
PHYSICAL REVIEW B 108, 195146 (2023)

Direction-dependent switching of carrier type enabled by Fermi surface geometry

Shuaishuai Luo,1,* Feng Du,1,* Dajun Su ,1 Yongjun Zhang,2 Jiawen Zhang,1 Jiacheng Xu,1 Yuxin Chen,1 Chao Cao,1,†

Michael Smidman ,1,‡ Frank Steglich ,1,3 and Huiqiu Yuan1,4,5,§

1Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou 310058, China
2Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China

3Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
4State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310058, China

5Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

(Received 31 March 2023; revised 6 November 2023; accepted 8 November 2023; published 27 November 2023)

While charge carriers can typically be designated as either electron or hole type, depending on the sign of
the Hall coefficient, some materials defy this straightforward classification. Here, we find that LaRh6Ge4 goes
beyond this dichotomy, where the Hall resistivity is electronlike for magnetic fields along the c axis but holelike
in the basal plane. Together with first-principles calculations, we show that this direction-dependent switching of
the carrier type arises within a single band, where the special geometry leads to charge carriers on the same Fermi
surface orbiting as electrons along some directions, but holes along others. The relationship between the Fermi
surface geometry and occurrence of a Hall sign reversal is further generalized by considering tight-binding model
calculations, which show that this type of Fermi surface corresponds to a more robust means of realizing this
phenomenon, suggesting an important route for tailoring direction-dependent properties for advanced electronic
device applications.
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I. INTRODUCTION

The Hall effect corresponds to the deflection of charge car-
riers in a magnetic field perpendicular to the current direction,
and has an intimate link to the electronic structure of a mate-
rial. As only electrons near the Fermi energy will redistribute
under external perturbations, the Hall effect, as well as many
other electronic properties, in a metal is largely determined by
the nature of the Fermi surface [1,2]. This phenomenon has
received tremendous attention in a variety of contexts, includ-
ing the anomalous Hall effect [3], topological Hall effect [4],
quantum Hall effect [5], and quantum anomalous Hall effect
[6]. On the other hand, the ordinary Hall effect has served as
a powerful tool for probing the nature of the charge carriers
[7–9], where the sign of the Hall coefficient RH indicates the
type of charge carrier (electron or hole), while its magnitude
corresponds to the carrier density. This simple picture based
on the Drude model is readily applicable in many scenarios
but can break down in more complicated cases, where instead
the transport properties can be calculated from the Boltzmann
equation, provided there is complete information about the
band structure and relaxation times [10,11]. Furthermore, in
multiband materials electron and hole carriers can coexist,
with each type being associated with different bands [12–14].

A striking example that goes beyond the aforementioned
dichotomy between holes and electrons is systems where the
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Hall coefficient changes sign upon adjusting the magnetic
field (and current) direction, namely there is a Hall effect sign
reversal (HSR). Such a phenomenon has been observed in a
handful of systems [15–18], and in most of these examples
the behaviors are accounted for by the multiband scenario
illustrated in Fig. 1(a), where there are coexistent electron and
hole pockets with anisotropic mobilities [19]. Alternatively,
HSR can also arise from a single band with a saddle point
dispersion [Fig. 1(b)], such that charge carriers act as electrons
along some directions and holes along others [19]. Such a
situation is more unusual compared to the multiband scenario,
whereby the charge carriers cannot be classified as purely
electron or hole type [20]. In NaSn2As2, there are closed hole-
type orbits for out-of-plane magnetic fields, but open orbits for
in-plane fields, and the electron-type behavior of the latter is
due to the balance between concave and convex portions of
the Fermi surface [18]. A very different scenario for realiz-
ing HSR in a single band is shown by the Fermi surface in
Fig. 1(c), for which both out-of-plane and in-plane magnetic
fields will induce closed orbits, where the former encircles
occupied states and hence corresponds to an electron-type
orbit (red circle), while the latter encloses unoccupied states
and therefore describes a hole-type orbit (black bowknot).

