) and cannot emerge.

One can possibly discover all of the emergent symmetries
of a system in a Hamiltonian-independent way by construct-
ing A at all energy scales for each energy hierarchy in
parameter space. However, it is desirable to have a Hamil-
tonian description reflecting the emergent symmetries. The
symmetries that emerge at E < Emid−IR are hidden from
the UV Hamiltonian H since it describes the dynamics of
both states with P̃i = 0 and P̃i = 1. Therefore, to make the
emergent symmetries manifest, we will develop an effective
mid-IR theory Hmid−IR that describes only the dynamics of
states with P̃i = 0. Since H is a sum of only operators in AUV,
the effective mid-IR theory Hmid−IR should be a sum of only
operators in Amid−IR. Therefore symmetries of Hmid−IR will
include the UV symmetries but also include additional ones,
which we will identify as exact emergent symmetries.

The effective mid-IR Hamiltonian should act only on the
mid-IR Hilbert space Vmid−IR. The most general form for it is

Hmid−IR =
∑

O∈Amid−IR

(CO O + H.c.). (7)

The constants {CO} are renormalized versions of the UV pa-
rameters. One can in principle determine {CO} by requiring
the spectra and correlation functions of Hmid−IR to match with
the UV theory’s for |ψ〉 ∈ Vmid−IR. Since UV theory is local,
we require the effective theory to be a local Hamiltonian.
Therefore the greater number of operators involved in O or the
larger the region of the lattice O acts on, the smaller CO is. We
view the ability to define a local effective mid-IR Hamiltonian
as a requirement for the mid-IR itself to be well defined.

The mid-IR having an exact emergent symmetry means
there is a transformation that leaves the Hmid−IR unchanged.
This implies the existence of an emergent conservation law
obeyed at E < Emid−IR which cannot be broken by local oper-
ators. The existence of this exact emergent conservation law
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FIG. 3. (a) The low-energy properties of QFTano (QFTa f re-
stricted to the R-symmetric sub-Hilbert space) can be exactly
simulated by a boundary of a topological order M in one higher
dimension. QFTano uniquely determines M. (b) The low-energy
properties of QFTa f throughout all R sectors can be simulated by
including the boundary R̃.

can be used as a definition of the existence of the exact emer-
gent symmetry. For p-form symmetries, this conservation law
means that at E < Emid−IR, there are only closed p-branes
excitations.

It is important to note that this effective Hamiltonian is dif-
ferent than those found using, for instance, Brillouin-Wigner
perturbation theory [77] or Schrieffer-Wolff transforma-
tions [78]. Indeed, these effective Hamiltonians describe the
mid-IR of H0 (the 〈Pi〉 = 0 subspace), where as the effective
Hamiltonian Eq. (7) describes the genuine mid-IR of H (the
〈P̃i〉 = 0 subspace).

The philosophy behind Hmid−IR is similar to that of effec-
tive field theory, where one writes down an effective action
that includes all allowed terms. Its definition is physically
reasonable but not rigorously derived. We will not present
a rigorous justification or proof of Hmid−IR. Here, we state
Eq. (7) with the restrictions on CO as the conjectured form
of Hmid−IR, and we will examine the consequences of this
conjecture.

B. A holographic picture

An algebra of local symmetric operators [e.g., Eqs. (5)
and (6)] determines a nondegenerate braided fusion (higher)
category M [57,79]. To emphasize its utility in describing
a symmetry, M is called a symmetry category or symme-
try topological order.4 For a finite symmetry, its symmetry
category M describes a topological order in one higher di-
mension, which we also denote by M. References [16,81]
proposed a unified description of all types of symmetries
(including their higher-form, higher-group, anomaly, and non-
invertibility properties) using such topological order in one
higher dimension, which leads to a symmetry/topological
order (Symm/TO) correspondence [79,80]. The bulk topo-
logical order (i.e., the symmetry topological-order) can be
realized by a topological field theory (TFT). To emphasize
its utility in describing symmetry, this bulk TFT is called
symmetry TFT [82].

4Symmetry category was called categorical symmetry in
Refs. [79,80]. Since the term categorical symmetry is now
commonly used to mean noninvertible/algebraic symmetry, we
rename categorical symmetry to symmetry category to avoid
confusion.

More precisely, given an anomaly-free system5 QFTa f

with a symmetry, its low energy properties within the sym-
metric sub-Hilbert space are exactly simulated by a boundary
of a topological order M in one higher dimension. Indeed,
QFTa f restricted within the symmetric sub-Hilbert space can
be viewed as a new system QFTano with a noninvertible grav-
itational anomaly [80,83], which corresponds to M in one
higher dimension [84,85] [see Fig. 3(a)].

Fully simulating QFTa f requires the boundary of M to
also capture states outside the symmetric subspace. This can
be achieved by adding an additional gapped boundary R̃ of
M [16,19], as shown in Fig. 3(b). Provided that the topological
order M and the boundary R̃ have an infinite energy gap, the
low-energy properties of QFTa f are described by the compo-
sition of the topological order M with two boundaries QFTano

and R̃, which we denote as QFTano �M R̃.
If the spatial dimension of the boundary R̃ is d , its gapped

excitations are described by a fusion d-category, which we
will also denote as R̃. On the other hand, the excitations of
M are described by a braided fusion d-category denoted as
M. The boundary fusion d-category R̃ uniquely determines
the bulk braided fusion d-category M, and are related to one
another by

M = Z(R̃), (8)

where Z(R̃) is the center of R̃. When d = 1, Z(R̃) is the
Drinfeld center of R̃.

We say QFTa f is described by the symmetry category
M if admits a decomposition QFTa f = QFTano �M R̃. The
decomposition also implies that QFTa f has a symmetry whose
symmetry defects (i.e., symmetry transformations) are de-
scribed by fusion d-category R̃. We will call such a symmetry
as R̃-symmetry. For example, d−VecG-symmetry is the ordi-
nary global symmetry described by a group G.

If R̃ is a local6 fusion d-category, then the R̃-symmetry
is an anomaly-free symmetry. The symmetry charges of
an anomaly-free R̃-symmetry are described by a fusion d-
category R, which is the dual of R̃. However, if R̃ is not local,
the R̃-symmetry is anomalous. We note that in Ref. [19], the
pair (R̃,M) is regarded as a generalized symmetry regardless
if R̃ is local or not. Thus such a description includes both
anomaly-free and anomalous symmetries.

Using QFTano �M R̃ to describe the symmetries of QFTa f

is very general and provides a unifying formalism capable of
describing all generalizations of symmetry. As we will now ar-
gue, QFTano �M R̃ is also able to describe the exact emergent
symmetries of QFTa f discussed in the previous subsection.

Recall from the previous subsection the general Hamilto-
nian (1), where a known mid-IR of H0 was spanned by states
satisfying Pi|ψ〉 = 0 for local commuting projectors {Pi}.
Any exact emergent symmetries in the mid-IR are determined

5An anomaly-free system is one with a lattice UV completion.
6A fusion d-category R̃ is local if there exists a fusion d-category

R such that Z(R) = Z(R̃) and R�M R̃ = nVec, where dVec is
the braided fusion d-category describing excitations in a trivial topo-
logical order (i.e., above a trivial product state). Such R is called the
dual of R̃.
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entirely by {Pi}, and the exact emergent symmetries of H
could be found by dressing {Pi} with ULU. Here for simplicity,
we will just consider H0 since our results will hold even
after we include an arbitrary translation-invariant perturbation
H1, as we discussed in the last subsection. Without a loss of
generality, we will assume that H0 has the form

H0 =
∑

i

Oi + Emid-IR

∑
i

Pi, (9)

where Oi are local operators and [Oi,P j] = 0 is required since
Oi is assumed not to mix the Pi = 0 and Pi = 1 states. Thus
the local energy dynamics controlled by Oi are constrained by
Pi, and consequently, the local projectors {Pi} can give rise to
an emergent symmetry.

It is believed that a topological order with a gapped
boundary can be realized by a commuting projector model.
Therefore the R̃-boundary and the M-bulk in Fig. 3(b) can
be realized by a commuting projector model. To have H0 as
the Hamiltonian described by the slab in Fig. 3(b), we take
Pi in H0 to be those commuting projectors. Oi’s in H0 are the
boundary Hamiltonian terms describing the QFTano boundary
in Fig. 3(b).

We also enlarge {Oi} to include local operators in the
bulk M, and require that they still commute with Pi. Since
the thickness of the bulk is finite, {Oi} can include opera-
tors that connect the QFTano and R̃ boundaries, which we
will refer to as interboundary operators. There are also in-
traboundary operators, which are those that act only on the
degrees of freedom near the boundary QFTano. To explicitly
break a symmetry on QFTano, {Oi} must include an inter-
boundary operator that transfers symmetry charge from R̃ to
QFTano. Doing this for a p-form symmetry requires a (p + 1)-
dimensional operator.

For a 0-form symmetry, such an operator would include
a finite number of local operators acting in a line from R̃
to QFTano. This is a local operator and thus allowed in
H0. It is unlikely local projectors Pi can forbid such an
operator, and therefore they cannot produce exact emergent
0-form symmetries. For emergent higher-form symmetries,
any interboundary operators that transfer symmetry charge
are noncontractible extended operators, acting on the whole
system. These operators are not local and are not included
in the set of local operators {Oi}. Thus emergent higher-form
symmetries are exact.

The discussion so far has been pretty general, so let us
consider an example of a model with an exact emergent Z(1)

2
symmetry in 1+1D. We consider M = Z (VecZ2 ), which cor-
responds to the Z2 toric code model, and R̃ the Z2-charge
condensed boundary (the rough boundary [86]). The slab
QFTano �M R̃ in Fig. 3(b) becomes the lattice shown in
Fig. 4(a), with qubits residing on the links.

The toric code model contains two types of projectors:
star terms Pvert

i = (1 − Z1Z2Z3Z4)/2 acting on the qubits
of the four links touching each vertex and plaquette terms
P plaq

i = (1 − X1X2X3X4)/2 acting on the qubits of the four
links around each square. The R̃ boundary has truncated pla-
quette terms Pbdry

i = 1
2 (1 − X1X2X3), as shown in Fig. 4(a).

Since the bulk is topological, let us take a thin slab limit of
Fig. 4(a), which gives us Fig. 4(b) where we label vertical

FIG. 4. (a) A lattice realization of Fig. 3(b), where qubits live on
the links. The star and plaquette terms of the toric code model are
shown both in the bulk and on the R̃ boundary. (b) Since the bulk is
topological, one can take the thin slab limit.

(horizontal) links by i (i + 1
2 ). The only remain projector

surviving this limit is Pbdry
i = 1

2 (1 − XiXi+ 1
2
Xi+1), and thus

all allowed Oi’s are generated by products of Xi, Xi+ 1
2
, and

Zi− 1
2
ZiZi+ 1

2
. Notice that while Xi+ 1

2
, XiXi+ 1

2
Xi+1, Zi− 1

2
ZiZi+ 1

2

are intraboundary operators, the Xi’s are interboundary opera-
tors.

Let us first restrict ourselves to only the intraboundary
operators. We will consider the full setup, where Oi includes
intra and interboundary operators, after. The intraboundary
operators form an algebra of the local symmetric operators
generated by

A(intraonly)
mid−IR = {

Xi+ 1
2
, XiXi+ 1

2
Xi+1, Zi− 1

2
ZiZi+ 1

2

}
. (10)

The operators (local or nonlocal) that commute with A(intraonly)
mid−IR

are generated by

T (intraonly)
mid−IR =

{
XiXi+ 1

2
Xi+1,

∏
i

(
Zi− 1

2
ZiZi+ 1

2

)}
(11)

and give rise to all symmetry transformations. Therefore,
when restricted to the intraboundary operators, there are two
mid-IR symmetries arising from Pi. XiXi+ 1

2
Xi+1 acts on loops

and corresponds to a Z(1)
2 symmetry, while

∏
i(Zi− 1

2
ZiZi+ 1

2
)

acts on the entire lattice and corresponds to a Z(0)
2 symmetry.

When the (2 + 1)D system QFTano �M R̃ is mapped to the
(1 + 1)D system QFTa f , the Z(0)

2 symmetry still acts on the
entire lattice while the Z(1)

2 symmetry now acts on a single
lattice site.

Let us now include the interboundary operators. Doing so,
the algebra of local symmetric operators becomes

Amid−IR = {
Xi+ 1

2
, Xi, Zi− 1

2
ZiZi+ 1

2

}
, (12)

and the symmetry transformations are now generated by

Tmid−IR = {
XiXi+ 1

2
Xi+1

}
. (13)

The Z(1)
2 symmetry is still present, but the Z(0)

2 symmetry is
now gone. This is because the allowed interboundary opera-
tors Xi transfer the charges of the Z(0)

2 symmetry between the
two boundaries, breaking the Z(0)

2 symmetry. The operators
that could transform the Z(1)

2 symmetry charges between the
two boundaries were not included in Amid−IR since they are
not local operators, and as a result, the Z(1)

2 symmetry is still a
mid-IR symmetry.
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UV
UV

IR

UV

mid-IR

IR )

FIG. 5. (left) The parameter space of models C (41) and D (26) can be partitioned into three regions, I, II, and III, corresponding to its
different energy scale hierarchies. These regions are not necessarily distinct phases of the models. Here, solid lines indicate a phase transition
while dashed lines do not. (right) In these regions, we identify the exact emergent symmetries at each energy scale. Here p is a positive integer
and d is the dimension of space such that d > p + 1 (d > p) for model C (D). The emergent U(1)(d−p−1) symmetry in region III for model C
is only nontrivial in the continuum limit. When J/U = 0 (K/U = 0), the exact emergent U(1)(p) and Z(p)

N (U(1)(d−p−1) and Z(d−p)
N ) symmetries

of models C and D, respectively, are exact UV symmetries.

III. EXAMPLES OF EXACT EMERGENT HIGHER-FORM
SYMMETRIES

In this section, using the point of view discussed in
Sec. II A, we go through examples of lattice models without
higher-form symmetries that have exact emergent higher-form
symmetries. These models are all described by Hamiltonians
governing degrees of freedom on a d-dimensional cubic spa-
tial lattice. We extensively use discrete differential geometry
notation, which we review in Appendix A. The remainder of
this section is organized as follows: each subsection dedicated
to a single model and entirely self-contained.

In Sec. III A, we consider the quantum clock model
[Eq. (17)]. When its UV ZN symmetry is spontaneously bro-
ken, we find there is an exact emergent Z(d )

N symmetry at
energies below the domain wall gap. The IR symmetry oper-
ators form a projective representation of ZN × Z(d )

N , signaling
the presence of a mixed ’t Hooft anomaly that protects the
ground state degeneracy in the SSB phase.

In Sec. III B, we consider a model of emergent ZN p-gauge
theory called model D [Eq. (26)], and in Sec. III C a model
of emergent U(1)p-gauge theory called model C [Eq. (41)].
The exact emergent symmetries and energy scale hierarchies
of these models are summarized in Fig. 5. The left panel of
Fig. 5 is a schematic depiction, and we do not investigate the
precise shapes of the regions nor the nature of their bound-
aries. Region III corresponds to the deconfined phase of the
emergent gauge theory. Region II corresponds to the confined
“phase,” where the gauge charges are still well-defined gapped
excitations and confined. Figure 5 and our discussion through-
out Secs. III B and III C portray the possibility that region II
exists for J �= 0. Lastly, region I is where the gauge charges
are condensed/are no longer well-defined gapped excitations.

Model D with p = 1, d = 2, and N = 2 is emergent (2 +
1)D Z2 lattice gauge theory. In Eq. (26), the J term creates Z2

charge fluctuations and the K term creates Z2 flux fluctuations,
both breaking UV Z(1)

2 symmetries. Region III corresponds
to the deconfined phase of the Z2 gauge theory, and in the
IR, there is a spontaneously broken exact emergent anomalous

Z(1)
2 × Z(1)

2 symmetry. This mixed anomaly is characterized
by the SPT [see Eq. (B48)]

Z[A, Â] = eiπ
∫

M4 A∪Â, (14)

where A and Â are Z2-valued 2-cocycles, and protects the
ground state degeneracy on a torus. Large J drives a Z2-charge
condensation transition (i.e., a Higgs transition) and large K
drives a Z2-flux condensation transition (i.e., a confinement
transition). When the Z2 gauge charges have an energy gap,
the exact emergent Z(1)

2 symmetry is present on both sides of
the confinement transition, II ↔ III, controlling the transition,
and its unphysical part corresponds to the exact emergent Z2

gauge redundancy [50].
Model C with p = 1 and d = 3 is emergent (3 + 1)D U(1)

lattice gauge theory. In Eq. (41), the J creates U(1)-charge
fluctuations and the K term creates magnetic monopole fluc-
tuations. Region III corresponds to the deconfined phase of the
U(1) gauge theory, and in the continuum limit of the IR, there
is a spontaneously broken exact emergent U(1)(1) × U(1)(1)

symmetry. This mixed ’t Hooft anomaly is characterized by
the SPT [see Eq. (C59)]

Z[A, Â] = ei2π
∫

M5 A∧dÂ, (15)

where A and Â are R/Z-valued 2-form fields, and protects
the gaplessness of the photon [87,88]. Large J drives a U(1)-
charge condensation transition (i.e., a Higgs transition) and
large K drives a magnetic monopole condensation transition
(i.e., a confinement transition). When the U(1) charges have
an energy gap, the exact emergent U(1)(1) symmetry is present
on both sides of confinement transition II ↔ III, controlling
the transition, and its unphysical part corresponds to the exact
emergent U(1) gauge redundancy [50].

