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Flat bands and magnetism in Fe4GeTe2 and Fe5GeTe2 due to bipartite crystal lattices
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Fen=4,5GeTe2 exhibits quasi-two-dimensional properties as a promising candidate for a near-room-temperature
ferromagnet, which has attracted great interest. In this work, we notice that the crystal lattice of Fen=4,5GeTe2

can be approximately regarded as being stacked by three bipartite crystal lattices. By combining the model
Hamiltonians of bipartite crystal lattices and first-principles calculations, we investigate the electronic structure
and the magnetism of Fen=4,5GeTe2. We conclude that flat bands near the Fermi level originate from the bipartite
crystal lattices and that these flat bands are expected to lead to the itinerant ferromagnetism in Fen=4,5GeTe2.
Interestingly, we also find that the magnetic moment of the Fe5 atom in Fe5GeTe2 is distinct from the other Fe
atoms and is sensitive to the Coulomb interaction U and external pressure. These findings may be helpful to
understand the exotic magnetic behavior of Fen=4,5GeTe2.
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I. INTRODUCTION

In recent years, Fen=3,4,5GeTe2 have been discovered as
van der Waals (vdW) itinerant ferromagnets with a high Curie
temperature Tc [1–10]. They are promising for spintronic ap-
plications due to the near-room-temperature ferromagnetism,
magnetic anisotropy, and high electric conductivity [3–21].
Fe3GeTe2 was first discovered in Fen=3,4,5GeTe2 family
[22,23], and its magnetism and electronic structure have been
extensively investigated [24–26]. Fe4GeTe2 and Fe5GeTe2,
with the space groups of R3̄m and R3m, share a similar lat-
tice structure which is distinct from that of Fe3GeTe2, and
especially Fe5GeTe2 can be considered to be obtained from
inserting one Fe layer into Fe4GeTe2. Therefore we mainly
focus on Fen=4,5GeTe2 in this work. Fen=4,5GeTe2 also ex-
hibit many interesting properties, such as the Kondo effect
[27], anomalous Hall effect (AHE) [28,29], butterfly-shaped
magnetoresistance [30], controllable topological magnetic
transformations [31], and skyrmionic spin structures up to the
room temperature [32,33]. However, the underlying physics
of the magnetic behaviors of Fen=4,5GeTe2 has not been well
understood.

To investigate the electronic structure and the magnetism
of Fen=4,5GeTe2, we approximately decompose their crystal
lattices into three basic layers due to the layered structure.
Each basic layer contains at least one Fe layer and one Ge or
Te layer, as shown in Fig. 1. Interestingly, we notice that these
basic layers of Fen=4,5GeTe2 can be approximately regarded
as bipartite crystal lattices (BCLs) which can be divided
into two sublattices with negligible intrasublattice hopping
[34,35], since the hopping primarily occurs between the Fe
and Ge/Te sublattices. We determine that the stacked BCLs
in Fen=4,5GeTe2 give rise to flat bands [36–39] which may
account for the ferromagnetism observed in these materials.
It is worth mentioning that the decomposition of BCLs for
Fen=4,5GeTe2 is a rough approximation, and the hoppings
between adjacent BCLs still require careful consideration.

In this work, we construct model Hamiltonians for the
stacked BCLs of Fen=4,5GeTe2. We determine that the flat
bands can be attributed to the BCLs, based on these model
Hamiltonians. We also demonstrate that the itinerant ferro-
magnetism in these materials arises from the nearly flat bands
near the Fermi energy driven by the Coulomb interaction U ,
which is known as flat-band ferromagnetism [40–46]. The
BCL-induced ferromagnetism primarily depends on the lattice
structure, orbitals, and electron filling number. We expect that
this conclusion could be extended to other vdW ferromagnets.
Furthermore, by combining the model Hamiltonians and first-
principles calculations, we find that the magnetic moment of
Fe5 in Fe5GeTe2 is sensitive to both U and external pres-
sures. The pressure-tunable magnetic moment transitions in
Fe5GeTe2 might be experimentally observed.