Here, we find that LaRh6Ge4 exhibits HSR enabled by
the peculiar Fermi surface geometry in Fig. 1(c). Unlike its
Ce analog which displays significant electronic correlations
and ferromagnetic quantum criticality [21,22], LaRh6Ge4 is a
weakly correlated nonmagnetic material [19,23], and there-
fore the anomalous Hall effect is absent, allowing for the
ordinary contributions to the Hall resistivity from the charge
carriers to be readily examined. First-principles calculations
suggest that the transport properties are dominated by the
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FIG. 1. Overview of the Hall effect sign reversal (HSR) in LaRh6Ge4. Two possible scenarios for realizing the HSR are (a) a multiband
scenario with both hole and electron bands, and (b) a single band with a saddle point. (c) Calculated Fermi surface corresponding to the β

band of LaRh6Ge4 across two neighboring Brillouin zones. The red circle and black bowknot highlight the closed electron orbit associated
with B ‖ c and the closed hole orbit associated with B ‖ ab, respectively. (d) Demonstration of HSR in LaRh6Ge4 at room temperature, where
the Hall resistivity has a positive slope for magnetic fields applied in the ab plane, and a negative slope along the c axis. Field dependence of
the Hall resistivity at various temperatures between 2 and 290 K for (e) B ‖ c, and (f) B ‖ ab.

spin-orbit split β (and β ′) bands, which form the afore-
mentioned Fermi surface displayed in Fig. 1(c), and hence
LaRh6Ge4 is a prime candidate for HSR arising from a single
band.

II. METHODS

A. Experimental details

Single crystals of LaRh6Ge4 were grown using a Bi flux
method [23]. Hall resistivity measurements were performed
in Quantum Design Physical Property Measurement Sys-
tem (PPMS) using the four-contact method. To perform the
angular-dependent measurements, the samples were polished
in order to obtain I-V planes at different angles θ to the ab
plane. The corresponding plane indices (h, k, l) were then
identified through the Laue patterns, and the angles θ were
calculated based on the experimentally determined hexagonal
crystal structure and lattice parameters in Ref. [23],

θ = arccos
(ha∗ + kb∗ + lc∗) · c∗

|ha∗ + kb∗ + lc∗| · |c∗| , (1)

where a∗, b∗, c∗ are basis vectors in reciprocal space. The
magnetic field was always perpendicular to the I-V planes in
all the measurements.

B. Calculations of band structure, Fermi surfaces,
and Hall coefficients

First-principles calculations were performed using the
plane-wave projected augmented-wave method as imple-
mented in the VASP code. The Perdew, Burke, and Ernzerhoff
parametrization (PBE) of the general gradient approximation

(GGA) was used for the exchange-correlation functionals
[24]. For calculations of the Fermi surfaces in LaRh6Ge4,
band structures from VASP were fitted to a tight-binding
Hamiltonian with 108 atomic orbitals including La 5d/4 f ,
Rh 4d , and Ge 4p, using the maximally projected Wannier
function method [25]. The resulting Wannier-orbital-based
Hamiltonian was symmetrized using full crystal symmetry
[26], and was used to calculate the Fermi surfaces by interpo-
lating the band structure to a 100 × 100 × 100 dense k mesh,
while for the single-band tight-binding model, the Fermi sur-
faces can be readily calculated according to the analytical
band dispersion.

Hall coefficients were calculated in the framework of
Boltzmann transport theory, in which current density can be
expressed up to first order in B as [11],

Jα = σαβEβ + σαβγ EβBγ + · · · . (2)

For a multiband system, assuming the relaxation time is
isotropic for each band, we have

σαβ = e2
∑

n

∫
d3k

(2π )3
τnk

(
−∂ fnk

∂ε

)
vα

nkv
β

nk, (3)

σαβγ = −e3
∑

n,β ′,α′
εγβ ′α′

∫
d3k

(2π )3
τ 2

nk

(
−∂ fnk

∂ε

)
�

αα′ββ ′
nk , (4)

�
αα′ββ ′
nk = vα

nkv
α′
nk[M−1]ββ ′

nk , (5)

where (α, β, γ ) is a permutation of (x, y, z), εαβγ is the an-
tisymmetric tensor, n is the band index, fnk = f (εnk ) is the
Fermi-Dirac function, and εnk is the nth band energy at k
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(Fermi energy εF = 0). The group velocity vα
nk and inverse

effective mass tensor [M−1]αβ

nk are defined as

vα
nk = 1

h̄

∂εnk

∂kα

, (6)

[M−1]αβ

nk = 1

h̄2

∂2εnk

∂kα∂kβ

. (7)

For calculations based on first-principles Wannier Hamil-
tonians, the calculation of these quantities follows Ref. [27],
while for the tight-binding model, the group velocity and
inverse effective mass tensor are analytically calculated ac-
cording to the band dispersion, where the integrals are
replaced by summations over a 100 × 100 × 100 dense mesh.