A. Quantum clock model

Consider ZN quantum rotors residing on the 0-cells (sites)
of the spatial d-dimensional cubic lattice at zero temperature.
These are described by the clock operators Xc0 and Zc0 , which
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are unitary operators satisfying

Zc̃0 Xc0 = ωδc0 ,̃c0 Xc0 Zc̃0 , X N
c0

= ZN
c0

= 1, (16)

where ω ≡ ei2π/N . They are N-dimensional general-
izations of the Pauli matrices and have eigenvalues
{1, ω, ω2, · · · , ωN−1}. The Hamiltonian of the quantum
clock model is

H = −J

2

∑
c1

∏
c0∈∂c1

Xc0 − K

2

∑
c0

Zc0 + H.c., (17)

where X−c0 ≡ X †
c0

, the first sum is over 1-cells, and the second
sum is over all 0-cells. This theory has an exact ZN 0-form—
Z(0)

N —symmetry, which is generated by

U =
∏
c0

Zc0 . (18)

The charged operator of this symmetry is Xc0 , which from the
clock operator algebra transform as Xc0 → e2π i/N Xc0 . There-
fore the algebra of local symmetric operators is generated by

AUV =
{

Zc0 ,
∏

c0∈∂c1

Xc0

}
. (19)

1. An exact emergent Z(d )
N symmetry and mixed ’t Hooft anomaly

When K/J � 1, the quantum clock model lies in a
Z(0)

N spontaneous symmetry broken (SSB) phase. Indeed,
in the tractable K/J → 0 limit, the ground state satisfies
X †

c0
Xc̃0 |vac〉 = |vac〉 for all neighboring 0-cells, and thus

〈X †
c0

Xc′
0
〉 = 1 for any 0-cells c0 and c′

0. In this phase, there are
gapped domain walls carrying ZN topological charge. Indeed,
in the K/J → 0 limit, the domain-wall density ρ̂ for a state
|ψ〉 is defined by∏

c0∈∂c1

Xc0 |ψ〉 = e
2π i
N (∗ ρ̂ )c1 |ψ〉, (20)

where (∗ ρ̂ )c1 ≡ ρ̂∗ c1 . Therefore the operator (∗ Z )ĉd excites a
domain wall on ∂ ĉd .

The domain wall gap J provides a candidate energy scale
below which new symmetries may emerge. Let us call this
energy scale the IR. However, when K/J �= 0, there no longer
exists a low-energy sub-Hilbert space spanned by states sat-
isfying 〈ρ̂ĉd−1〉 = 0 mod N . This is because the K term in
H causes the 〈ρ̂ĉd−1〉 = 0 and 〈ρ̂ĉd−1〉 �= 0 states to mix. This
does not necessarily mean the domain walls no longer exist
when K > 0, just that their operators depend on K . Indeed, a
corresponding low-energy sub-Hilbert space can be identified
using ULU from Sec. II A. Therefore there exists a low-energy
sub-Hilbert space for K/J � 1 in the SSB phase spanned by
states satisfying 〈̃ρ̂ ĉd−1

〉 ≡ 〈ULUρ̂ĉd−1U
†
LU〉 = 0. By the defini-

tion of ULU, the Z(0)
N symmetry operator satisfies

U = Ũ =
∏
c0

Z̃0. (21)

Having identified the IR of the SSB phase, we would
now like to find an effective IR theory. This IR satisfies the
constraint ˜̂ρ ĉd−1

= 0, or equivalently
∏

c0∈∂c1
X̃c0 = 1. Due to

the constraint, the Z(0)
N symmetric IR operators must be con-

structed from only Z̃0. Only one such operator commutes with
the constraint: Eq. (21). Therefore, for a finite-size system, the
algebra of local symmetric IR operators is

Afinite−L
IR =

{∏
c0

Z̃0

}
= {U }. (22)

The corresponding effective IR Hamiltonian is

Hfinite−L
IR = −JκN0 U, (23)

where κ ∼ K/J and N0 is the total number of 0-cells. The K/J
dependence of κ comes from the fact that H = 0 in the IR
when K/J → 0.

In the thermodynamic limit, U is a nonlocal operator, so
the algebra of local symmetric IR operators becomes

AIR = {}. (24)

Indeed, since K/J � 1, in the thermodynamic limit the ef-
fective IR Hamiltonian becomes HIR = 0. Since AIR is the
empty set (or equivalently, since HIR is zero), any IR operator
commutes with the local symmetric IR operators and thus
corresponds to a symmetry. This includes U , and thus the UV
Z(0)

N symmetry, as expected. However, the operator X̃c0 is also
allowed and it generates the transformation

U → e
2π i
N U . (25)

Since the charged object is supported on d-cycles and trans-
forms by an element of ZN , the operator X̃c0 generates a Z(d )

N
symmetry (which is always a higher-form symmetry).

This emergent Z(d )
N symmetry has been noted previously

throughout the literature [46,89,90]. Indeed, it is an emergent
symmetry since it does not commute with H . Here we find
it is an exact emergent symmetry since it exactly commutes
with the IR effective Hamiltonian. Therefore the ground state
subspace of the ZN SSB phase has an exact Z(0)

N × Z(d )
N sym-

metry. Furthermore, this IR symmetry is anomalous, which
can be noticed from the fact the symmetry operator of the Z(0)

N

symmetry is charged under the Z(d )
N symmetry. This mixed ’t

Hooft anomaly protects the ground state degeneracy of the
SSB phase. The only way to eliminate it is to prevent the Z(d )

N
symmetry from emerging by condensing domain walls.

B. Emergent ZN p-gauge theory

In this section, we consider a model for emergent ZN p-
gauge theory, which we call model D. When p = 1, this is just
typical ZN gauge theory. Consider ZN quantum rotors residing
on the p-cells of the spatial d-dimensional cubic lattice with
p > 0. A ZN quantum rotor is an N-level system described by
clock operators Xcp and Zcp which satisfy Eq. (16). Model D
is described by the Hamiltonian

HUV = −U

2

∑
cp−1

τ z
cp−1

− U
∑
cp+1

W †
cp+1

− K

2

∑
cp

Zcp − J

2

∑
cp

Xcp + H.c.,

τ z
cp−1

≡
∏

cp∈δcp−1

Zcp, W †
cp+1

=
∏

cp∈∂cp+1

Xcp (26)
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FIG. 6. Graphical representation of ρcp−1 in model C (42) and
τ z

cp−1
in model D (26) in 3d space for (first row) p = 1, (second row)

p = 2, and (third row) p = 3. The (p − 1)-cell cp−1 is colored purple.
The ± disks on the p-cells denote the sign in front of Lz

cp
in the sum

for ρcp−1 , or whether Zcp is Z+ ≡ Z or Z− ≡ Z† in the product for
τ z

cp−1
.

where
∑

cp
is over all p-cells, δcp−1 is the coboundary of

cp−1 [see Eq. (A3)], andZ−cp ≡ Z†
cp

. τ z is generally a product
of 2(d − p + 1) operators, examples of which are shown in
Fig. 6.

Since HUV has terms linear in Zcp and Xcp , the algebra of
local symmetric UV operators is generated by

AUV = {Zcp, Xcp}. (27)

Nothing commutes with both Zcp and Xcp , and thus there are
no UV symmetries in this theory.

1. An exact emergent Z(p)
N symmetry

In the limit J/U → 0, there exists a low-energy sub-Hilbert
space spanned by states satisfying 〈τ z

cp−1
〉 = 1. Violating this

constraint costs energy U , and we interpret states that do
so in this limit as having a gapped excitation, a segment of
which residing on cp−1. We’ll refer to these bosonic (p − 1)-
dimensional (in space) excitations as “charges” since they
are the gauge charges of the emergent ZN p-gauge theory.
From the clock operators’ algebra, Xcp excites a charge on
∂cp, examples of which are shown in Fig. 7. Since X N

cp
= 1,

exciting N charges is the same as not exciting any. Thus the
charge number takes values in ZN .

The charge gap U provides a candidate energy scale be-
low which new symmetries may emerge. However, when
J/U �= 0, there no longer exists a low-energy sub-Hilbert

FIG. 7. Graphical representation of the excitation created by L+
cp

[Xcp] in model C [D] in 3d space for (first row) p = 1, (second
row) p = 2, and (third row) p = 3. The yellow disk represents
L+

cp
[Xcp]. For model C, the purple ± disk denotes the sign in

ρcp−1 (L+
cp

|0〉) = ±(L+
cp

|0〉) for that (p − 1)-cell. For model D, the ±
disk instead denotes the sign in τ z

cp−1
(Xcp |0〉) = ω±1(Xcp |0〉) for that

(p − 1)-cell.

space spanned by states satisfying 〈τ z
cp−1

〉 = 1. This is
because the J term in HUV causes the 〈τ z

cp−1
〉 = 1 and

〈τ z
cp−1

〉 �= 1 states to mix. This does not necessarily mean
the charges no longer exist when J > 0, just that their op-
erators depend on J . Indeed, a corresponding low-energy
sub-Hilbert space can be identified using the local unitary
from Sec. II A, which we denote as U (1)

LU . Therefore there
exists a low-energy sub-Hilbert space spanned by states sat-
isfying 〈̃τ z

cp−1
〉 ≡ 〈U (1)

LU τ z
cp−1

U (1)†
LU 〉 = 1.

We will not find an explicit form for U (1)
LU and thus will not

precisely know throughout how much of parameter space the
dressed (fattened) operators can be defined without violating
the assumptions of U (1)

LU . Instead, we will assume that such
an operator exists and can access a greater than measure-zero
part of parameter space and will investigate the consequences
of this conjecture.

At this point, we cannot tell if the charge gap � is an IR
scale or mid-IR I scale or mid-II scale, etc. In Sec. III B 2, we
find it is a mid-IR scale in region III, but an IR scale in region
II of parameter space (see Fig. 5). For the rest of this section,
however, we will adopt the language from the perspective of
region III and call the charge gap a mid-IR scale.

Given the mid-IR scale Emid−IR ≡ �, we would now like
to find an effective mid-IR theory describing states at energies
E < Emid−IR. Since Z̃cp commutes with τ̃ z

cp−1
, it does not excite

any charges and is an allowed mid-IR operator. The operators
X̃cp are not allowed as they excite charges. the allowed opera-
tors constructed from X̃cp are

W̃ †[Cp] =
∏

cp∈Cp

X̃cp, (28)
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FIG. 8. Graphical representation of W̃ †(∂cp+1) for model C
[Eq. (44)] and D [Eq. (28)] in 3d space for (first row) p = 0, (second
row) p = 1, and (third row) p = 2. For model C (D), the yellow
colored disks represent L̃+ (X̃ ) operators, the product of which yields
W̃ †(∂cp+1). Discs labeled by † denote the Hermitian conjugate and
cp+1 is colored green.

which we call the Wilson operator (see Fig. 8). It has the
interpretation of exciting a charge, transporting it along a
p-cycle, and then annihilating it.

While W̃ †[Cp] does not excite charges, not all W̃ †[Cp] are
mid-IR operators. Indeed, when K/U � 1 the p-brane exci-
tation created by W̃ †[Cp] costs energy ∼ |Cp|K , where |Cp| is
the number of p-cells Cp is made of. So, roughly, W̃ †[Cp] is
allowed in this limit only if |Cp| � �/K . On the other hand,
when K/U � 1 this p-brane’s gap does not increase linearly
with |Cp| and all W̃ †[Cp] are mid-IR allowed operators. We
will denote the set of Cp for which W̃ †[Cp] is an allowed
Mid-IR operator when acting on |vac〉 by Zp. This set of
p-cycles depends on the value of K/U .

For a finite size system, the algebra of local symmetric
mid-IR operators is generated by

Afinite−L
mid−IR = {Z̃cp,W̃ †[Cp] : Cp ∈ Zp}. (29)

Strictly speaking, this is only approximate since W̃ [Cp ∈ Zp]
is only a mid-IR operator when acting on low-energy eigen-
states in the mid-IR, not mid-IR states with E close to Emid−IR.
Nevertheless, the symmetries of this should be the same as
the exact form of the effective mid-IR theory. The mid-IR
Hamiltonian under this approximation is

Hfinite−L
mid−IR = −κU

∑
cp

Z̃cp − U
∑
cp+1

W̃ [∂cp+1]

− U
∑

Cp∈Zp

εCpW̃ [Cp] + · · · , (30)

where κ ∼ K/U and εCp ∼ (J/U )|Cp|.

In the thermodynamic limit, W̃ † acting on noncontractible
p-cycles is a nonlocal operator. Denoting the subset of Zp

with only contractible p-cycles as Bp, the algebra of local
symmetric mid-IR operators is now generated by

Amid−IR = {Z̃cp,W̃ †[Cp] : Cp ∈ Bp}. (31)

From the effective Hamiltonian point of view, Hfinite−L
mid−IR must

be a local Hamiltonian, so the mid-IR theory is only well-
defined provided J/U � 1. Therefore, in the thermodynamic
limit, terms with Wilson operators supported on nontrivial p-
cycles vanish, and the mid-IR theory becomes

Hmid−IR = −κU
∑

cp

Z̃cp − U
∑
cp+1

W̃ [∂cp+1]

− U
∑

Cp∈Bp

εCpW̃ [Cp] + · · · , (32)

Amid−IR includes an new symmetry absent from AUV. In-
deed, the mid-IR theory is invariant under the transformation

X̃cp → eicp X̃cp ⇒ W̃ [Cp] → ei
∑

cp∈Cp
cpW̃ [Cp], (33)

where (d)cp+1 ≡ ∑
cp∈∂cp+1

cp = 0 and cp ∈ 2πZ/N for

(Xcp )N = 1 to be invariant. This is a symmetry because∑
cp∈Cp

cp = 0 for Cp ∈ Bp since (d)cp+1 = 0. It is not a
gauge symmetry as it transforms Wilson operators on noncon-
tractible p-cycles by a nontrivial element of ZN . Therefore,
since the charged operators are supported on a p-cycle, the
mid-IR has an exact emergent Z(p)

N symmetry. The operator
generating this Z(p)

N symmetry is

Ũ (�̂d−p) =
∏

ĉd−p∈�̂d−p

(∗ Z̃ )ĉd−p, (34)

where �̂d−p is a (d − p)-cycle of the dual lattice and
(∗ Z̃ )ĉd−p ≡ Z̃∗ ĉd−p (see Fig. 9).

This Z(p)
N symmetry only emerges in parameter space

where the mid-IR—the low-energy regime without gapped
charges—exists. Here we associate the mid-IR’s existence to
the existence of a well-defined effective mid-IR Hamiltonian,
so the exact emergent Z(p)

N symmetry exists only when Hmid−IR

converges. In the approximation scheme used, this requires
(εCp )1/|Cp| < 1 for all Cp ∈ Bp. The constant of proportion-
ality in (εCp )1/|Cp| ∝ J/U increases with |Cp| since there are
more ways W̃ [Cp] can be generated from X̃cp for larger |Cp|.
Therefore it is sufficient to consider only the largest p-cycle
in Bp. For small enough K/U where Bp includes all trivial
p-cycles, the largest Cp does not depend on K/U , and so the
largest value of J/U with the exact emergent Z(p)

N symmetry is
independent of K/U . This value of J/U defines the boundary
between regions I and III in Fig. 5. For large enough K/U ,
Bp does not include all trivial p-cycles. The larger K/U is,
the smaller the maximum value of |Cp| is, and thus the larger
the maximum value of J/U with the exact emergent Z(p)

N
symmetry is. This value of J/U increasing with K/U defines
the boundary between regions I and II shown schematically in
Fig. 5.
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FIG. 9. Graphical representation of the emergent U(1)(p) [Z(p)
N ]

symmetry operator Eq. (50) [(34)] in model C [D] acting on ∂ ĉd−p+1

in 3d space for (first row) p = 1, (second row) p = 2, and (third
row) p = 3. The blue-colored disks denote the operator L̃+

cp
[X̃cp], the

product of which yields the symmetry operator. Discs labeled by †
denote the Hermitian conjugate of the operator and ĉd−p+1 is colored
red.

2. An exact emergent anomalous Z(p)
N × Z(d−p)

N symmetry

The exact emergent Z(p)
N symmetry can be spontaneously

broken, and the SSB phase corresponds to the deconfined
phase of ZN p-gauge theory. To gain some intuition, we
consider two tractable limits of the effective mid-IR theory
Eq. (32). When J/U = 0 but K/U �= 0 (which is in region
II), the ground state satisfies Z̃cp |vac〉 = |vac〉, and therefore
〈W̃ †[Cp]〉 = 0 for all Cp. Consequently, this limit lies in a
Z(p)

N symmetric phase. On the other hand, when K/U = 0 but
J/U �= 0 (which is in region III), the ground state satisfies
W̃ [Cp ∈ Bp]|vac〉 = |vac〉, and consequently 〈W̃ †[Cp]〉 = 1
for all trivial p-cycles. Therefore the Z(p)

N symmetry is sponta-
neously broken in this limit.