II. METHODS

First-principles calculations are carried out using the
Perdew-Burke-Ernzerhof-type (PBE) generalized gradient ap-
proximation (GGA) [47] of the density functional theory
(DFT), using the Vienna ab initio simulation package (VASP)
[48–50]. We take the GGA + U method with U = 3.0 eV
to investigate the correlation effects. We calculated the total
energy for different magnetic states and determined the fer-
romagnetic ground state of Fen=4,5GeTe2. A kinetic energy
cutoff of 500 eV is used, and the 10 × 10 × 10 k-point mesh
is taken for the bulk calculations. The experimental lattice
constants of Fe4GeTe2 (a = 4.03 Å, and c = 29.08 Å) [4] and
Fe5GeTe2 (a = 4.04 Å, and c = 29.19 Å) [5] are adopted. The
inner atomic positions are obtained via full relaxation with a
total energy tolerance of 10−6 eV. The Wannier-based model
Hamiltonians are obtained from the projection of the p orbitals
of Ge and Te and the d orbitals of Fe through employing the
WANNIER90 package [51–53].
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FIG. 1. Crystal structure and bipartite crystal lattices. (a) Crystal structures of Fe4GeTe2 with primitive lattice cell in black solid line.
(b) Top views of three BCLs of Fe4GeTe2, labeled L1, L2 and L3. The first BCL (L1) is a honeycomb lattice. The center BCL (L2) is a dice
lattice. The third BCL (L3) is equivalent to the L1 due to the inversion symmetry. (c) The side view of the septuple layer of Fe4GeTe2. The
triangle lattice has three different stacked positions denoted as A, B and C. (d) Crystal structures of Fe5GeTe2 with primitive lattice cell in
black solid line. (e) Top view of three BCLs of Fe5GeTe2. The first BCL (L1) and the center BCL (L2) are dice lattices. The third BCL (L3) is
a honeycomb lattice. (f) The side view of the octuple layer of Fe5GeTe2.

III. CRYSTAL STRUCTURE AND ORBITALS

A. The bipartite crystal lattice

Fe4GeTe2 has a space group of R3̄m(166) that includes
an inversion symmetry. The Te (Fe1′, Fe2) atoms are re-
lated to the Te′ (Fe1, Fe2′) atoms via an inversion operation,
with the Ge atom serving as the inversion center. The lat-
tice of Fe4GeTe2 has a septuple-layer structure, as shown
in Fig. 1. When we use ABC to represent different stack-
ing positions, the stacking manner of Fe4GeTe2 in the
septuple-layer structure can be expressed as Te(B)-Fe1′(C)-
Fe2(B)-Ge(A)-Fe2(C)-Fe1′(B)-Te′(C), as shown in Fig. 1(c).
We can decompose the unit cell of Fe4GeTe2 into three BCLs
stacked along the z direction, denoted as L1, L2, and L3. The
L1 BCL comprises the Fe1 sublattice and the Te sublattice,
while the L3 BCL comprises the Fe1′ sublattice and the Te′

sublattice. The L1 and L3 BCLs are related through the in-
version symmetry. The L2 BCL consists of the Fe2(Fe2′)
sublattice and the Ge sublattice, which can be viewed as a
dice lattice [34,54–56] with an inversion symmetry, where the
Ge atom acts as the inversion center.

Fe5GeTe2 belongs to the R3m(160) space group. The lat-
tice of Fe5GeTe2 can be obtained by inserting a Fe5 layer
between the Fe1′ and Te1 layers of Fe4GeTe2 [4], as depicted
in Figs. 1(c) and 1(f). The inserted Fe5 layer breaks the in-
version symmetry, resulting in the unequivalence of Fe1 and
Fe1′, as well as Fe2 and Fe2′. Consequently, Fe1′ and Fe2′
in Fe5GeTe2 are renamed as Fe4 and Fe3, respectively. The
lattice of Fe5GeTe2 has an octuple-layer structure, which can
also be approximately decomposed into three BCLs stacked
along the z direction. The stacking manner of Fe5GeTe2 in the
octuple-layer structure can be expressed as Te1(B)-Fe5(A)-
Fe4(C)-Fe2(B)-Ge(A)-Fe3(C)-Fe1(B)-Te2(C), as shown in
Fig. 1(f). The L1 BCL in Fe5GeTe2 is a dice lattice consisting
of the Fe4 and Fe5 sublattice and the Te1 sublattice, though it
is just a quasi-BCL due to the non-negligible nearest hopping

between Fe4 and Fe5. The L2 BCL in Fe5GeTe2 is a dice
lattice but lacks the inversion symmetry. Lastly, the L3 BCL
in Fe5GeTe2 is a honeycomb lattice which is almost identical
to the L3 BCL in Fe4GeTe2.

B. Orbitals and the site symmetry

The ferromagnetism in Fen=4,5GeTe2 is mainly due to the
partially filled d orbitals of Fe, whereas Te and Ge do not
exhibit major magnetic behavior. Therefore it is important to
analyze the splitting of Fe’s d orbitals to reveal the underlying
mechanism of the ferromagnetism.