The Hall coefficient is then defined as

RH
αβγ = Eβ

jαBγ

=
∑
α′β ′

[σ−1]α′βσα′β ′γ [σ−1]αβ ′ . (8)

III. RESULTS AND DISCUSSION

The presence of HSR in LaRh6Ge4 is demonstrated in
Fig. 1(d), where the Hall coefficient RH is positive when the
magnetic field is applied in the ab plane, but negative for fields
along the c axis. At this elevated temperature, the Hall resistiv-
ity has a linear field dependence for both directions, indicating
the dominance of a single carrier type. As shown in Figs. 1(e)
and 1(f), upon decreasing the temperature there are slight de-
viations from linear behavior, suggesting small contributions
from other carriers, but the HSR remains robust down to at
least 2 K. These behaviors in LaRh6Ge4 are reproducible
in different samples [19]. Figure 2(a) displays the results of
band-structure calculations for LaRh6Ge4 based on density-
functional theory (DFT) with spin-orbit coupling (SOC) taken
into account. Due to the lack of inversion symmetry, the SOC
lifts the spin degeneracy of the electron bands. Figure 2(b)
shows the corresponding Fermi surfaces α, β, γ and their
SOC-split counterparts α′, β ′, γ ′. The surfaces belonging to
each pair of surfaces show almost identical features. The
calculations are consistent with previous studies of LaRh6Ge4

and similar to isostructural CeRh6Ge4 [28,29]. The Fermi
level is situated in the middle of the β and β ′ bands, where
48.0% of the β states are occupied, while α is almost full
(93.7% occupation), and γ is almost empty (6.6% occupied).
Consequently the much larger β and β ′ Fermi surfaces, which
exhibit the geometry displayed in Fig. 1(c), are anticipated to
make the dominant contribution to the transport properties.
The calculated RH values based on the band structure well re-
produce the observed HSR, with calculated room-temperature
values of −11.26 × 10−10 m3/C and 3.11 × 10−10 m3/C for
B ‖ c and B ‖ ab, respectively, which are consistent with the
respective experimental values of −9.22 × 10−10 m3/C and
3.63 × 10−10 m3/C.

In order to confirm that this HSR can be understood by
considering only one Fermi surface pocket, the Hall resistivity
for different field angles was measured with the configuration
illustrated in Fig. 3(a), where the samples were polished in
order to ensure that different crystal planes correspond to the
I-V plane, which is perpendicular to the magnetic field. The

(a)

(b)

FIG. 2. Electronic structure of LaRh6Ge4. (a) Band structure
of LaRh6Ge4 obtained from DFT calculations. (b) Fermi surfaces
corresponding to the α, β, and γ bands together with their SOC-
split counterparts, where the larger β surface corresponds to that of
Fig. 1(c).

angle θ between the measured I-V plane and the ab plane was
identified using the x-ray Laue method, and the results are
shown in Fig. 3(b).

At θ = 0◦ (B ‖ c), RH has a large negative value, which
increases with increasing θ , and at θ = 59◦, ρH is flat with
RH ≈ 0, while RH is positive at larger θ . The color map in
Fig. 3(c) shows the angle dependence of the orbit type for the
β surface, based on the occupancy of the electronic states in
DFT calculations, where the red and cyan regions represent
electron and hole type, respectively. The blue symbols and
black solid line represent RH from experiments and calcu-
lations, respectively. It can be seen that the orbit changes
from electron to hole type between 60◦ and 65◦, very close
to the angle where RH ≈ 0 in experiments. This demonstrates
that the HSR can indeed be understood as arising from the
single-band scenario of Fig. 1.