A Z(p)
N symmetry at zero temperature can spontaneously

break when d > p [3,31]. Therefore, when d > p, we expect
the symmetry to be broken even for K/U �= 0 and a stable
SSB phase to exist. For small κ and εCp , a reasonable expecta-
tion from Eq. (32) is the SSB phase occurs when κ � 1. This
determines the boundary between the Z(p)

N symmetric and Z(p)
N

SSB phases and regions II and III shown in Fig. 5. We leave
a more detailed investigation of this phase transition to future
work.

Let us now restrict our considerations to the SSB phase.
Like 0-form symmetries, breaking higher-form symmetries

FIG. 10. Graphical representation of the topological defects cre-
ated by (∗ Z̃ )ĉd−p in model D for for 3d space and (first row)
p = 0, (second row) p = 1, and (third row) p = 2. The blue disk
represents the (∗ Z̃ )ĉd−p operator. The disks labeled by ± represent
(∗ ρ̂ )cp+1 = ±1 for that cp+1 [see Eq. (35)].

gives rise to gapped topological defects and, in this case,
arise from the nontrivial mappings Zp(Md ; ZN ) → ZN . In the
K/U → 0 limit, the topological defect density ρ̂ for a state
|ψ〉 is defined by7∏

cp∈∂cp+1

X̃cp |ψ〉 = e
2π i
N (∗ ρ̂ )cp+1 |ψ〉. (35)

The topological defects are (d − p − 1)-dimensional excita-
tions in space, residing on the dual lattice, and carry ZN

charge. In the familiar p = 1 case, they correspond to the
ZN flux excitations of ZN gauge theory. Furthermore, from
Eq. (16), the operator (∗ Z̃ )ĉd−p excites a topological defect on
∂ ĉd−p (see Fig. 10).

The topological defect gap �defect provides a candidate
energy scale below which new symmetries may emerge. Let
us call this energy scale the IR. However, when K/U �= 0,
there no longer exists a low-energy sub-Hilbert space sat-
isfying 〈ρ̂ĉd−p−1〉 = 0 mod N . This is because the κU term
in Hmid−IR causes the 〈ρ̂ĉd−p−1〉 = 0 and 〈ρ̂ĉd−p−1〉 �= 0 states
to mix. This does not necessarily mean the topological
defects no longer exist when K/U > 0, just that their oper-
ators depend on K/U . Indeed, we can use the local unitary
discussed in Sec. II A, which we will denote as U (2)

LU , to

7This is a natural generalization of the p = 0 case, where the
topological defects are domain walls [see Eq. (20)].
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identify the corresponding low-energy sub-Hilbert space. In
general, U (2)

LU is different than the local unitary U (1)
LU used in

the previous subsection. Therefore there exists a low-energy
sub-Hilbert space in region III spanned by states satisfying
〈ρ̂ ′

ĉd−p−1
〉 ≡ 〈U (2)

LU ρ̂ĉd−p−1U
(2)†
LU 〉 = 0. By the definition of U (2)

LU ,

the emergent Z(p)
N symmetry operator satisfies

Ũ (�̂d−p) = Ũ ′(�̂d−p) =
∏

ĉd−p∈�̂d−p

(∗ Z̃ ′)ĉd−p . (36)

Having identified the IR of region III, we would now like
to find an effective IR theory. This IR satifies ρ̂ ′

ĉd−p−1
= 0, or

equivalently W̃ ′[∂cp+1] = 1. Due to the constraint, the Z(p)
N

symmetric IR operators must be constructed from only Z̃cp .
Only one such type of operator commutes with the constraint:
Eq. (36). Therefore, for finite-size systems, the algebra of
local symmetric IR operators is

Afinite−L
IR = {Ũ (�̂d−p) : �̂d−p ∈ Zd−p(M̂d ; ZN )}, (37)

where Zd−p(M̂d ; ZN ) is the set of all dual (d − p)-cycles with
ZN coefficients. The corresponding effective IR Hamiltonian
is

Hfinite−L
IR = −U

∑
�̂d−p∈Zd−p(M̂d ;ZN )

κ |�̂d−p| Ũ (�̂d−p), (38)

where κ ∼ K/U and |�̂d−p| is the number of (d − p)-cells in
�̂d−p.

In the thermodynamic limit, Ũ acting on noncontractible
(d − p) cycles are nonlocal operators and Eq. (36) includes
only contractible (d − p)-cycles. However, such Ũ can be
written as Ũ (∂O) = ∏

ĉ∈O(∗ τ̃ z )ĉ, and are thus trivial in the
IR since there are no charges. So, in the thermodynamic limit

AIR = {}, (39)

and HIR = 0.
Since AIR is the empty set, all nontrivial IR operators

commute with it and correspond to symmetries. This includes
Ũ supported on nontrivial dual (d − p) cycles, and thus the
mid-IR Z(p)

N symmetry, as expected. However, W̃ ′ supported
on nontrivial p-cycles is also allowed and from Eq. (33), they
generate the transformation

Ũ (�̂d−p) → e
i
∑

ĉd−p∈�̂d−p
̂ĉd−pŨ (�̂d−p), (40)

where (d̂)ĉd−p+1 = 0 and ̂ĉd−p ∈ 2πZ/N . Since the charged
operator is supported on (d − p) cycles and transforms by an
element of ZN , W̃ ′ generates a Z(d−p)

N symmetry. This is an
exact emergent symmetry because it is not an exact symmetry
of the UV but is an exact symmetry of the IR.

So, in the IR of region III—the ground state subspace of
the deconfined phase of emergent ZN -p gauge theory—there
is an exact emergent Z(p)

N × Z(d−p)
N symmetry. Furthermore,

this IR symmetry is anomalous, which can be noticed from
the fact that the symmetry operator of the Z(p)

N is charged
under the Z(d−p)

N symmetry. This mixed ’t Hooft anomaly
protects the deconfined phase’s topological degeneracy and
topological order. The only way to get rid of it is to prevent the
Z(p)

N × Z(d−p)
N symmetries from emergent by either condens-

ing the topological defects (to destroy Z(d−p)
N ) or the charges

(to destroy the entire Z(p)
N × Z(d−p)

N ).
This emergent anomalous Z(p)

N × Z(d−p)
N symmetry is the

same as the exact symmetry of p-form BF theory and p-form
toric code. This is no accident. In Appendix B, we show how
the ground states in region III are also the ground states of
the p-form toric code and that their topological quantum field
theory description is p-form BF theory.

C. Emergent U(1) p-gauge theory

In this section, we consider a model for emergent U(1) p-
gauge theory, which we call model C. When p = 1, this is
just typical U(1) gauge theory. Consider U(1) quantum rotors
residing on the p-cells of the spatial d-dimensional cubic
lattice with p > 0. Each rotor can be viewed as a particle on
an infinitesimal circle, whose position we denote as the angle
�, carrying angular momentum Lz. The operators Lz and �

are Hermitian and satisfy [�cp, Lz
c̃p

] = iδcp ,̃cp , so Lz = −i ∂
∂�

.
Since the eigenvalue of � is an angle, the eigenvalues of Lz

are integers.
Model C is described by the Hamiltonian

HUV = U

2

∑
cp−1

ρ2
cp−1

− U
∑
cp+1

W †
cp+1

K

2

∑
cp

(
Lz

cp

)2

+ J

2

∑
cp

(
L+

cp
+ H.c.

)
,

ρcp−1 =
∑

cp∈δcp−1

Lz
cp

, W †
cp+1

=
∏

cp∈∂cp+1

L+
cp

(41)

where
∑

cp
is over all p-cells, δcp−1 is the coboundary of cp−1

[see Eq. (A3)], and L+
cp

= (L−
cp

)† = exp[i�cp] is the raising
operator for Lz

cp
. Using the definition of δcp, ρcp−1 can be

written as (see Fig. 6)

ρ(x)μ1···μp−1 =
∑

ν

Lz(x)νμ1...μp−1 − Lz(x − ν̂)νμ1...μp−1 . (42)

The algebra of local symmetric UV operators is generated
by

AUV = {
ρ2

cp−1
,
(
Lz

cp

)2
, L+

cp

}
. (43)

This is invariant under the transformation Lz
cp

→ −Lz
cp

, and

thus there is a UV Z(0)
2 symmetry.

1. An exact emergent U(1)(p) symmetry

In the limit J/U → 0, there exists a low-energy sub-Hilbert
space spanned by states satisfying 〈ρcp−1〉 = 0. Violating this
constraint costs energy U , and we interpret states that do
so in this limit as having a gapped excitation, a segment of
which resides on cp−1. We’ll refer to these bosonic (p − 1)-
dimensional (in space) excitations as “charges” since they are
the gauge charges of the emergent U(1) gauge theory. From
the commutation relation satisfied by Lz and �, L+

cp
excites a

charge on ∂cp, examples of which are shown in Fig. 7.
The charge gap U provides a candidate energy scale be-

low which new symmetries may emerge. However, when
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J/U �= 0, there no longer exists a low-energy sub-Hilbert
space spanned by states satisfying 〈ρcp−1〉 = 0. This is
because the J term in HUV causes the 〈ρcp−1〉 = 0 and
〈ρcp−1〉 �= 0 states to mix. This does not necessarily mean
the charges no longer exist when J > 0, just that their op-
erators depend on J . Indeed, a corresponding low-energy
sub-Hilbert space can be identified using the local unitary
from Sec. II A, which we denote as ULU. Therefore there exists
a low-energy sub-Hilbert space spanned by states satisfying
〈̃ρcp−1〉 ≡ 〈ULUρcp−1U

†
LU〉 = 0.

We will not find an explicit form for ULU and thus will not
precisely know throughout how much of parameter space the
dressed (fattened) operators can be defined without violating
the assumptions of ULU. Instead, we will assume that such
an operator exists and can access a greater than measure-zero
part of parameter space and will investigate the consequences
of this conjecture.

At this point, we cannot tell if the charge gap � is an IR
scale or mid-IR I scale or mid-II scale, etc. In Sec. III C 2,
we find it is a mid-IR scale in region III but an IR scale
in region II of parameter space (see Fig. 5). For the rest of
this section, however, we will adopt the language from the
perspective of region III and call the charge gap a mid-IR
scale.

Given the mid-IR scale Emid−IR ≡ �, we would now like
to find an effective mid-IR theory describing states at energies
E < Emid−IR. Since the UV-symmetric operator (L̃z

cp
)2 com-

mutes with ρ̃cp−1 , it does not excite any charges and is an
allowed mid-IR operator. The operators L̃+

cp
are not allowed

as they excite charges. the allowed operators constructed from
L̃+

cp
are

W̃ †[Cp] =
∏

cp∈Cp

L̃+
cp

. (44)

which we call the Wilson operator (see Fig. 8). It has the
interpretation of exciting a charge, transporting it along a
p-cycle, and then annihilating it.

While W̃ †[Cp] does not excite charges, not all W̃ †[Cp] are
mid-IR operators. Indeed, when K/U � 1 the p-brane exci-
tation created by W̃ †[Cp] costs energy ∼ |Cp|K , where |Cp| is
the number of p-cells Cp is made of. So, roughly, W̃ †[Cp] is
allowed in this limit only if |Cp| � �/K . On the other hand,
when K/U � 1 this p-brane’s gap does not increase linearly
with |Cp| and all W̃ †[Cp] are mid-IR allowed operators. We
will denote the set of Cp for which W̃ †[Cp] is an allowed
Mid-IR operator when acting on |vac〉 by Zp. This set of
p-cycles depends on the value of K/U .

For a finite size system, the algebra of local symmetric
mid-IR operators is generated by

Afinite−L
mid−IR = {(

L̃z
cp

)2
,W̃ †[Cp] : Cp ∈ Zp

}
. (45)

Strictly speaking, this is only approximate since W̃ [Cp ∈ Zp]
is only a mid-IR operator when acting on low-energy eigen-
states in the mid-IR, not mid-IR states with E close to Emid−IR.
Nevertheless, the symmetries of this should be the same as
the exact form of the effective mid-IR theory. The mid-IR

Hamiltonian under this approximation is

Hfinite−L
mid−IR = κU

∑
cp

(
L̃z

cp

)2 − U
∑
cp+1

W̃ [∂cp+1]

− U
∑

Cp∈Zp

εCpW̃ [Cp] + · · · , (46)

where κ ∼ K/U and εCp ∼ (J/U )|Cp|.
In the thermodynamic limit, W̃ † acting on noncontractible

p-cycles is a nonlocal operator. Denoting the subset of Zp

with only contractible p-cycles as Bp, the algebra of local
symmetric mid-IR operators is now generated by

Amid−IR = {(
L̃z

cp

)2
,W̃ †[Cp] : Cp ∈ Bp

}
. (47)

From the effective Hamiltonian point of view, Hfinite−L
mid−IR must

be a local Hamiltonian, so the mid-IR theory is only well-
defined provided J/U � 1.8 Therefore, in the thermodynamic
limit, terms with Wilson operators supported on nontrivial p-
cycles vanish, and the mid-IR theory becomes

Hmid−IR = κU
∑

cp

(
L̃z

cp

)2 − U
∑
cp+1

W̃ [∂cp+1]

− U
∑

Cp∈Bp

εCpW̃ [Cp] + · · · , (48)

Amid−IR includes an new symmetry absent from AUV. In-
deed, the mid-IR theory is invariant under the transformation

L̃+
cp

→ eicp L̃+
cp

⇒ W̃ [Cp] → ei
∑

cp∈Cp cpW̃ [Cp], (49)

where (d)cp+1 ≡ ∑
cp∈∂cp+1

cp = 0. This is a symmetry be-
cause

∑
cp∈Cp

cp = 0 for Cp ∈ Bp since (d)cp+1 = 0. It is
not a gauge symmetry as it transforms Wilson operators on
noncontractible p-cycles by a nontrivial element of U(1).
Therefore, since the charged operators are supported on a
p-cycle, the mid-IR has an exact emergent U(1)(p) symmetry.
The symmetry operator of this U(1)(p) symmetry is

Ũα (�̂d−p) =
∏

ĉd−p∈�̂d−p

exp[iα (∗ L̃z )ĉd−p], (50)

where α ∈ [0, 2π ), �̂d−p is a (d − p)-cycle of the dual lattice,
and (∗ L̃z )ĉd−p ≡ L̃z

∗ ĉd−p
(see Fig. 9).

This U(1)(p) symmetry only emerges in parameter space
where the mid-IR—the low-energy regime without gapped
charges—exists. Here we associate the mid-IR’s existence
to the existence of a well-defined effective mid-IR Hamil-
tonian, so the exact emergent U(1)(p) symmetry exists only
when Hmid−IR converges. In the approximation scheme used,
this requires (εCp )1/|Cp| < 1 for all Cp ∈ Bp. The constant of
proportionality in (εCp )1/|Cp| ∝ J/U increases with |Cp| since
there are more ways W̃ [Cp] can be generated from L̃+

cp
for

larger |Cp|. Therefore it is sufficient to consider only the

8When p = 1, Eq. (46) can be thought of as a lattice regularization
of the string field theory in Ref. [36]. Here, the suppression of large
loops automatically arises from the locality of the UV theory.
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largest p-cycle in Bp. For small enough K/U where Bp in-
cludes all trivial p-cycles, the largest Cp does not depend on
K/U , and so the largest value of J/U with the exact emergent
U(1)(p) symmetry is independent of K/U . This value of J/U
defines the boundary between regions I and III in Fig. 5. For
large enough K/U , Bp does not include all trivial p-cycles.
The larger K/U is, the smaller the maximum value of |Cp| is,
and thus the larger the maximum value of J/U with the exact
emergent U(1)(p) symmetry is. This value of J/U increasing
with K/U defines the boundary between regions I and II
shown schematically in Fig. 5.

2. An exact emergent anomalous U(1)(p) × U(1)(d−p−1) symmetry
in the continuum

The exact emergent U(1)(p) symmetry can be sponta-
neously broken, and the SSB phase corresponds to the
deconfined phase of U(1) p-gauge theory. To gain some intu-
ition, we consider two tractable limits of the effective mid-IR
theory Eq. (48). When J/U = 0 but K/U �= 0 (which is in
region II), the ground state satisfies L̃z

cp
|vac〉 = 0, and there-

fore 〈W̃ †[Cp]〉 = 0 for all Cp. Consequently, this limit lies in a
U(1)(p) symmetric phase. On the other hand, when K/U = 0
but J/U �= 0 (which is in region III), the ground state satisfies
W̃ [Cp ∈ Bp]|vac〉 = |vac〉, and consequently 〈W̃ †[Cp]〉 = 1
for all trivial p-cycles. Therefore the U(1)(p) symmetry is
spontaneously broken in this limit.

A U(1)(p) symmetry at zero temperature can spontaneously
break when d > p + 1 [3,31]. Therefore, when d > p + 1, we
expect the symmetry to be broken even for K/U �= 0 and a
stable SSB phase to exist. For small κ and εCp , a reasonable
expectation from Eq. (48) is the SSB phase occurs when
κ � 1. This determines the boundary between the U(1)(p)

symmetric and U(1)(p) SSB phases and regions II and III
shown in Fig. 5. We leave a more detailed investigation of
this phase transition to future work.