Both Fe4GeTe2 and Fe5GeTe2 have the C3v site symmetry,
which has three irreparable representations: two 1D irreps
A1,2 and a 2D irrep E (Table I). The p and d orbitals can
be classified based on the irreducible representations (irrep)
of the site symmetry group. Here, pz corresponds to A1 irrep
for p orbitals of Te and Ge, while (px, py) corresponds to E
irrep and forms a doublet. Moreover, the d orbitals of Fe are
divided into a singlet dz2 with A1 irrep and two doublets (dxz,
dyz) and (dxy, dx2−y2 ) with E irrep. The orbitals in doublets
can be recombined as px ± ipy, dxz ± idyz, and dx2−y2 ± idxy,
renamed according to their quantum numbers of the angu-
lar momentum projection operator l̂z as pm=±1, dm=±1, and
dm=±2. Meanwhile, the singlet orbitals are renamed as pm=0

and dm=0, respectively.

TABLE I. The character table of the point group C3v .

E C3(z) 3σz p orbitals d orbitals

A1 1 1 1 pz dz2

A2 1 1 −1 / /

E 2 −1 0 (px, py) (dxy, dx2−y2 ); (dxz, dyz)
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Due to the stacking of BCLs along the z direction, the
most significant interactions between adjacent layers are σ

bondings formed between the pz and dz2 orbitals, both of
which have the quantum numbers m = 0.

IV. MODEL HAMILTONIANS

A. Construction of model Hamiltonians

To understand the origin of flat bands, it is essential to
formulate a model Hamiltonian. Since the lattice structure
of Fen=4,5GeTe2 can be viewed as three stacked BCLs, we
construct the tight-binding model Hamiltonian Htot by placing
the BCL Hamiltonians HLi on the diagonal. The general form
of the tight-binding model Hamiltonian for Fen=4,5GeTe2 is
written as,

Htot (k) =

⎛
⎜⎜⎝

HL1 (k) S12(k) S13(k)

S†
12(k) HL2 (k) S23(k)

S†
13(k) S†

23(k) HL3 (k)

⎞
⎟⎟⎠ (1)

where the S12 and S23 represent the hopping between adja-
cent BCLs which usually have the same order of magnitude as
the intra-BCL hoppings, while the S13 between the L1 and L3

BCLs is almost zero. Therefore the Hamiltonians of L1, L2,
and L3 BCLs cannot be treated independently. However, the
hopping between adjacent BCLs primarily occurs between or-
bitals along the z direction, such as the pz and dz2 with m = 0.
Therefore, to simplify the model, the orbitals can be catego-
rized into two sets. The first set comprises all the orbitals with
m = 0, while the second set consists of the remaining orbitals
with m �= 0. By applying a unitary transformation, the original
model Hamiltonian is transformed to,

Htot (k) =
(

Hm=0(k) Sm(k)

S†
m(k) Hm �=0(k)

)
, (2)

where the Hm=0(k) and Hm �=0(k) are the Hamiltonian with
the m = 0 orbitals and m �= 0 orbitals, respectively. Sm(k) is
the hopping matrix between the m = 0 and m �= 0 orbitals.
Figures 2(b) and 3(b) show that the band structures calcu-
lated by Hm �=0(k) of Fen=4,5GeTe2 can catch the main feature
of the band structures from the first-principles calculations,
which validate the partitioning of orbitals into m = 0 and
m �= 0. Since the strongest interlayer coupling occurs among
the orbitals with m = 0, we treat Hm=0(k) as a whole without
decomposition.

Since the hopping between adjacent BCLs is relatively
weak for the m �= 0 orbitals, the Hm �=0(k) is given by

Hm �=0(k) =

⎛
⎜⎜⎝

Hm �=0
B1

(k) SB12 (k) 0

S†
B12

(k) Hm �=0
B2

(k) SB23 (k)

0 S†
B23

(k) Hm �=0
B3

(k)

⎞
⎟⎟⎠, (3)

where Hm �=0
Bi

is the Hamiltonian based on the m �= 0 orbitals
of the Li BCL, and SBi j is the hopping between the Li BCL
and the L j BCL, which can be negligible (SBi j ≈ 0). Then,
Hm �=0(k) is further considered to made up of the three individ-

FIG. 2. Band structures by model Hamiltonians of Fe4GeTe2.
[(a) and (b)] The band structures of Hm=0 and Hm �=0 in red and
blue. The dashed gray lines are the band structures calculated by
first-principles calculations (density functional theory, DFT). [(c) and
(d)] Band structures by the HB1/HB3 for A′(k) = 0 (c) and A′(k) �= 0
(d). HB1 is equivalent to HB3 due to the inversion symmetry. The
projections of Fe1 are in green. [(e) and (f)] Band structures by the
HB2 for A′(k) = 0 (e) and A′(k) �= 0 (f). The projections of Fe1 are in
orange.