How the nature of the cyclotron orbits evolves upon ro-
tating the magnetic field from the c axis to the ab plane is
illustrated schematically in Fig. 3(d). At θ = 0◦, there are
nearly circular orbits enclosing occupied states, correspond-
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FIG. 3. (a) Schematic diagram for the angular dependent Hall resistivity measurements, where θ is the angle between the ab plane and
the I-V plane. (b) Field dependence of the room-temperature Hall resistivity for different θ , where for θ = 59◦ the Hall coefficient RH ≈ 0.
(c) Evolution of the room-temperature Hall coefficient as a function of θ . Blue symbols are from experiments, while the black solid line shows
the calculated RH from theoretical calculations. The calculated orbit types are shown by the color plot, where red and cyan represent electron
and hole type, respectively. (d) Schematic diagram illustrating how the orbit type evolves with θ from electron-type closed orbits enclosing
occupied states at θ = 0◦ (red line), to hole-type closed orbits enclosing unoccupied states at θ = 90◦ (cyan line).

ing to electron orbits. At intermediate angles, the electron
orbits become elongated and additional open orbits emerge,
and at higher angles these previously separated Fermi surface
contours intersect at a Lifshitz-like transition. Beyond this
point, the resulting closed orbits correspond to hole orbits
enclosing unoccupied states. As RH at the two extremal angles
have different signs, there should be a critical angle at which
RH = 0. Intuitively this can be understood as arising from
the Fermi surface curvature, whereby at intermediate angles
segments with positive and negative curvature contribute with
different signs and the total value depends on competition
between them. While the critical angle does not necessarily
coincide with the Lifshitz-like transition, the Fermi surface
curvature changes rapidly within its vicinity, and therefore the
crossover between hole- and electron-type behaviors occurs in
this region.

To gain a more systematic understanding of the scenar-
ios giving rise to HSR within one band, we considered a
single-band tight-binding model on a hexagonal lattice with
only nearest-neighbor hopping, yielding the following band
dispersion,

εk = ε0 − 2tz cos kc − 2txy[cos k1 + cos k2 + cos(k1 + k2)],
(9)

where (k1, k2, kc) are the k-point coordinates in units of re-
ciprocal lattice vectors. This model gives rise to a set of
saddle points at high-symmetry points, namely �, L, H , and
M (A, L, M, and K) if the interplane hopping tz has a dif-
ferent (the same) sign as the intraplane hopping txy, leading
to a series of Lifshitz transitions upon changing the filling
factor n. Figure 4(a) displays the resulting phase diagram
for n vs |tz/txy| (with txy > 0 and tz < 0), where the re-
gions enclosed by the solid lines each represent a different

Fermi surface geometry, which are displayed in Fig. 4(b).
The Hall coefficients were calculated, and the color plot
corresponds to RH

yzx/RH
xyz (subscripts indicate respective di-

rections of current, voltage, and field), such that the blue
regions (RH

yzx/RH
xyz < 0) exhibit a HSR but red areas do

not.
Upon increasing n for small |tz/txy|, there is a Lifshitz

transition when the Fermi level crosses the saddle point at �,
at which there is a change from the ellipsoid Fermi surface
labeled H, to the open hyperboloid G. The latter has closed
electron orbits within the hexagonal plane, while it is open
along �-A with both convex and concave portions. According
to the geometric representation of the two-dimensional (2D)
metal proposed in Ref. [30], the Hall contribution can be
readily obtained by mapping the Fermi surface from k space
to the space of scattering path length (l space) and finding the
total “Stokes” area. Thus, the Hall sign change can happen
for an open orbit only when the scattering path length of
concave portions is larger than that of the convex portion
[19,30]. A 3D generalization of the geometric representation
analysis requires integration over the third dimension, but
the integral of the projected scattering path length

∫
l⊥dk‖

still serves as an approximate criterion. Figure 5 shows the
integral of the difference between the projected scattering path
lengths

∫
(lconcave

yz − lconvex
yz )dkx, together with the calculated

Hall coefficient RH
yzx, within the region corresponding to the

hyperboloid Fermi surface G, for different values of |tz/txy|.
The sign change of the integral coincides with where RH

yzx
changes sign for small |tz/txy|, while for large |tz/txy|, both
the integral and RH

yzx remain negative up to the transition to a
different geometry. These suggest that the sign change of the
Hall coefficient for the G Fermi surface is indeed due to the

195146-4



DIRECTION-DEPENDENT SWITCHING OF CARRIER TYPE … PHYSICAL REVIEW B 108, 195146 (2023)