Let us now restrict our considerations to the SSB phase.
Like 0-form symmetries, breaking higher-form symmetries
gives rise to gapped topological defects and, in this case, arise
from the nontrivial mappings Zp(Md ; Z) → U(1). The topo-
logical defects excited in a state |ψ〉 are probed by repeatedly
acting the Wilson operator over a trivial (p + 1)-cycle Cp+1:9∏

cp+1∈Cp+1

W̃ †[∂cp+1]|ψ〉 = e2π iQ̂(Cp+1 )|ψ〉. (51)

The eigenvalue Q̂(Cp+1) is the winding number and yields the
net number of topological defects enclosed by Cp+1. It is given
by

Q̂(Cp+1) = 1

2π

∑
cp+1∈Cp+1

Fcp+1 , (52)

where Fcp+1 = (d�̃)cp+1 mod 2π . Using the identity
x mod n = x − n�x/n�, where �·� rounds its input to the
nearest integer, Fcp+1 can be written as

Fcp+1 ≡ (d�̃)cp+1 + ωcp+1, (53)

where ωcp+1 ≡ −2π�(d�̃)cp+1/(2π )�.

9This is a natural generalization of the p = 0 case, where the
topological defects are vortices.

FIG. 11. Graphical representation of ρ̂ĉd−p−2 [see Eq. (54)] in 3d
space for (first row) p = 0 and (second row) p = 1. The ± disks
denote the sign in front of that �d�̃/(2π )� in the sum for ρ̂ĉd−p−2 .
The direct lattice is colored in black, the dual lattice is in red, and
ρ̂ĉd−p−2 is in blue.

The topological defects can be characterized locally
by paramerizing Q̂(Cp+1 = ∂Op+2) ≡ ∑

cp+2∈Op+2
(∗ ρ̂)cp+2 ,

where the topological defect density ρ̂ is

(∗ ρ̂ )cp+2 = 1

2π
(dF )cp+2 . (54)

Therefore they are (d − p − 2)-dimensional excitations in
space, residing on the dual lattice, and carry Z charge (see
Fig. 11). In the familiar p = 1 case, they correspond to the
magnetic monopole excitations of U(1) gauge theory.

However, these topological defects cannot be observed di-
rectly in the lattice model.10 Indeed since �cp always appears
as L+

cp
= ei�cp , (∗ ρ̂)cp+2 too always appears as ei2π (∗ ρ̂)cp+2 and

so ρ̂ĉd−p−2 ∼ ρ̂ĉd−p−2 + 1 on the lattice.
While the topological defects are unobservable on the lat-

tice, their effects emerge in the continuum limit. The general
paradigm for lattice models (without UV/IR mixing) is that
the effective IR theory deep into a phase of matter is a con-
tinuum quantum field theory reflecting that phase’s universal
properties. Finding the IR effective field theory involves going
deep into the U(1)(p) SSB phase and taking the continuum
limit. Deep into the SSB phase, the effective IR hamiltonian
Eq. (48) includes only the leading order in κ and εCp terms:

Hdeep IR ≈ κU

2

∑
cp

(
L̃z

cp

)2
+ U

2

∑
cp+1

(
Fcp+1

)2
. (55)

In the field theory, these higher-order terms could contribute
as higher-derivative terms but do not affect the deep IR.

Appendix C shows how we take the continuum limit
of Hdeep IR, doing so carefully to capture the topologically

10One could instead consider a Villain type Hamiltonian model for
which these topological defects are observable even in the UV/mid-
IR [48,91,92]. Nevertheless, these different UV lattice models should
have the same IR effective field theory.
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nontrivial parts of the quantum fields from the lattice oper-
ators. We find that the IR effective field theory is compact
p-form Maxwell theory, described by the path integral

Zdeep IR =
∫

D[a]
∑

ωa∈2πH p+1(X ;Z)

e
− i

2g2

∫
X Fa∧ ∗ Fa

, (56)

where Fa = da + ωa, a is a p-form in Minkowski space-time
X , and H p+1(X ; Z) is the (p + 1)th de Rham cohomol-
ogy group with integral periods. This field theory describes
the dynamical fluctuations of the (d−1)!

p!(d−p−1)! p-form Gold-

stone bosons of the U(1)(p) SSB phase [34] traveling at the
“speed of light” c = U

√
κ . Furthermore, as reviewed in Ap-

pendix Sec. C 1, it has an anomalous U(1)(p) × U(1)(d−p−1)

symmetry [3]. Therefore deep into the U(1)(p) SSB phase of
the lattice model, a new symmetry emerges in the continuum.
So, the IR of region III has an exact emergent U(1)(p) ×
U(1)(d−p−1) symmetry in the continuum.

IV. GENERALIZED LANDAU PARADIGM IN PRACTICE

As mentioned in the introduction, an exciting prospect of
generalized symmetries is the expansion of Landau’s origi-
nal symmetry paradigm [23,24]. Since, as we have argued,
emergent higher-form symmetries are exact symmetries, to
fully utilize the power of a generalized Landau symmetry
paradigm, we must consider both a system’s microscopic
and exact emergent symmetries. In particular, every emergent
symmetry is accompanied by an energy scale or a length scale.
As we change parameters, those energy scales may become
zero, or the length scales diverge. This modified generalized
Landau paradigm can give new results, which is one of the key
results of the paper. In this section, we demonstrate how this
can be done in practice by studying how the exact emergent
1-form symmetries affect the structure of the phases and phase
transitions of a simple concrete model.

A. Fradkin-Shenker model

We will study (2 + 1)D Z2 lattice gauge theory with mat-
ter. Let us consider the square lattice with periodic boundary
conditions and a qubit residing on each link l acted on by the
Pauli matrices Xl and Zl . The Hamiltonian is

H = −
∑

s

Qs −
∑

p

Fp − te
∑

l

Xl − tm
∑

l

Zl ,

Qs =
∏
l⊃s

Zl , Fp =
∏
l⊂p

Xl , (57)

where te, tm � 0, Qs is a product over the four links meeting
at site s, and Fp is a product over the four links surrounding
plaquette p. H is the toric code [93] in a magnetic field (te, tm),
which is equivalent to the Fradkin-Shenker model [94]. It has
been intensely studied [46,52,54,76,95–99] and famous for its
phase at te, tm � 1 with Z2 topological order [100,101] (see
Fig. 12).

This model has exact 1-form symmetries when te and/or tm
vanishes. When te = 0, it enjoys an anomaly-free Z2 1-form

FIG. 12. (Left) The phase diagram of Fradkin-Shenker
model (57) labeled by its exact emergent symmetries. The
topological phase is colored blue while the trivial phase is red. The
solid line corresponds to a continuous transition, the dashed line
corresponds to a first-order transition, and the dotted line is not
a phase transition. (Right) Another possible phase diagram. The
phase transition curve is not smooth and has a singularity, which is a
consequence of exact emergent 1-form symmetries.

symmetry generated by

U (e)
1 (γ̃ ) =

∏
l⊥γ̃

Zl , (58)

where the product is over all links crossing the loop
γ̃ ∈ Z1(M̃; Z2) of the dual lattice M̃. When tm = 0, H has a
different anomaly-free Z2 1-form symmetry generated by

U (m)
1 (γ ) =

∏
l⊂γ

Xl , (59)

where the product is over all links in the loop γ ∈ Z1(M; Z2)
of the lattice M. We distinguish these by calling them the
electric and magnetic symmetries, respectively, and denoting
them as Ze(1)

2 and Zm(1)
2 . When te = tm = 0 and H is the toric

code model, both symmetries are present and act anomalously.
This anomaly ensures that both symmetries are spontaneously
broken in any gapped phase [102].

There are additional symmetries besides these two 1-
form symmetries. For instance, when te = tm, H has
a e-m-exchange symmetry Zem

2 whose action exchanges
Xl ↔ Zl+x̂/2+ŷ/2. There are other 0-form symmetries at the
toric code point as well, which are generated by condensa-
tion defects of the two 1-form symmetries. However, these
additional symmetries do not appear to play a role in char-
acterizing the model’s phase diagram, and we will therefore
focus on the two 1-form symmetries from here on

These microscopic symmetries are present in a small
subspace of parameter space and thus are inadequate in clas-
sifying the model’s phases and phase transitions. However,
since they include 1-form symmetries, after explicitly break-
ing them they will survive as exact emergent symmetries at
low energies.

For instance, the Ze(1)
2 symmetry at te = 0 exists as an

exact emergent symmetry whenever there exists an e anyon
string operator. Thus it emerges at energy scales below twice
the e anyon gap when te �= 0. When te = 0, the e anyon’s
string operator is simply Xl , while for te �= 0 they are fattened
and dressed by a particular local unitary ULU. The emergent
symmetry operators will be generated by the fattened loop
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operators, which is U (e)
1 dressed by ULU. As an exact emergent

symmetry, Ze(1)
2 has a length scale lsymm and an energy scale

Esymm ∼ O(1 − te). If te is too large then lsymm = ∞ and/or
Esymm = 0 causing the exact emergent higher-form symmetry
to disappear.

When te = 0 and the Ze(1)
2 symmetry is a microscopic sym-

metry that is spontaneously broken for small tm. The phase
transition at tm ≈ 0.34 [95] is controlled by Ze(1)

2 . Since the
dual symmetry of Ze(1)

2 is a Z2 0-form symmetry, the tran-
sition is described by the gauged Ising—Ising*—conformal
field theory. Since Ze(1)

2 is an exact emergent symmetry when
te �= 0, the symmetry broken phase and phase transition per-
sist away from te = 0, as shown in Fig. 12, despite the lattice
model no longer having a microsopic Ze(1)

2 symmetry.
This discussion applies to Zm(1)

2 as well, just with all elec-
tric and magnetic variables exchanged. Therefore the topo-
logical phase has an exact emergent anomalous Ze(1)

2 × Zm(1)
2

symmetry spontaneously broken and a phase transition into
the Higgs (confined) regime is driven by restoring the mag-
netic (electric) 1-form symmetry. This means that the Higgs
(confined) regime has an exact emergent unbroken Zm(1)

2

(Ze(1)
2 ) symmetry. We propose that across the first-order tran-

sition line, the exact emergent Zm(1)
2 symmetry switches to the

exact emergent Ze(1)
2 symmetry and vice versa.

There should be no region outside of the topological phase
with both emergent Zm(1)

2 and Ze(1)
2 symmetries since other-

wise, their mixed anomaly would require the gapped phase at
the upper right corner of Fig. 12 to be a nonproduct state. This
implies that there is a region in the upper right corner of the
phase diagram with no emergent symmetry.

Since both the Higgs and confined regimes lie in the trivial
phase [94,103], one may wonder how they can have different
symmetries. Indeed, Higgs and confined phases can be distin-
guished when they have different realizations of symmetries
(see recent work Refs. [46,47,55,104] on the subject). How-
ever, with periodic boundary conditions, both symmetries are
realized trivially since the charged states cost infinite energy
in the thermodynamic limit. This is why there is no phase tran-
sition when the exact emergent unbroken 1-form symmetries
disappear across the dotted line in Fig. 12. While the emergent
symmetry is not represented faithfully, it is still important to
keep track of it since it controls the universality class of the
phase transition out of the topological phase.

Since the two continuous transitions out of the topological
phase (the Higgsing and confining transitions) have different
1-form symmetries, there must be a singularity (i.e., a mul-
ticritical point) where the transition lines meet since their
symmetries will switch Zm(1)

2 ↔ Ze(1)
2 . In model (57), this

singularity happens to be at the end of the first-order transition
line. It would be interesting to study a generalization of the
model that has no e-m-exchange symmetry even along the
diagonal line, to see if there are other forms of singularities
along the continuous transition line, in particular, if the first-
order transition line can shrink to a point [see Fig. 12 (right)].
We predict the existence of singularities along the continuous
transition line even for general models.

When transitioning from the topological phase to the
Higgs regime, the energy scale for the exact emergent Ze(1)

2

symmetry vanishes which causes the electric symmetry to
no longer emerge. We therefore say that the critical point of
the transition has a marginal emergent Ze(1)

2 symmetry. As
a definition, a system has a marginal emergent symmetryif
there exists an infinite sequence of systems approaching the
original system, such that each system in the sequence has
the exact emergent symmetry. This appears to be a concept
that is unique to exact emergent higher-form symmetries.
Similarly, the multi-critical point does not have exact emer-
gent Zm(1)

2 × Ze(1)
2 symmetry, but instead a marginal emergent

Zm(1)
2 × Ze(1)

2 symmetry. An interesting future direction is to
investigate the role marginal emergent symmetries play in
characterizing phase transitions.

V. PHYSICAL CONSEQUENCES

Emergent 0-form symmetries are typically not exact, so
their consequences are approximate. However, as we have
shown, emergent higher-form symmetries are exact emer-
gent symmetries. Therefore their low-energies consequences
are exact and equivalently powerful as UV symmetries.
Furthermore, since emergent higher-form symmetries are ro-
bust against translation-invariant local perturbations, physical
properties arising from their existence are also robust. In this
section, we summarize the physical consequences of emergent
higher-form symmetries being exact. We emphasize their role
in characterizing phases of matter, fitting exact emergent sym-
metries into the generalized Landau classification scheme (see
Ref. [20]).

A. Spontaneous symmetry breaking

Since spontaneous symmetry breaking (SSB) is diagnosed
using the ground state, an emergent higher-form symmetry
can be spontaneously broken in the same way a UV sym-
metry can be spontaneously broken. A consequence of this is
that a phase with an emergent discrete higher-form symmetry
spontaneously broken has an exact ground state degeneracy
(GSD) which depends on space-time’s topology. Similarly,
a phase with an emergent continuous higher-form symmetry
spontaneously broken has Goldstone bosons. If the contin-
uous higher-form symmetry emerges at E < Emid−IR, these
Goldstone bosons are exactly gapless for mid-IR states. How-
ever, for states in the sub-Hilbert space spanned by energy
eigenstates with E � Emid−IR, the Goldstone bosons acquire a
gap.11

Since emergent higher-form symmetries are topologically
robust, a local translation-invariant UV perturbation does not
gap out their Goldstone bosons nor lift the topological GSD.
This is very different from 0-form symmetries where even
weakly breaking the symmetry in the UV gaps out the Gold-
stone boson [105] or lifts the GSD.

The SSB phase of an emergent higher p-form sym-
metry has gapped topological defect excitations. When an
anomaly-free U(1)(p) (Z(p)

N ) symmetry spontaneously breaks

11This is a familiar concept in the p = 1 case where electric screen-
ing causes the photon to acquire a gap.
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in d-dimensional space, there are d − p − 2 (d − p − 1) di-
mensional topological defects carrying Z (ZN ) topological
charge [5,36,106]. For p = 1 and d = 3, this is the magnetic
monopole of U(1) gauge theory (the flux loop of ZN gauge
theory). In the trivial symmetric phase, the topological defects
are condensed.

As we saw in Sec. III, when the U(1)(p) (Z(p)
N ) topolog-

ical defect has a gap, there is a low-energy regime with an
exact emergent U(1)(d−p−1) (Z(d−p)

N ) symmetry. We can flip
this around and define the existence of gapped topological
defects by the presence of these exact emergent symmetries.
Therefore a U(1)(p) (Z(p)

N ) symmetry can spontaneously break
in d-dimensional space only when U(1)(d−p−1) (Z(d−p)

N ) can
be an exact emergent symmetry. Since only emergent higher-
form symmetries are exact at zero temperature (see Sec. VI), a
U(1)(p) (Z(p)

N ) symmetry can only spontaneously break when
d > p + 1 (d > p), agreeing with Refs. [3,31].

In the SSB phase of an emergent higher-form symme-
try, the low-energy states and observables are sometimes
organized into the symmetry’s representations. This is not
generically true since emergent p-form symmetries have
nontrivial charged operators only when there are nontrivial
p-cycles in space. When nontrivial p-cycles exist, charged
operators create p-brane excitations costing finite energy in
the SSB phase, so low-energy states fall into representations
of the emergent symmetry. This then gives rise to selection
rules on the correlation functions of low-energy operators.

When space has no nontrivial p-cycles, the emergent p-
form symmetry is trivialized, and one may be tempted to say
there is no emergent symmetry. Nevertheless, it still has a cor-
responding exact emergent conservation law, and thus there
is a transformation that leaves the low-energy effective the-
ory unchanged. Furthermore, the SSB phase still has neutral
charges condensed and, in the U(1) case, gapless Goldstone
bosons. Therefore the emergent symmetry in this case still
has many nontrivial consequences of a symmetry, and we thus
interpret it as a symmetry.

B. ’t Hooft anomalies

Exact emergent anomaly-free symmetries can be gauged at
the energy scales they exist. Since every symmetry implies
a dual symmetry [80] found by gauging [14], this implies
that exact emergent higher-form symmetries also have dual
symmetries. However, it also implies there can be obstructions
to gauging and thus ’t Hooft anomalies

An emergent higher-form symmetry can be anomalous
with or without spontaneous symmetry breaking and has
consequences regardless of space’s topology and boundaries
(see also Ref. [56]). Such an anomaly can include only ex-
act emergent symmetries or both exact emergent and exact
symmetries.

A ’t Hooft anomaly prevents the ground state from being
a trivial product state due to anomaly matching, providing
IR constraints from UV data. For an exact emergent anoma-
lous symmetry, all energy scales below which the emergent
anomalous symmetry is present must also respect anomaly
matching. Therefore exact emergent anomalous symmetries
also obstruct a trivial ground state, thus providing useful IR
constraints using mid-IR data.

In the examples from Sec. III, the SSB phases of the mod-
els had exact emergent anomalous higher-form symmetries
below the topological defect’s gap. One can view the ground
state degeneracies and gaplessness of Goldstone bosons in
these phases as being protected by the ’t Hooft anomaly.
Another example is a bosonic superfluid. There is an exact
emergent higher-form U(1) symmetry below the vortex gap
that is not spontaneously broken but whose existence con-
tributes to a ’t Hooft anomaly protecting superflow [107].
Thus, if the topological defect’s gaps were held at infinity in
these examples, the ground state could never become a trivial
product state.

C. Without spontaneous symmetry breaking

When a p-form symmetry (p > 0) is unbroken, its p-
brane symmetry excitations are gapped, and their gap grows
with their size. Therefore, in the thermodynamic limit of a
compact space, charged states costs infinite energy, and all
finite-energy states are in the symmetric sector of the emer-
gent higher-form symmetry. Since the emergent symmetry is
trivial, one may again be tempted to say there is no emergent
symmetry at all. However, even exact symmetries trivialize
at low energies when unbroken, and they still have physical
consequences, although very subtle. Therefore, as we will
discuss, unbroken emergent higher-form symmetries can still
have the nontrivial effects of a symmetry, and we thus inter-
pret it as a symmetry.

If an exact emergent higher-form symmetry is anomaly-
free and not spontaneously broken in the absence of a
boundary, it can characterize nontrivial symmetry-protected
topological (SPT) phases [44–47]. Indeed, the existence of
an emergent higher-form symmetry implies that there are
boundaries with the emergent symmetry. Arbitrary perturba-
tions of such boundaries also have the emergent higher-form
symmetry. Therefore a corresponding nontrivial SPT order
could exist in the bulk if the emergent higher-form symmetry
is realized anomalously on such boundaries. The bulk SPT
order cancels the ’t Hooft anomaly by anomaly in-flow [108],
ensuring the theory remains gauge invariant when background
gauge fields are turned on.

Emergent SPT orders have direct physical consequences in
the presence of a spatial boundary. Indeed, since the emergent
higher-form symmetry is realized anomalously on the bound-
ary, all the physical consequences discussed in the previous
two subsections, like symmetry breaking and obstructions to
trivial ground states, apply on this boundary.

In the absence of a boundary, the effective IR theory of
the SPT will be an invertible topological field theory in terms
of the background fields. From a low-energy point of view,
this is no different from an SPT protected by a UV sym-
metry. Indeed, the UV symmetry is trivial in the IR since
it is unbroken, but an invertible topological field theory in
terms of its background gauge fields characterizes the SPT
order [109,110]. Moreover, this invertible theory has physical
meaning: it is the effective response theory of the SPT.

This emphasizes an important distinction between SPTs
protected by 0-form and higher-form symmetries. 0-form
SPTs cannot occur in regions of parameter space where the
0-form symmetry is explicitly broken. However, this is untrue
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FIG. 13. A Hamiltonian Hsym(g) with a p-form symmetry spon-
taneously broken at g < gc has a qualitatively similar phase diagram
whether p = 0 or p > 0. However, explicitly breaking the symmetry
with hHbrk (|h| � 1), the phase diagram of Hsym(g) + hHbrk dif-
fers between p = 0 and p > 0. For p = 0, there is now a smooth
crossover between what used to be the SSB phase and the symmetric
phase. Shown here is the case where the symmetry-breaking pertur-
bation is relevant. For p > 0, Hsym(g) + hHbrk has an exact emergent
p-form symmetry, so there is not a smooth crossover between the
phases. Starting in the SSB phase and increasing h would lead to an
eventual phase transition out of the SSB phase.

of higher-form SPTs since emergent higher-form symmetries
are exact. Therefore, to identify higher-form SPT phases, in-
stead of partitioning parameter space by exact higher-form
symmetries, one should partition it by the emergent higher-
form symmetries.

We note that this perspective of SPTs privileges the charac-
teristic that the protecting symmetry is realized anomalously
on a boundary. It then uses anomaly inflow to relate this
boundary feature to a bulk property, which can be detected
through its topological response at low energy. Whether this
is enough to sharply define a bulk property/observable that
characterizes a phase of matter is important to further investi-
gate.

Emergent higher-form symmetries can also exactly char-
acterize their SSB phase transitions (with or without spatial
boundaries) [36,52], as we saw in Sec. IV. Indeed, transi-
tioning from the SSB phase of an exact emergent symmetry
into its symmetric phase, the critical point will have the ex-
act emergent symmetry and can be in its symmetry-breaking
pattern universality class (see Fig. 13). An example is the con-
finement transition of (2 + 1)D Z2 lattice gauge theory with
dynamical matter. The matter fluctuations explicitly break a
Z(1)

2 symmetry, but the transition is still in the Ising universal-
ity class since there is an exact emergent Z(1)

2 symmetry [52].
Emergent invertible higher-form symmetries can interact

nontrivially with exact symmetries, forming an emergent
higher-group symmetry [6,9]. For example, when an A(1) sym-
metry emerges in the presence of an exact 2-group symmetry,
the total low-energy symmetry is described by a 2-group
G(2) = (G, A, ρ, [β]), where G is the IR 0-form symmetry,
ρ : G → Aut(A), and [β] ∈ H3

ρ (BG; A). The 1-form symme-
try, even without spontaneous symmetry breaking, can be
nontrivial if the Postnikov class [β] is nontrivial.

1. A dynamical effect

An exact emergent higher-form symmetry constrains the
p-brane symmetry excitations dynamics. For simplicity, let

FIG. 14. Shows a cartoon of the different decay processes of 1-
form symmetry excitations in 2 + 1d space-time. The world sheet of
the 1-brane excitation is colored blue, while the worldline of gauge
charge excitations is orange.

us set p = 1 and consider a state with symmetry excitation
excited on a contractible 1-cycle C1.

We first assume that symmetry excitations have a fixed
energy ε per lattice edge and that open string ends (e.g., gauge
charges) have an energy gap �. The 1-form symmetry exists
only at energies E < � and affects symmetry excitations with
|C1|ε � �. For symmetry excitations with |C1| � �/ε, due
to the emergent 1-form symmetry, the only way for them to
decay is by contracting to a point [see Fig. 14(a)]. So, their
life time τ grows with their size |C1|. Symmetry excitations
with |C1| > �/ε are not affected by the 1-form symmetry
and can, therefore, decay by quantum tunneling to states with
open string ends [see Fig. 14(b)]. Therefore their lifetime is
independent of their size, instead going like τ ∼ e�/ε .

Let us now assume that a symmetry excitation is trapped
by a trap potential [111] and has a fixed total energy |C1|ε. If
the trapped symmetry excitation has |C1| � �/ε, it can no
longer decay since the trap potential prevents it from con-
tracting to a point. Such a symmetry excitation is an exact
quantum many-body scar (QMBS) state [112]. If the trapped
symmetry excitation has |C1| > �/ε, it will still decay with a
finite lifetime τ ∼ e�/ε . However, it will have a long lifetime
when ε is small, making large symmetry excitation loops
approximate QMBS states. The larger the trap, the better
the QMBS state with a given energy, so infinite-sized loop
excitations are exact QMBS states. Furthermore, any small
perturbation of the trap would still lead to an approximate
QMBS state, but with lifetime τ ∼ e�/|ε+δε| where δε is the
strength of perturbation. Thus the existence of the emergent
1-form symmetry at E < � implies that there exists a large
potential trap leading to exact QMBS states at E < � and
approximate QMBS states at E > �.

Both of these scenarios apply to p-form symmetries with
p > 1 under a straightforward generalization. In the latter,
the trap potential can trap p > 1 dimensional symmetry ex-
citations which lead to QMBS states. However, it can also
trap topologically ordered states which can lead to QMBS
states. So, to be precise, we say that an exact emergent p-form
symmetry implies the existence of p-dimensional trap poten-
tials leading to QMBS states besides those corresponding to
topologically ordered states.

VI. FINITE TEMPERATURE EFFECTS

Here we discuss how our results are modified at finite
temperature T . When T �= 0, the imaginary time direction
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becomes S1 with radius 1/T . Thus S1 is a small dimension of
space-time when the linear system size L � 1/T , and space-
time can be dimensionally reduced from (d + 1)-dimensional
Md × S1 to d-dimensional Md in the thermodynamic limit.

Let us warm up by first considering how the SSB critical
dimension for higher-form symmetries changes.12 At T = 0,
a Z(p)

N (U(1)(p)) symmetry can spontaneously break when
d + 1 > p + 1 (d + 1 > p + 2) [3,31]. Using dimensional re-
duction, we can understand the finite temperature case by
replacing d + 1 with d . Thus, at T �= 0, a Z(p)

N (U(1)(p)) sym-
metry can spontaneously break when d > p + 1 (d > p + 2).

So, are emergent higher-form symmetries still exact when
T �= 0? At finite temperature, p-form symmetry charged op-
erators can act on nontrivial p-cycles winding around the
compactified imaginary time direction. When dimensionally
reducing space-time, this direction becomes negligible, and
any such p-cycles become (p − 1)-cycles. So, it is as if p-
form symmetries acts like (p − 1)-form symmetries. Since
emergent 0-form symmetries are not exact, emergent 1-form
symmetries are no longer exact at finite temperature. How-
ever, emergent p-form symmetries with p > 1 are still exact
at T �= 0.

This can be seen without having to dimensionally reduce.
Indeed, at T �= 0, 1-cycles winding around imaginary time are
nontrivial 1-cycles of finite length even in the thermodynamic
limit. Assuming the UV theory is local, the low-energy ef-
fective Euclidean action includes terms suppressed by e−1/T

with the emergent 1-form symmetry’s charged operators [36].
Hence, emergent 1-form symmetries at T �= 0 are approxi-
mate, not exact. For p-form symmetries with p > 1, there
are no finite sized nontrivial p-cycles at T �= 0. Indeed, while
a p-cycle could wind around the finite-sized imaginary time
direction, it must also wind around (p − 1) spatial directions,
which are not finite-sized in the thermodynamic limit. There-
fore emergent p-form symmetries with p > 1 are still exact at
T �= 0.

Let us now apply the above discussion to known examples.
The p-form toric code model [see Eq. (B2)] lies in the

SSB phase of an anomalous Z(p)
N × Z(d−p)

N symmetry, where
0 < p < d . The e excitations are (p − 1) branes while the m
excitations are (d − p − 1) branes. Whether or not its topo-
logical order is robust at finite temperature depends on if
this symmetry remains spontaneously broken at T �= 0. This
requires d > p + 1 for Z(p)

N and d > d − p + 1 for Z(d−p)
N .

Therefore, for Z(p)
N × Z(d−p)

N to spontaneously break at T �= 0,
p and d must satisfy

2 � p � d − 2. (60)

This is never satisfied for d = 2 or 3, recovering that the
toric code in d = 2 and 3 at finite temperature does not have
topological order [113–116]. In the d = 3 case, the exact sym-
metry is Z(1)

N × Z(2)
N , and there is no topological order at finite

temperature since Z(2)
N cannot spontaneously break. However,

the Z(1)
N still can, giving rise to the “classical topological

order” discussed in Ref. [114].

12We thank Carolyn Zhang for helpful discussions about this

d = 4 is the smallest spatial dimension for which Eq. (60)
is satisfied, which recovers that the 2-form toric code’s topo-
logical order is robust at finite temperature [113,116]. In this
case, p = 2, so both e and m excitations are loops.

Weakly perturbing the p-form toric code explicitly breaks
its Z(p)

N × Z(d−p)
N symmetry. When T �= 0, its can only emer-

gent exactly if p > 1 and d − p > 1, which is precisely
Eq. (60). The “classical topological order” when d = 3 is not
robust to these perturbations at T �= 0 since the emergent Z(1)

N
symmetry will be approximate.

Next, consider U(1) quantum spin liquids, a class of spin
liquid phases whose effective description is the deconfined
phase of pure U(1) gauge theory [117]. The prototypical
example in d = 3 is quantum spin ice [118–121]. More gener-
ally, a p-form U(1) quantum spin liquid’s effective IR theory
is p-form Maxwell theory, which lies in the SSB phase of a
U(1)(p) × U(1)(d−p−1) symmetry. If such an SSB phase is ro-
bust at finite temperature, d > p + 2 and d > d − p − 1 + 2
for U(1)(p) and U(1)(d−p−1), respectively, to spontaneously
break. Therefore, for U(1)(p) × U(1)(d−p−1) to spontaneously
break at T �= 0, p and d must satisfy

2 � p � d − 3. (61)

This is never satisfied for d = 2, 3, or 4. d = 5 is the small-
est spatial dimension where a U(1) quantum spin liquid phase
is stable at finite temperature. The low-energy description of
such a phase is (5 + 1)D U(1) 2-form Maxwell theory, where
both electric and magnetic excitations are loops.

When d = 4 and p = 1, the emergent symmetry is
U(1)(1) × U(1)(2). While the U(1)(2) symmetry cannot spon-
taneously break at T �= 0, the U(1)(1) symmetry can, giving
rise to a “classical U(1) topological order.” However, this
emergent U(1)(1) symmetry is not exact. Indeed, the emergent
higher-form U(1) symmetries are only exact at T �= 0 when
Eq. (61) is satisfied.

VII. CONCLUSION AND DISCUSSION

In this paper, we have investigated the robustness of
emergent higher-form symmetries from a UV perspective,
considering bosonic lattice Hamiltonian models. In Sec. II,
we showed how emergent higher-form symmetries in lattice
models are generally exact symmetries and not approxi-
mate symmetries. To emphasize this robustness, we referred
to emergent higher-form symmetries as exact emergent
symmetries. This means that lattice models without exact
higher-form symmetries can have emergent higher-form sym-
metries whose effects at low energy are the same as if they
were exact symmetries. Therefore emergent higher-form sym-
metries can exactly characterize phases of systems without
exact higher-form symmetries. We considered three examples
of this in Sec. III, discussed the general physical consequences
in Sec. V, and discussed finite temperature effects in Sec. VI.

As discussed in Sec. II, when higher-form symmetries are
emergent, their symmetry and charged operators are “fat-
tened” [50]. The exact expression of these operators depends
on the UV parameters, and finding such a closed form requires
an exact expression for the local unitary ULU. Not only is
this highly nontrivial, but likely analytically intractable for
generic models. That said, a promising approach to find exact
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FIG. 15. The p-cells of the d-dimensional cubic lattice are equiv-
alently the 0-cells of another lattice. Shown here are examples of this
equivalent lattice embedded in the conventional unit cell of the cubic
lattice, drawn in pink and black, respectively, for (first row) d = 2
and (second row) d = 3.

expressions is using numerical schemes. This was done for un-
twisted and twisted Z2 lattice gauge theory in Ref. [54], which
developed a novel unbiased numerical optimization scheme
to systemically find the dressed symmetry operators. It would
be interesting to extend these machine-learning approaches to
other models.

An important follow-up to our paper is an in-depth study
of the boundary between regions I and II in Fig. 5. One pos-
sibility is that a boundary phase transition separates the two
regions, as in Refs. [46,47]. What about a bulk point of view?
Recall from Sec. II that emergent higher-form symmetries
have an associated energy and length scale. For instance, the
emergent symmetry is destroyed if the energy scale vanishes,
which is precisely what happens when going from region III
to I in Fig. 5. Perhaps when going from region II to I, it is the
length scale that blows up. This would prevent the symmetry
and charged operators from being well-defined, destroying
the emergent symmetry. It would be interesting to further
investigate this possibility.
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APPENDIX A: DISCRETE DIFFERENTIAL GEOMETRY
FOR HYPERCUBIC LATTICES

This Appendix reviews relevant parts of discrete differen-
tial geometry (in a nonrigorous fashion) used throughout the
main text.13 Consider a hypercubic lattice in d-dimensional
space, denoted by Md . While a Bravais lattice is a collection
of lattice sites x ∈ Zd , it is useful to view it as also formed
by higher-dimensional objects, like links, plaquettes, cubes,

13We adopt the notation and conventions used in Ref. [122].

FIG. 16. Example of the branching structure used for a chunk of
the cubic lattice in three-dimensional space.

etc.. We call a p-dimensional object a p-cell, with 0 � p � d .
So, a 0-cell is a lattice site, a 1-cell is a link, a 2-cell is a
plaquette, etc. The p-cells of the d-dimensional cubic lattice
are equivalently viewed as the 0-cells of some other lattice in
d dimensions, as demonstrated for d = 2 and 3 in Fig. 15.

p-cells do not add additional structures to the lattice but
are just a useful way of organizing the lattice sites. Indeed,
denoting a p-cell associated with site x as cp(x)μ1μ2···μp , where
μ1 < μ2 < · · · < μp and μi ∈ {1, 2, · · · , d}, a p-cell of the
cubic lattice is the set of 2p lattice sites

cp(x)μ1μ2···μp = {x} ∪ {x + μ̂i | 1 � i � p}
∪ {x + μ̂i + μ̂ j | 1 � i < j � p}
∪ · · · ∪ {x + μ̂1 + . . . + μ̂p}, (A1)

where μ̂i is the unit vector in the μi-direction. It is often
convenient to drop the requirement that the indices are ordered
(i.e., μ1 < μ2 < · · · < μp) and instead let cp(x)μ1μ2···μp obey
cp(x)···μ1μ2··· = −cp(x)···μ2μ1···.