A B C D

E F G H

(b)

A

Г

A
L

H

M
K

(a)

FIG. 4. HSR from a tight-binding model on a hexagonal lattice.
(a) Phase diagram as a function of filling factor n and ratio of the
interlayer to intralayer hopping parameters |tz/txy| (with txy > 0 and
tz < 0) for the hexagonal lattice tight-binding model described in the
text. The solid lines correspond to Lifshitz transitions between differ-
ent Fermi surface geometries labeled A–H, while the numbers in the
parentheses correspond to the modified Euler characteristic χ�

M . The
color plot corresponds to the ratio between the Hall coefficients for
the two perpendicular directions, and therefore blue regions where
this ratio is negative exhibit HSR. (b) Plots of the different Fermi
surfaces A–H obtained from the tight-binding model.

competition between the concave and convex portions, which
corresponds to the scenario in NaSn2As2 [18].

On the other hand, further increasing n can lead to the
Fermi level moving across the two saddle points at L and
H , giving rise to Fermi surface B, which corresponds to
the β band of LaRh6Ge4. This represents a very different
scenario, whereby there are closed orbits along perpendicu-
lar directions corresponding to different orbit types, and as
such this exhibits a much more robust HSR covering nearly
all the parameter space for this Fermi surface. Although the
balance between the concave and convex portions plays a
role at intermediate angles where open orbits emerge [as
depicted in Fig. 3(d), especially around the critical angle
where such a balance leads to a vanishing Hall coefficient],
the HSR between the two extremal angles is robust and
moderate tuning of the local curvature of the Fermi surface

= 0.35 = 0.55

= 0.75 = 1.55

(a) (b)

(c) (d)

FIG. 5. The integral of the difference between the projected scat-
tering path lengths of the concave and convex portions, together with
the calculated RH

yzx , for the hyperboloid Fermi surface G from the
tight-binding model calculations. In (a)–(c) there is a sign change of
the integral and the Hall coefficient at almost exactly the same filling,
while at larger |tz/txy| in (d), both quantities are consistently negative
for surface G.

only adjusts the exact position of the critical intermediate
angle.

Furthermore, in analogy to the Euler characteristic used
to classify the topology of surfaces, the topology of these
Fermi surfaces can be characterized by a modified version
χ�

M = 1
2π

∫
KdS, where K denotes the Gaussian curvature

[19,31]. For Fermi surface B which corresponds to that of
LaRh6Ge4, χ�

M has a value of −2, while Fermi surface E
which also exhibits HSR across most of the parameter space
has a value of −6. On the other hand, Fermi surfaces G and
C have χ�

M = 0, and have open orbits along some directions,
and therefore the sign of the Hall coefficient for these depends
on the balance between regions with positive and negative
curvature, and as such the HSR occurs over a much more
limited region for these surfaces. This suggests that the value
of χ�

M could be an indicator of Fermi surfaces which can
exhibit a more robust HSR.

IV. SUMMARY

To summarize, we find that the Hall coefficient of
LaRh6Ge4 exhibits different signs depending on whether the
magnetic field is applied parallel or perpendicular to the c
axis. By combining experimental measurements of the Hall
resistivity at different field angles with the results of band-
structure calculations, we demonstrate that this sign reversal
originates from one of the Fermi surfaces, on which the
charge carriers move as electrons on some closed orbits,
and holes along others. Moreover, from considering a tight-
binding model we obtain a more unified picture of the range
of scenarios giving rise to HSR from a single band and
the mechanisms for its realization. Materials with HSR also
have the potential to be exploited in devices, where the dual
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electron and hole nature of the charge carriers can satisfy
the requirements of advanced electronics. The findings of a
Fermi surface geometry that robustly exhibits HSR should be
particularly beneficial for high-throughput searches for candi-
date materials that possess this and other functional material
properties. In particular, the manifestation of HSR on a single
band can greatly simplify the calculation of relevant elec-
tronic and thermal quantities [20]. Furthermore, the existence
of a “magic angle” at which the Hall coefficient disappears
could have applications in sensors and related devices. Con-
sequently, the experimental findings combined with model
calculations revealing a robust manifestation of HSR at room
temperature for certain Fermi surface geometries provides the

means for realizing advanced functional materials exhibiting
this phenomenon.
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