Introducing the concept of p-cells is convenient since
“sewing” p-cells together gives a natural way to form p-
dimensional subspaces of the lattice. Furthermore, these
subspaces can be given an orientation by defining an orienta-
tion structure to the lattice. A nice local scheme for the lattice
orientation is a branching structure, where the orientation on
each 1-cell is chosen such that a collection of 1-cells cannot
form an oriented closed loop. A canonical orientation on all
other p-cells then follows from the branching structure. We
use the branching structure where each 1-cell c1(x)μ has an
arrow pointing in the μ̂ direction (see Fig. 16). However, it is
important to note that the choice of lattice orientation is a for-
mal convention, and choosing different branching structures
does not affect the physics.14

A p-cell can be related to (p − 1) cells using the boundary
operator ∂ . The boundary operator acting on a p-cell—∂cp—
is the oriented sum of (p − 1)-cells on the boundary of cp. For
our branching structure, it is

∂cp(x)μ1···μp =
p∑

k=1

(−1)k+1
[
cp−1(x + μ̂k )

μ1···
o
μk ···μp

− cp−1(x)
μ1···

o
μk ···μp

]
, (A2)

14Reference [123] conjectures that observables are branching struc-
ture independent only if the continuum effective field theory is
framing anomaly free.
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where the notation
o
μk indicates that the μk index is omitted.

From its definition, the boundary operator satisfies ∂2cp = 0
for any p-cell. Furthermore, as there are no (−1)-cells, the
boundary operator acting on a 0-cell is defined to be zero.

On the other hand, a p-cell can be related to (p + 1)-cells
using the coboundary operator δ. The coboundary operator
acting on a p-cell—δcp—is an oriented sum of all (p + 1)-
cells whose boundary includes cp. For our branching structure
we use, it is

δcp(x)μ1···μp =
∑

ν

cp+1(x)νμ1...μp − cp+1(x − ν̂)νμ1...μp .

(A3)
From its definition, the coboundary operator satisfies δ2cp = 0
for any p-cell. Furthermore, as there are no (d + 1)-cells, the
coboundary operator acting on a d-cell is defined to be zero.

Lastly, the lattice has an associated dual lattice. The dual
lattice has its lattice sites centered at the d-cells of the direct
lattice. For the cubic lattice, one way to relate a dual lattice site
x̂ to a direct lattice site x is by x̂ = x + 1

2 r̂ with r̂ = ∑
i μ̂i.

Each p-cell cp on the direct lattice corresponds to a
(d − p)-cell ĉd−p on the dual lattice. Mapping between them
is done using the dual operator ∗. A p-cell cp(x)μ1···μp (with
canonical ordering μ1 < · · · < μp) and a (d − p)-cell of the
dual lattice ĉd−p(x̂)μ1···μd−p (μ1 < · · · < μd−p) are related by

∗ cp(x)μ1···μp = εμ1···μpμp+1···μd

× ĉd−p(x̂ − μ̂p+1 − . . . − μ̂d )μp+1···μd ,

(A4)

∗ ĉp(x̂)μ1...μp = εμ1···μpμp+1···μd

× cd−p(x + μ̂1 + . . . + μ̂p)μp+1···μd , (A5)

where summation is not implied on the right-hand side. Here
ε is the Levi-Civita symbol, which takes into account the
lattice’s and dual lattice’s relative orientations. From the def-
inition of ∗, acting ∗ twice on a p-cell of the direct (dual)
lattice yields ∗ ∗ cp = (−1)p(d−p)cp (∗ ∗ ĉp = (−1)p(d−p)ĉp).
Furthermore, from the definitions of the boundary, cobound-
ary, and dual operators, they are related to one another by

δcp = (−1)d (p+1)+1 ∗ ∂ ∗ cp, (A6)

which, equivalently, is ∗ δcp = (−1)p∂ ∗ cp.

APPENDIX B: TQFT OF THE p-FORM TORIC CODE
GROUND STATES

In Sec. III B 2 of the main text, we found that the ground
states of the Z(p)

N SSB phase satisfy∏
cp∈δcp−1

Z̃ ′
cp

|vac〉 = |vac〉,
∏

cp∈∂cp+1

X̃ ′
cp

|vac〉 = |vac〉, (B1)

where X̃ ′ and Z̃ ′ are the ZN clock operators dressed by uni-
taries. We note that these ground states are also the ground
states of the p-form toric code Hamiltonian

HpTC = −
∑
cp−1

∏
cp∈δcp−1

Z̃ ′
cp

−
∑
cp+1

∏
cp∈∂cp+1

X̃ ′
cp

+ H.c. (B2)

In this section, we relate the lattice description of the
ground states to an equivalent topological quantum field
theory description. Doing so demonstrates the connection
between exact emergent higher-form symmetries in lattice
models and exact higher-form symmetries in Lagrangian
quantum field theories, where higher-form symmetries are
most commonly studied.

To develop a field theory description of these ground
states, we take inspiration from Ref. [124] and parametrize
the dressed clock operators in the Z(p)

N SSB phase by

X̃ ′
cp

= exp
[
i�̃′

cp

]
, Z̃ ′

cp
= exp

[
i(∗ �̃′)cp

]
. (B3)

Note that in order for (X̃ ′
cp

)N = (Z̃ ′
cp

)N = 1, it must be that

the eigenvalues of �̃′
cp

and (∗ �̃′)cp satisfy �̃′
cp

∈ 2πZ/N , and

(∗ �̃′)cp ∈ 2πZ/N . Furthermore, in order for the clock oper-
ators algebra Eq. (16) to be satisfied, �̃′

cp
and (∗ �̃′)cp must

obey the commutation relation [�̃′
cp

, (∗ �̃′ )̃cp] = 2π i
N δcp ,̃cp . In

terms of �̃′
cp

and (∗ �̃′)cp , the constraints Eq. (B1) defining
the IR are

N

2π
δ(∗ �̃′)cp−1 = N

2π
(d�̃′)cp+1 = 0. (B4)

The lattice Heisenberg operators �̃′
cp

(t ) and (∗ �̃′)cp (t ) are

related to their continuum counterparts �̃′(t, x) and ∗ �̃′(t, x)
by

�̃′
cp

=
∫

cp

�̃′, (∗ �̃′)cp =
∫

cp

∗ �̃′, (B5)

where
∫

cp
denotes spatial integration over the p-cell cp.

For simplicity, we will work locally and treat the contin-
uum quantum fields as differential forms in space (�̃′ is a
p-form while �̃′ is a (d − p)-form) taking values in [−π, π ),
ignoring that the holonomies of �̃′ and ∗ �̃′ are restricted to
values in 2πZ/N . In the continuum limit, the lattice operators
simply become their continuum versions, so the constraint
Eq. (B4) in the continuum limit becomes

N

2π
d† ∗ �̃′ = N

2π
d�̃′ = 0. (B6)

Here, d† is the adjoint of d, which is d† ≡ (−1)d (p+1)+1 ∗ d ∗
when acting on a p-form.

The lattice Hamiltonian in the IR is just the ground state
energy. Setting this to zero, in the continuum H (III)

IR = 0. The
continuum Lagrangian is thus

L(III)
IR = N

2π p!
(∗ �̃′)i1···ip∂t�̃

′
i1···ip

, (B7)

which enforces the equal-time commutation relation[
�̃′

i1···ip
(x), (∗ �̃′) j1··· jp (y)

]
p!

= 2π i

N
δ

i1
[ j1

· · · δip

jp]δ
d (x − y).

(B8)
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The low-energy path integral only integrates over field config-
urations satisfying Eq. (B6), and is

Z (III)
IR =

∫
D[�̃′]D[�̃′] δ

(
N

2π
d† ∗ �̃′

)
× δ

(
N

2π
d�̃′

)
ei

∫
dtdd xL(III)

IR . (B9)

Let us now massage this path integral into a more fa-
miliar form. We can rewrite both functional delta functions
by integrating in new fields acting as Lagrange multipliers
and modifying the action. The first delta function is rewritten
using a (p − 1)-form Lagrange multiplier λ as

δ

(
N

2π
d† ∗ �̃′

)
=

∫
Dλ e

iN
2π

∫ λi1 ···ip−1
(d† ∗ �̃′ )i1 ···ip−1
(p−1)! , (B10)

and using a (p + 1)-form Lagrange multiplier ∗ η, the second
delta function is

δ

(
N

2π
d�̃′

)
=

∫
Dη e

iN
2π

∫ (∗ η)i1 ···ip+1
(d�̃′ )i1 ···ip+1

(p+1)! . (B11)

Plugging these expressions into the Eq. (B9) and the compo-
nents of d�̃′ and d† ∗ �̃′ and simplifying, the path integral
becomes

Z (III)
IR =

∫
D[�̃′]D[�̃′]D[λ]D[η] ei

∫
dtdd xL(III)

IR ,

L(III)
IR = N

2π p!

(
(∗ �̃′)i1···ip

[
∂t�̃

′
i1···ip

+ p ∂[i1λi2···ip]
]

+ (∗ η)i1i2···ip+1∂[i1 �̃′
i2···ip+1]

)
. (B12)

Let’s now introduce the p-form a and (d − p)-form b in
space-time whose components are

ai1···ip = �̃′
i1···ip

, a0i2···ip = −λi2···ip,

bi1···id−p = (−1)d−p�̃′
i1···id−p

, b0i2···id−p = −ηi2···id−p,

where b satisfies

(∗ η)i1···ip+1 = −(∗ b)i1···ip+1 , (∗ �̃′)i1···ip = (∗ b)0i1···ip .

Using these, the path integral becomes

Z (III)
IR =

∫
D[a]D[b] ei

∫
dtdd xL(III)

IR ,

L(III)
IR = N

2π p!

(
(∗ b)0i1···ip

[
∂t ai1···ip + (−1)p p ∂[i1 ai2···ip]0

]
− (∗ b)i1i2···ip+1∂[i1 a i2···ip+1]

)
. (B13)

The term in square brackets can be rewritten as
(p + 1)∂[0ai1···ip]. Furthermore, working in flat space-time,
X is equipped with Minkowski metric (−,+, · · · +). Using
it and summing over space-time indices μ, L(III)

IR can be
rewritten as

L(III)
IR = − N

2π

(
(∗ b)μ1μ2···μp+1∂[μ1 aμ2···ip+1]

p!

)
. (B14)

Lasting, using differential forms notation, we arrive at our
final expression for the path integral

Z (III)
IR =

∫
D[a]D[b] ei

∫
N
2π

b∧da. (B15)

As anticipated, the low-energy effective field theory, which
describes the ground states of the Z(p)

N symmetry broken
phase, is p-form ZN gauge theory. This is arguably the
simplest field theory with an anomalous Z(p)

N × Z(d−p)
N sym-

metry [89].

1. Review of p-form BF theory

In the remainder of this section, we will review p-form BF
theory, focusing on its symmetries and anomalies, working in
D = d + 1 dimensional space-time. From canonical quanti-
zation, the fields a and b satisfy the equal-time commutation
relations

[aμ1···μp (x), bμp+1···μd (y)] = 2π i

N
ε0μ1···μd δ

d (x − y). (B16)

a. ZN p-form gauge theory in the continuum

Let us first review how p-form BF theory can be obtained
by condensing charge-N gauge charges in p-form Maxwell
theory [125–127]. p-form Maxwell theory is reviewed in Ap-
pendix C 1. We will always assume that p > 0. For the reader
who would like to jump straight to p-form BF theory action,
they should skip to Eq. (B24).

We modify p-form Maxwell theory Eq. (C15) by introduc-
ing the dynamical (p − 1)-form bosonic field H and the gauge
redundancy

a → a + dχ, H → H + Nχ, (B17)

where N ∈ Z. A gauge-invariant globally defined quantity in
terms of only H is FH = dH + ωH , where ωH ∈ 2πH p(X ; Z).
FH satisfies a Bianchi identity 1

2π
∗ dFH = 0 and its periods

are quantized as
∮

FH ∈ 2πZ.
With the additional degrees of freedom provided by H , we

introduce the gauge invariant Wilson operator

Wa,H (O) = ei
∫

O Na−dH , (B18)

where O is an open p-submanifold. Physically Wa,H (O) is
an operator that creates a charge excitation on ∂O, but one
carrying N-units of a-charge. Minimally coupling FH to a, the
partition function is

Z =
∫

D[a]D[H] e
− ∫

X
1

2g2 |Fa|2+ v2

2 |FH −Na|2
. (B19)

The Lagrangian density now includes the term
L ⊃ a∧ ∗ Nv2FH and a mass term L ⊃ N2v2

2 |a|2. Indeed,
the new term added to p-form Maxwell theory is essentially
a Higgs term with H the phase of the Higgs field and v ∈ R
the vev of the Higgs field. The gauge redundancy described
by Eq. (B17) is a ZN gauge redundancy, reflecting how the
initial U(1) gauge redundancy has been Higgsed down to a
ZN gauge redundancy.

As discussed in Appendix Sec. C 1 b, these types of the-
ories have a generalized “particle-vortex” like duality called
Abelian duality. For instance, since the action’s dependency

195147-22



EXACT EMERGENT HIGHER-FORM SYMMETRIES IN … PHYSICAL REVIEW B 108, 195147 (2023)

on H is entirely in the form of FH , we can dualize H → Ĥ
using the same method shown in Sec. C 1 b. Indeed, dualizing
H to the (D − p − 1)-form Ĥ satisfying

∮
FĤ ∈ 2πZ and

dFĤ = 0 (where FĤ = dĤ + ωĤ ), the Euclidean Lagrangian
becomes

L = |Fa|2
2g2

+ |FĤ |2
8π2v2

− iN

2π
a ∧ FĤ . (B20)

The Euclidean path integral now integrates over the dynam-
ical fields a and Ĥ and sums over ωa ∈ 2πH p+1(X ; Z) and
ωĤ ∈ 2πHD−p(X ; Z). We note that without changing the ac-
tion amplitude, the Lagrangian density can be rewritten as

L = |Fa|2
2g2

+ |FĤ |2
8π2v2

− iN

2π
Ĥ ∧ Fa. (B21)

Locally, we have just integrated by parts in the BF term.
However, keeping track of the globally nontrivial parts of FĤ
and Fa makes showing this difficult (it is most naturally seen
using Deligne-Beilinson cohomology [128]).

Utilizing Abelian duality, we have found two representa-
tions for the theory: the (a, H ) representation Eq. (B19) and
the (a, Ĥ ) representation Eqs. (B20) and (B21), the latter
being dual only locally.

In representation (a, Ĥ ), the deep IR is governed by p-form
BF theory. Here, the deep IR refers to energies below the
gap of a and Ĥ , which have a gap through topological mass
generation. Indeed, to find their energy gaps, first note that in
the (a, Ĥ ) representation, the Lorentzian action is

S =
∫

X

(
−|Fa|2

2g2
− |FĤ |2

8π2v2
+ N

2π
a ∧ FĤ

)
. (B22)

Since this theory is Gaussian, we can show that the a∧FĤ
term causes all excitations to be gapped using the equations of
motion. Minimizing the action and using that d†∗Fb,Ĥ = 0, we
find that the classical equations of motion are

(δ + N2g2v2) ∗ FĤ = 0,

(δ + N2g2v2) ∗ Fa = 0. (B23)

where δ = d†d + dd† is the Hodge Laplacian. Therefore we
see that the p-form ∗ FĤ and the (D − p − 1)-form ∗ Fa both
have an energy gap Ngv.

To go below the energy gap into the deep IR, we take the
limit g → ∞ and v → ∞. In this limit, the Euclidean path
integral becomes

ZBF =
∫

D[a]D[Ĥ] e
iN
2π

∫
X a∧FĤ . (B24)

This is p-form BF theory, and it is in terms of the p-form
bosonic field a, which is the U(1) gauge field we started with
and Ĥ , which is the Abelian dual of the Higgs field phase.
Taking the deep IR limit using the Lagrangian density in this
representation written as Eq. (B21), the Lagrangian in the
topological limit is equivalent to LBF = − iN

2π
Ĥ∧Fa.

Plugging in FĤ = dĤ + ωĤ into Eq. (B24), the path inte-
gral becomes

ZBF =
∫

D[a]D[Ĥ]
∑

ωĤ
2π

∈HD−p(X ;Z)

e
iN
2π

∫
(a∧dĤ+a∧ωĤ ) (B25)

Integrating by parts on the first term and using Poincaré dual-
ity on the second term, we can rewrite this as

ZBF =
∫

D[a]D[Ĥ]
∑

ω∈Hp(X ;Z)

e
iN
2π

∫
X Ĥ∧da+iN

∫
ω

a. (B26)

Integrating over Ĥ and summing over ω, the path integral
becomes

ZBF =
∫

D[a] δ(da) δ

(∮
a ∈ 2πZ

N

)
. (B27)

Notice that if we would have instead started with the
Lagrangian density written as LBF = − iN

2π
Ĥ∧Fa, upon inte-

grating out a and ωa we would get

ZBF =
∫

D[Ĥ] δ(dĤ ) δ

(∮
Ĥ ∈ 2πZ

N

)
. (B28)

Having massaged p-form BF theory into Eq. (B27), we find
that in correlations functions, the U(1) gauge fields are closed
forms and have quantized holonomies.15 Therefore the Wilson
operators

Wa[Cp] = ei
∮

Cp
a
, WĤ [Cd−p] = e

i
∮

Cd−p
Ĥ
. (B30)

satisfy 〈(Wa)N 〉 = 〈(WĤ )N 〉 = 1, and are 1 when Cp ∈ Bp(X )
(i.e., there exists an Op+1 such that Cp = ∂Op+1). The latter
property implies that these Wilson operators are topologi-
cal. At a fixed time slice, in the deep IR, any contractible
Wilson operators can condense into the vacuum, but for non-
contractible Wilson operators, only N can condense into the
vacuum.

The path integral counts the number of nontrivial Wilson
operators W (C) which satisfy W (C)N = 1, and thus the num-
ber of configurations a ∈ H p(X ; ZN ):

ZBF =
∑

a∈H p(X ;ZN )

1 = |H p(X,ZN )|. (B31)

The number of ground states is given by the partition function
evaluated on X = R × M, where M is a space. Therefore there
are |H p(M; ZN )| degenerate ground states.

b. Symmetries

Having reviewed the basics of p-form BF theory in the
previous section, we now turn to identifying the theory’s sym-
metries, showing that there is a Z(p)

N × Z(d−p)
N symmetry [89].

Let’s first consider the symmetries manifest in the (a, H )
representation, Eq. (B19). The path integral is invariant under
the transformation

a → a + , FH → FH + N, (B32)

15This can also be deduced from the equations of motion. Indeed,
in the (a, H ) representation, Eq. (B19), the H equations of motion in
the deep IR are

FH = Na. (B29)

Therefore, because of the Bianchi identity dFH = 0, a is a closed
p-form. Furthermore, since FH satisfies

∮
FH = 2πZ, the holonomies

of a are quantized as
∮

a = 2πZ/N .
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with d = 0. Since FH satisfies
∮

FH ∈ 2πZ, in order to
shift FH → FH + N we require that

∮
 ∈ 2πZ/N . When

 = dω, the transformation Eq. (B32) becomes the gauge
transformation Eq. (B17). Therefore the  that correspond to
physical transformations are N

2π
 ∈ H p(X ; Z).

The quantization condition of the periods of  has a signif-
icant consequence. Indeed, note that the Wilson operator Wa

is charged under this symmetry. Because of the quantization
condition

∮
 ∈ 2πZ/N , it transforms as

Wa[Cp] → ei
∮

Wa[Cp], ei
∮

 ∈ ZN . (B33)

Since the charged operators are p-dimensional and transform
by an element of ZN , this is a Z(p)

N symmetry.
It’s tempting to think that an additional symmetry may be

associated with the H field. Indeed, Eq. (B19) is invariant
under the transformation H → H + ω for dω = 0. However,
there are no physical observables that transform under this.
Indeed, while the Wilson operator exp[i

∮
H] picks up a phase,

it is not a physical operator since it is not invariant under the
gauge redundancy Eq. (B17).

The Z(p)
N symmetry can also be seen in the (a, Ĥ ) repre-

sentation, when the Lagrangian is described by Eq. (B20).
Indeed, under the symmetry transformation, the action am-
plitude transforms as exp[−S] → exp[−S] exp[−δS], where

e−δS = e− iN
2π

∫
∧FĤ , (B34)

with N
2π

 ∈ H p(X ; Z). Plugging in FĤ = dĤ + ωĤ , the phase
factor exp[−δS] becomes

exp[−δS] = e−2π i
∫

N
2π

∧
ωĤ
2π ,

where we used integration by parts and that d = 0. Re-
call that N

2π
 ∈ H p(X ; Z) and ωĤ

2π
∈ HD−p(X ; Z). Then, since

the wedge product preserves integral de Rham cohomology
classes, N 

2π
∧ ωĤ

2π
∈ HD(X ; Z), so exp[−δS] = 1.

The Lagrangian in the (a, Ĥ ) representation can also be
written as Eq. (B21) without changing the partition func-
tion. In this form, following the same argument used to
show that there is a Z(p)

N symmetry, we find there is also
Z(d−p)

N symmetry. Indeed, the action amplitude is invariant
under Ĥ → Ĥ + ̂, where N

2π
̂ ∈ Hd−p(X ; Z). The charged

operator of this Z(d−p)
N symmetry is the Wilson operator

WĤ = exp[i
∮

Ĥ ], which transforms as

WĤ (C) → ei
∮

̂WĤ (C), ei
∮

̂ ∈ ZN . (B35)

The symmetry operator of the Z(p)
N symmetry is just WĤ

and can be written as

U (�) = ei
∮
�

Ĥ = expi
∮

Md
Ĥ∧

, (B36)

where  is the Poincaré dual of the p-cycle � with respect
to space Md . Indeed, using the equal-time commutation rela-
tion (B16), which form Eq. (B20) is

[aμ1···μp (x), Ĥμp+1···μd (y)] = 2π i

N
ε0μ1···μd δ

d (x − y), (B37)

we have that

U (�)Wa(C)U †(�) = e
2π i
N

∫
C Wa(C), = e

2π i
N #(�,C)Wa(C).

(B38)

Similarly, the symmetry operator of the Z(d−p)
N symmetry is

Û (�̂) = ei
∮
�̂

a, (B39)

which is just Wa.

c. Mixed ’t Hooft anomaly and anomaly inflow

In the last section, we reviewed how p-form BF theory has
Z(p)

N and Z(d−p)
N symmetries. However, these symmetries are

not independent of one another: the symmetry operator of one
symmetry is a charged operator of the other symmetry, thus
satisfying the Heisenberg algebra. This is a manifestation of
the fact that the Z(p)

N × Z(d−p)
N symmetry is anomalous. In this

section, we will turn on a background gauge field for these
symmetries to learn more about this mixed ’t Hooft anomaly.

Let’s first turn on a background gauge field for the
Z(p)

N symmetry. We introduce the background gauge field
A ∈ 2π

N H p+1(X ; Z) and the gauge redundancy

a → a + β, A → A + dβ. (B40)

Minimally coupling A, the p-form BF theory path integral
becomes

Z[A] =
∫

D[a]D[Ĥ] e
iN
2π

∫
X (a∧dĤ+(−1)pA∧Ĥ ). (B41)

Since Z[A] = Z[A + dβ], the Z(p)
N symmetry is anomaly

free.
Second, we next turn off A and turn on a background

gauge field for the Z(d−p)
N symmetry, which introduces the

background gauge field Â ∈ 2π
N Hd−p+1(X ; Z) and the gauge

redundancy

Ĥ → Ĥ + ζ , Â → Â + dζ . (B42)

Minimally coupling Â, the path integral becomes

Z[Â] =
∫

D[a]D[Ĥ] e
iN
2π

∫
X a∧(FĤ −Â). (B43)

Since Z[Â] = Z[Â + dζ ], the Z(d−p)
N symmetry is anomaly

free.
Now let us turn on both background gauge fields. Coupling

them into the action as above yields

Z[A, Â] =
∫

D[a]D[Ĥ]e
iN
2π

∫
X (a∧(FĤ −Â)+(−1)pA∧Ĥ ). (B44)

While this is invariant under Eq. (B40), under the gauge trans-
formation Eq. (B42) it transforms as

Z[A, Â + dζ ] → e(−1)p iN
2π

∫
X A∧ζZ[A, Â]. (B45)

In fact, no local counterterms can be added such that the
path integral is invariant under both gauge transformations. It
always gets multiplied by a phase. Thus we see an obstruction
to coupling a background gauge field of both symmetries and
hence a mixed ’t Hooft anomaly.

A ’t Hooft anomaly can be classified by an SPT in one
higher dimension whose boundary realizes the symmetry
anomalous. Let’s now extend the background fields to one
higher dimension and have X be the boundary of the new
space-time Y . The path integral governing all of Y is

ZY [A, Â,Y ] = ZSPT[A, Â,Y ]Z[A, Â, ∂Y = X ], (B46)
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where the SPT path integral ZSPT is defined such that it can-
cels out the phase in Eq. (B45) such that ZY is gauge invariant.

Noting that this phase can be written as

e(−1)p iN
2π

∫
X A∧ζ = e− iN

2π

∫
Y A∧dζ , (B47)

let’s consider the SPT

ZSPT[A, Â] = e
iN
2π

∫
Y A∧Â. (B48)

Under the gauge transformations Eq. (B42), ZSPT transforms
as

ZSPT[A, Â + ζ ] = e
iN
2π

∫
Y A∧dζZSPT[A, Â]. (B49)

This phase picked up is the inverse of the phase picked up by
Z in Eq (B45), and thus ZY is indeed gauge invariant. The
mixed anomaly between the Z(p)

N and Z(d−p)
N symmetry is then

said to be classified by the SPT Eq. (B48).

APPENDIX C: CONTINUUM OF U(1) p-GAUGE THEORY

In this Appendix, we take the continuum limit of Eq. (55)
in Sec. III C 2 of the main text. Doing so also demonstrates
the connection between exact emergent higher-form symme-
tries in lattice models and exact higher-form symmetries in
Lagrangian quantum field theories, where higher-form sym-
metries are most commonly studied.

The lattice Heisenberg operators Lz
cp

(t ) and �cp (t ) in the IR

are dressed by two local unitary operators U (1)
LU and U (2)

LU and
denoted as L̃′z

cp
(t ) and �̃′

cp
(t ). Furthermore, in the mid-IR we

defined the variable ωcp+1 ≡ −2π�(d�̃)cp+1/(2π )�, which in
the IR was dressed by U (2)

LU and denoted as ω′
cp+1

(t ). Therefore

the three elementary operators in the IR are L̃′z
cp

(t ), �̃′
cp

(t ), and
ω′

cp+1
(t ). We relate these lattice operators to their continuum

counterparts L̃′z(t, x), �̃′(t, x), and ω′(t, x) by

L̃′z
cp

=
∫

cp

L̃′z, �̃′
cp

=
∫

cp

�̃′, ω′
cp+1

=
∫

cp+1

ω′, (C1)

where, for instance,
∫

cp
denotes spatial integral over the

p-cell cp. The continuum quantum fields are globally dif-
ferential forms in space M (L̃′z and �̃′ are p-forms while
ω′ is a (p + 1)-form), mapping from space-time X to R.
In the continuum, the lattice differential operators become
their continuum versions. For instance, the lattice operator
F ′

cp+1
= (d�̃′)cp+1 + (ω′)cp+1 becomes F ′

cp+1
= ∫

cp+1
F ′, where

F ′ = d�̃′ + ω′. So, taking the continuum limit of Eq. (55),
the deep IR continuum Hamiltonian is

Hdeep IR =
∫

dd x

(
κU

2

|̃L′z
i1···ip

|2
p!

+ U

2

|F ′
i1···ip+1

|2
(p + 1)!

)
, (C2)

where, for instance, |̃L′z
i1···ip

|2 ≡ ∑d
i1,··· ,ip=1(L̃′z

i1···ip
)2.

To write down the path integral, we can find the Lorentzian
action and then perform a functional integral over field con-
figurations obeying the following constraints.

(1) Since the IR does not include dressed charge exci-
tations, L̃′z must satisfy ρ̃ ′ = 0. The expression for ρ̃ ′

cp−1

in Eq. (41) can be rewritten using discrete exterior calculus

notation as ρ̃ ′
cp−1

∼ (∗d∗L̃′z )cp−1 . So, ρ̃ ′ = 0 in the continuum
limit is the Gauss law

∂ j L̃
′z
ji1···ip−1

= 0. (C3)

Despite there being no dressed charges in the IR, L̃′z can still
be sourced along nontrivial p-cycles. Because L̃′z

cp
∈ Z on the

lattice, the flux of L̃′z in the continuum is quantized∮
Cd−p

∗L̃′z ∈ Z, (C4)

where Cd−p is a nontrivial (d − p)-cycle in space:
Cd−p ∈ Hd−p(M; Z).

(2) Since the IR does not include dressed topological
defects, �̃′ and ω′ must satisfy ρ̂ ′ = 0. The expression
for (∗ρ̂ ′)cp+2 of Eq. (54) in the continuum limit becomes
ρ̂ ′ = 1

2π
∗dF ′, and ρ̂ ′ = 0 becomes the Bianchi identity

1

2π
∗ dF ′ = 0. (C5)

Despite there being no dressed topological defects in the IR,
∗F ′ can still be sourced along nontrivial (d − p)-cycles. In-
deed, because ω′

cp
∈ 2πZ on the lattice, the flux of ∗F ′, in the

continuum is quantized∮
Cp+1

F ′ ∈ 2πZ, (C6)

where Cp+1 is a nontrivial (p + 1)-cycle in space. Plugging
F ′ = d�̃′ + ω′ into Eqs. (C5) and (C6), the �̃′ vanishes and
constraints ω′ as

ω′

2π
∈ H p+1(M; Z), (C7)

the (p + 1)th de Rham cohomology group with integral
periods.

Enforcing the three constraints Eqs. (C3), (C4), and (C7)
by hand, the path integral in Lorentzian signature is

Zdeep IR =
∫

D[�̃′]DL̃′z ∑
ω′∈2πH p+1(M;Z)

δ
(
∂i1 L̃′z

i1···ip

)
× δ

(∮
∗L̃′z ∈ Z

)
ei

∫
X dtdd xLdeep IR ,

Ldeep IR =
L̃′z

i1···ip
∂t�̃

′
i1···ip

p!
−
(

κU

2

|̃L′z
i1···ip

|2
p!

+ U

2

|F ′
i1···ip+1

|2
(p + 1)!

)
.

(C8)

The first term in Ldeep IR enforces the equal-time commutation
relation[

�̃′
i1···ip

(x), L̃′z
j1··· jp

(y)
]

p!
= iδi1

[ j1
· · · δip

jp]δ
d (x − y), (C9)

and the second term in parenthesis is Hamiltonian density
from Eq. (C2)

This expression of the path integral is correct, but let us
rewrite this phase space path integral as a coordinate space
path integral to get it into a more familiar form. We first
rewrite the delta functions by integrating in new fields and
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modifying the action. The delta function enforcing the L̃′z
quantization condition can be represented as

δ

(∮
∗L̃′z ∈ Z

)
=

∑
η∈2πH p(M;Z)

ei
∫

X dtdd x
L̃′z

i1 ···ip ηi1 ···ip
p! , (C10)

and the delta function enforcing Gauss law can be rewritten
using the (p − 1)-form Lagrange multiplier λ as

δ
(
∂i1 L̃′z

i1···ip

) =
∫

Dλei
∫

X λi2 ···ip∂i1 L̃′z
i1 i2 ···ip/(p−1)!

. (C11)

Plugging these in, the path integral takes the cumbersome
form

Zdeep IR =
∫

D[�̃′]DL̃′z Dλ
∑

ω′∈2πH p+1(M;Z)
η∈2πH p(M;Z)

ei
∫

X dtdd xLdeep IR ,

Ldeep IR =
λi2···ip∂i1 L̃′z

i1i2···ip

(p − 1)!
+

L̃′z
i1···ip

ηi1···ip

p!
+

L̃′z
i1···ip

∂t�̃
′
i1···ip

p!

−
κU |̃L′z

i1···ip
|2

2p!
−

U |F ′
i1···ip+1

|2
2(p + 1)!

. (C12)

It is now straight forward to integrate out the L̃′z field, after
which the path integral becomes

Zdeep IR =
∫

D[�̃′]Dλ
∑

ω′∈2πH p+1(M;Z)
η∈2πH p(M;Z)

ei
∫

X dtdd xLdeep IR ,

Ldeep IR =
|∂t�̃

′
i1···ip

− p∂[i1λi2···ip] + ηi1···ip |2
2g2 p!

−
|F ′

i1···ip+1
|2

2g2(p + 1)!
,

(C13)

where we have also rescaled t → t/(U
√

κ ), λ → U
√

κ λ, and
η → U

√
κ η and introduced g = 1/(

√
U ).

Having found the coordinate path integral, let’s massage it
into a canonical form. Namely, we introduce the p-form a and
(p + 1)-form ωa in space-time whose components are

ai1···ip = �̃′
i1···ip

, a0i2···ip = λi2···ip

(ωa)i1···ip+1 = ω′
i1···ip+1

, (ωa)0i1···ip = ηi1···ip .

Letting Fa = da + ωa, after some simplifying, we then reex-
press the path integral as

Zdeep IR =
∫

D[a]
∑

ωa∈2πH p+1(X ;Z)

ei
∫

X dtdd xLdeep IR ,

Ldeep IR = 1

2g2

(∣∣(Fa)0i1···ip

∣∣2
p!

−
∣∣(Fa)i1···ip+1

∣∣2
(p + 1)!

)
. (C14)

Furthermore, working in flat space-time, X is equipped with
Minkowski metric (−,+, · · · +). Thus, summing over space-
time indices μ = 0, . . . , d , Ldeep IR can be rewritten as

Ldeep IR = − 1

2g2(p + 1)!
(Fa)μ1···μp+1 (Fa)μ1···μp+1, (C15)

which is exactly p-form Maxwell theory, as stated in the main
text.

1. Review of p-form Maxwell theory

In the remainder of this section, we will review p-form
Maxwell theory, Eq. (C15), focusing on its symmetries and
anomalies, working in D = d + 1 dimensional space-time. In
particular, we consider the theory where there is no electric
nor magnetic matter, thus d∗Fa = 0 and dFa = 0.

The canonical momentum field � is locally a (D − p − 1)-
form associated with a codimension-1 submanifold of space-
time, which we choose to be a constant time slice. Then, �’s
components are defined by varying the action with respect to
∂0aμ1···μp which yields � = 1

g2 ∗Fa. Therefore, from canonical
quantization, we have the equal-time commutation relation[

aμ1···μp (x),
(∗Fa)μp+1···μd (y)

g2

]
= iε0μ1···μd δ

d (x − y). (C16)

a. U(1)(p) symmetry

The action amplitude is only a function of the field
strength, and so the path integral is invariant under a being
shifted by a closed p-form:

a → a + , d = 0. (C17)

This is a symmetry because the Wilson operator
Wa(Cp) = exp[i

∫
a] transforms nontrivially under Eq. (C17)

as

Wa(Cp) → ei
∮

Cp
Wa(Cp). (C18)

There are no restrictions on the holonomies of a and  sat-
isfies

∮
 ∈ R, so exp[i

∮
C p ] ∈ U(1). Therefore Eq. (C18)

is the symmetry transformation of a U(1)(p) symmetry. Of
course, for  that satisfy exp[i

∮
Cp

] = 1, the transformation
a → a +  is instead a gauge transformations corresponding
to formal redundancies. The physical transformation on a
requires that  be closed but not exact and have periods not in
2πZ.

To find the U(1)(p) symmetry transformation operator, let
us turn on the (p + 1)-form background field A and the gauge
redundancy

a → a + β, A → A + dβ. (C19)

Minimally coupling the background field such that the theory
is gauge invariant, the action becomes

S[A] = − 1

2g2

∫
X

|Fa − A|2. (C20)

The conserved Noether current J (d†J = 0) of the symmetry
will minimally couple to A as

∫
A∧∗J . We thus find that

J = 1
g2 Fa, and so the charge operator is Q ≡ 1

g2

∫ ∗J and the
symmetry operator is

Uα (�) = e
iα

∮
�

∗Fa
g2 , (C21)

where α ∈ [0, 2π ) parametrizes the U(1) transformation. No-
tice that because d∗J = 0, Uα (�) is a topological operator,
depending only on the homology class of �.

Let’s check that Uα indeed transforms Wa as Eq. (C18).
Letting the p-form �̂ be the Poincaré dual of � with re-
spect to space M, we rewrite the symmetry operator as
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Uα (�) = exp[ iα
g2

∮
M ∗Fa∧�̂], and using the BakerCampbell-

Hausdorff formula, the Wilson operator transforms as

Uα (�)Wa(C)U †
α (�) = e

α

g2 [
∫

M ∗Fa∧�̂,
∫

C a]Wa(C).

Using the canonical commutation relations Eq. (C16), this
simplifies to

Uα (�)Wa(C)U †
α (�) = eiα

∮
C �̂ Wa(C), (C22)

= eiα #(�,C) Wa(C), (C23)

where
∮

C �̂ = ∫
�∩C 1 = #(�,C) is the intersection number

between � and C in M.

b. Abelian duality

There is another symmetry present in p-form Maxwell
theory, but to make it manifest, we must effectively change
the representation of our degrees of freedom using Abelian
duality [129] to dualize the field a to the field â. To do so,
we can use the following trick. Instead of integrating over
the equivalence classes of a and summing over ωa, we can
instead integrate over Fa since the action only depends on Fa.
However, in doing so, we have to ensure that we only integrate
over Fa satisfying the Bianchi identity

1

2π
∗dFa = 0, (C24)

and which obey the quantization condition∮
Cp+1

Fa ∈ 2πZ, (C25)

for all Cp+1 ∈ Hp+1(X ). So, with these two constraints in
mind, we can change variables and write the Euclidean path
integral of p-form Maxwell theory as

Z =
∫

DFa δ

(∗dFa

2π

)
δ

(∮
Fa

2π
∈ Z

)
e
− 1

2g2

∫
X |Fa|2

. (C26)

Let’s now rewrite the delta functions by integrating
in fields. For the first delta function, introducing the
(D − p − 2)-form â, we can represent it as

δ

(∗dFa

2π

)
=

∫
Dâ e

i
2π

∫
X dâ∧Fa . (C27)

For the second delta function, we can rewrite it as

δ

(∮
Fa

2π
∈ Z

)
=

∑
ω̂â∈Hp+1(X ;Z)

e2π i(
∮
ω̂â

Fa
2π

)
,

=
∑

ωâ∈2πHD−p−1(X ;Z)

e
i

2π

∫
X ωâ∧Fa , (C28)

where we first sum over all closed (p + 1)-submanifold ω̂â,
and then using Poincaré duality instead sum over the dual
(D − p − 1)-forms ωâ/(2π ) satisfying

∮
ωâ ∈ 2πZ. Plugging

these representations of the delta functions into the path inte-
gral Eq. (C26), it becomes

Z =
∫

DFaDâ
∑

ωâ∈2πHD−p−1(X ;Z)

e
− ∫

X
1

2g2 |Fa|2− i
2π

Fâ∧Fa
, (C29)

where Fâ = dâ + ωâ, which satisfies∮
Fâ ∈ 2πZ,

1

2π
∗dFâ = 0. (C30)

To integrate out Fa, we complete the square and introduce
G = Fa − i g2

2π
∗Fâ so the path integral becomes

Z =
∫

DGDâ
∑

ωâ∈2πHD−p−1(X ;Z)

e
− ∫

X
1

2g2 |G|2+ g2

8π2 |Fâ|2
. (C31)

Integrating out G, the path integral is only in terms of the dual
field â:

Z[X, g] =
∫

D[â]
∑

ωâ∈2πHD−p−1(X ;Z)

e− g2

8π2

∫
X |Fâ|2 . (C32)

Remarkably, this theory has the same form as what we started
with, expect now that initial p-form a is a (D − p − 2)-form
â and the coupling constant g is now 2π/g. Thus strongly
coupling (g � 1) in the a representation gets mapped to weak
coupling in the â representation and vice versa.

Having gone through the process of dualizing a to â, let’s
now see how operators in terms of a transform under dualiz-
ing. We introduce the map S that takes an operator in the a
representation to the â representation.

Let’s first check to see what the field strength Fa maps to
by inserting Fa into the path integral. When completing the
square, we did a change of variables Fa = G + i g2

2π
∗Fâ under

which the insertion becomes

〈Fa〉a = 〈G〉â +
〈
i

g2

2π
∗Fâ

〉
â

. (C33)

We use the notation that 〈·〉a is the vev evaluated in the a repre-
sentation and 〈·〉â is the vev evaluated in the â representation.
Since the G part of the action is Gaussian, 〈G〉 = 0 and so
〈Fa〉 = 〈i g2

2π
∗Fâ〉. Thus, in Euclidean signature,

S : Fa → i
g2

2π
∗Fâ. (C34)

In the Lorentzian signature, this is S : Fa → g2

2π
∗Fâ. We can

dualizing â back to a by simply repeating the same steps as
before to find

S : Fâ → i
2π

g2
∗Fa. (C35)

Therefore dualizing a twice gives S2 : Fa → i2∗∗Fa in Eu-
clidean space-time, or equivalently

S2 : Fa → (−1)D(p+1)+pFa. (C36)

When both D and p are even, dualizing twice acts as
S2 : Fa → Fa. However, if D or p or both are odd, then
S2 : Fa → −Fa and thus one must dualize four times to get
the identity map: S4 : Fa → Fa.

Repeating the argument manipulations, we find that d†Fa

and ∗dFa get mapped to ∗dFâ and d†Fâ, respectively, and
vice versa. Therefore the excitations (topological defects) of a
are the topological defects (excitations) of â. Hence, Abelian
duality is a particle-vortex type duality.

We emphasize that the above mappings do not imply that
Fa = i g2

2π
∗Fâ. Instead, while operators linear in Fa simply have
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Fa replaced with i g2

2π
∗Fâ, more care is required to find the dual

representation of operators nonlinear in Fa. For instance, (Fa)2

does not become (i g2

2π
∗Fâ)2 due to the addition terms pick up

when squaring Fa = G + i g2

2π
∗Fâ.

Next, let us find what the Wilson operator of a gets mapped
to. We assume that Wa is supported on a contractible manifold
C = ∂M. However, there are infinitely many such M whose
boundary is C. To avoid this ambiguity, we sum over all such
M and write

Wa[C] =
∑

M:∂M=C

exp

[
i
∫

M
Fa

]
. (C37)

Next we introduce the D − p − 1 form M̂ dual to M, which
satisfies

∮
M̂ ∈ 2πZ and is related to the Poincaré dual of C

by Ĉ = dM̂/(2π ), and rewrite Wa as

Wa[C] =
∫

DM̂δ(dM̂ − 2πĈ) exp

[
i

2π

∫
X

Fa ∧ M̂

]
.

Inserting this into the path integral, integrating in â, and then
integrating out Fa, we find

〈Wa[C]〉 =
∫

DM̂D[â]
∑

ωâ∈2πHD−p−1(X ;Z)

δ(dM̂ − 2πĈ) e− ∫
X L,

L = g2

8π2
|Fâ − M̂|2. (C38)

Notice how this is the same as the dualized path integral
without the Wilson loop insertion but now with the p + 1 form
connection M̂ satisfying dM̂ = 2πĈ. We can get rid of M̂ and
have the path integral look similar to Eq. (C32) if we let â be
a singular field not defined on C:

Z =
∫

D[â]
∑

ωâ∈2πHD−p−1(X ;Z)

e− ∫
X/C

g2

8π2 |Fâ|2 . (C39)

However, we require that
∫
�

Fâ = 2π for any submanifold
� with a nonzero intersection number with C. Therefore the
Wilson loop in the a representation has become a ’t Hooft loop
in the â representation.

c. U(1)(d−p−1) symmetry

In the a representation, it appears that the model only has
a U(1)(p) symmetry. However, upon dualizing a to â, the
path integral Eq. (C32) took a similar form in terms of Fâ

but with g replaced by 2π/g. Thus we find a new globally
defined differential (d − p − 1)-form â, which shifting by a
closed form leaves the path integral invariant. Following the
same process as used in investigating the U(1)(p) symme-
try, this transformation has a physical part associated with a
U(1)(d−p−1) symmetry.

Everything about this U(1)(d−p−1) symmetry follows in a
similar fashion from the U(1)(p) case. In particular, the sym-
metry transformation acts on â as

â → â + ̂, d̂ = 0 (C40)

and the charged operators are Wilson operators in terms of â:
Wâ(C) = exp[i

∮
C â]. These correspond to the ’t Hooft opera-

tors in the a representation. The Noether’s current associated

with this U(1)(d−p−1) symmetry is Ĵ = g2

4π2 Fâ, and thus the
symmetry operator is

Ûα̂ (�) = eiα̂ g2

4π2

∮
�

∗Fâ , (C41)

where α̂ ∈ [0, 2π ) parametrizes the U(1) transformation.
To see what Û is in the a representation, let’s start with

the operator exp[iθ
∫
�

Fa] and find its image under S. We’ve
already done this calculation while finding the image of the
Wilson operator. This time, we simply do not sum over all �.
We, therefore, have that (in Lorentzian signature)

S : eiθ
∮
�

Fa → eiθ
∮
�

g2

2π
∗Fâ−i θ2g2

2

∫
X |�̂|2 . (C42)

Setting θ = α̂
2π

, the U(1)(d−p−1) symmetry operator in the a
representation is

Ûα̂ (�) = eiα̂
∮
�

Fa
2π

+i α̂2g2

8π2

∮
X |�̂|2 (C43)

since under S it transforms to Eq. (C41). However, note that
the term

∫
X |�̂|2 is an overall phase and therefore does not

affect the symmetry transformation. So, we can drop this
overall phase and treat the U(1)(d−p−1) symmetry operator in
the a representation instead as

Ûα̂ (�) = eiα̂
∮
�

Fa
2π . (C44)

From this expression, it is easy to see that the Noether current
of the U(1)(d−p−1) symmetry in the a representation Ĵ satisfies

∗Ĵ = 1

2π
Fa. (C45)

The fact that the Ĵ is conserved reflects the Bianchi identity.

d. Mixed ’t Hooft anomaly and anomaly inflow

Throughout this subsection thus far, we reviewed that
p-form Maxwell theory has a U(1)(p) and a U(1)(d−p−1)

symmetry. However, these two symmetries are not fully inde-
pendent from one another: there is a mixed ’t Hooft anomaly
preventing us from simultaneously turning on a background
gauge field of both symmetries.

Let’s first turn on a background field A of the U(1)(p)

symmetry which includes the gauge redundancy

a → a + β, A → A + dβ. (C46)

Minimally coupling A to a, the path integral becomes

Z[A] =
∫

D[a] e
− ∫

X
1

2g2 |Fa−A|2
. (C47)

This is a gauge invariant theory, so the U(1)(p) symmetry is
anomaly free.

Let’s dualize a to â to see how A couples to â. Repeating
the first few steps of Abelian duality reviewed in Sec. C 1 b,
the path integral becomes

Z[A] =
∫

DKDâe
− ∫

X
1

2g2 |K|2− i
2π

Fâ∧K− i
2π

A∧Fâ
, (C48)

where we made the change of variables Fa = K + A. Integrat-
ing out K , this becomes

Z[A] =
∫

D[â] e− ∫
X

g2

8π2 |Fâ|2− i
2π

A∧Fâ . (C49)
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Note that because dFâ = 0 and space-time is closed, the path
integral in the â representation is still invariant under the
gauge transformation Eq. (C46).

Equation (C49) reveals that turning on a U(1)(p) symmetry
background gauge field is equivalent to adding a topological
term in the â representation. This new term has a noticeable
effect. The Noether current for the U(1)(D−p−2) symmetry,
Ĵ = g2

4π2 Fâ, is no longer conserved:

d†Ĵ = 1

2π
∗dA. (C50)

This is a manifestation of the mixed ’t Hooft anomaly.
Let’s now turn off A and turn on a background gauge field

Â for the U(1)(d−p−1) symmetry with the gauge redundancy

â → â + β̂, Â → Â + dβ̂. (C51)

Inspired by how A coupled to â in Eq. (C48), we minimally
couple Â to a in a similar fashion and consider

Z[Â] =
∫

D[a] e
− ∫

X
1

2g2 |Fa|2− i
2π

Â∧Fa
. (C52)

Because Fa is closed, shifting Â by an exact form does not
change the path integral. Thus the path integral is gauge in-
variant and U(1)(d−p−1) is anomaly free. To verify this way of
coupling Â to a is correct, let’s dualize a to â in Eq. (C52).
Doing so, we find

Z[Â] =
∫

D[â]D[Â] e− ∫
X

g2

8π2 |Fâ−Â|2
, (C53)

as expected. Returning back to Eq. (C52), due to the new topo-
logical term, the U(1)(p) symmetry Noether current J = 1

g2 Fa

is no longer conserved:

d†J = 1

2π
∗dÂ. (C54)

Once again, this is a manifestation of the mixed ’t Hooft
anomaly.

Let us now turn on both of the background gauge fields A
and Â. Working in the a representation and using what we just
found, the path integral becomes

Z[A, Â] =
∫

D[a] e
− ∫

X
1

2g2 |Fa−A|2− i
2π

Â∧Fa
. (C55)

This path integral is invariant under the gauge transformation
Eq. (C51). However, due to the second term in L, this path
integral is no longer invariant under the gauge transformation
Eq. (C46) and transforms as

Z[A, Â] → e
i

2π

∫
X Â∧dβZ[A, Â]. (C56)

No local counter term can remedy this property, and thus the
U(1)(p) × U(1)(d−p−1) symmetry is anomalous.

We can make the theory gauge invariant by introducing
the (D + 1)-dimensional space-time Y such that X = ∂Y and
extending the background gauge fields A and Â into Y . In-
deed, notice how then the phase picked up in Eq. (C56) can be
rewritten as∫

X=∂Y
Â ∧ dβ =

∫
Y

d(Â ∧ dβ ) =
∫

Y
dÂ ∧ dβ. (C57)

This then motivates the new gauge invariant partition function

Z[A, Â] = exp

[
− i

2π

∫
Y

dÂ ∧A
] ∫

D[a] e− ∫
∂Y L,

L = 1

2g2
|Fa − A|2 − i

2π
Â ∧ Fa. (C58)

Indeed, Z[A, Â] is invariant under the gauge transforma-
tions (C56) since the phase picked up from

∫
D[â] e− ∫

∂Y L

cancels with the phase we added.
Thus we see the ’t Hooft anomaly through the modern

perspective of anomaly inflow. In order to turn on both A and
Â, we must have the theory resides on the boundary of an SPT,
which in this case was [130]

ZSPT[A, Â] = e− i
2π

∫
Y dÂ∧A. (C59)
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