ual Hm �=0
Bi

which is written as [35],

Hm �=0
Bi

(k) =
(

A(k) S(k)

S†(k) B(k)

)
, (4)

where A(k)/B(k) is a Hermitian matrix denoting the onsite
energy and intrasublattice hopping and S(k) denotes the inter-
sublattice hopping for each BCL. Since onsite energies lie on
the diagonal, the matrix A′(k)/B′(k) obtained after removing
the diagonal terms of A(k)/B(k) represents the intrasublattice
hoppings. As mentioned above, the decomposition of BCLs of
Fen=4,5GeTe2 is a rough approximation due to the existence
of the nonzero intrasublattice hoppings which leads to the
dispersion of flat bands.

B. Flat bands due to BCLs

In general, a BCL Hamiltonian can induce (N = NA − NB)
flat bands when NA > NB [35], as shown in Appendix A.
Here, NA/B denotes the number of orbitals present on the A/B
sublattice. The emergence of flat bands can be attributed to the
destructive interference of wavefunctions associated with the
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FIG. 3. Band structures by model Hamiltonians of Fe5GeTe2.
(a, b) The band structures of Hm=0 and Hm �=0 in red and blue. The
dashed gray lines are the band structures calculated by first-principles
calculations. (c, d) Band structures by the HB1 for A′(k) = 0 (c) and
A′(k) �= 0 (d). The projections of Fe4 and Fe5 are in blue and red,
respectively. (e, f) Band structures by the HB2 for A′(k) = 0 (e) and
A′(k) �= 0 (f). The projections of Fe4 and Fe5 are in orange and
green, respectively. (g, h) Band structures by the HB3 for A′(k) = 0
(g) and A′(k) �= 0 (h). The projections of Fe1 are in purple.

properties of the BCL [57,58]. When NA > NB, the hopping
along different directions overlaps destructively at the B sub-
lattice, resulting in (NA − NB) states solely on the A sublattice
at every momentum k. Since there are no hoppings between
states on the A sublattice of BCL, these states form (NA − NB)
flat bands. However, according to the proof in Appendix A, the
crystal field splitting of orbitals due to the crystal field effect
and the intrasublattice hoppings on A sublattice may lead to
slight bending or loss of degeneracy in the flat bands. We will
take into account the impact of the crystal field splitting and
A′(k) on the flat bands when performing calculations using
these model Hamiltonians.

We first analyze the flat bands according to the BCL Hamil-
tonian HBi of Fen=4,5GeTe2. We first neglect the crystal field
splitting of the d orbital due to the crystal field effect and the
intrasublattice hoppings A′(k) for each BCL. The L1/L3 BCL
of Fe4GeTe2 and L3 BCL of Fe5GeTe2 are honeycomb lattices
that consist of a Fe sublattice (denoted as the A sublattice) and
a Te sublattice (denoted as the B sublattice). The A sublattice
comprises four degenerate d orbitals, while the B sublattice
comprises two degenerate p orbitals. As a result, the BCL
Hamiltonian with (NA − NB = 2) degenerate flat bands. On
the other hand, the L2 BCL of Fe4GeTe2 and L1/L2 BCLs of
Fe5GeTe2 are dice lattices that consist of the sublattice with
two Fe (denoted as the A sublattice) and a Te/Ge sublattice
(denoted as the B sublattice). The A sublattice contains eight
degenerate d orbitals, while the B sublattice contains two
degenerate p orbitals. The BCL Hamiltonian for this dice
lattice has (NA − NB = 6) degenerate flat bands. Due to the
relatively localized nature of the d orbitals, we anticipate that
the intrasublattice hopping (A′(k)) will have small magni-
tudes, thereby having a limited impact on the formation of
flat bands.

Based on the model Hamiltonians, the flat bands are
calculated, shown in Figs. 2(c), 2(e), 3(c), 3(e) and 3(g) with-
out considering the intrasublattice hoppings in A sublattice
(A′(k) = 0) and Figs. 2(d), 2(f), 3(d), 3(f) and 3(h) with con-
sidering the intrasublattice hoppings(A′(k) �= 0). The clear flat
bands have been shown in Figs. 2 and 3, though the A′(k) �= 0
lead to the slight bending of the nearly flat bands. We can see
that the dispersion of the bands almost keep unchanged with
A′(k) = 0 and A′(k) �= 0 for L1/L3 BCLs of Fe4GeTe2 and L3

BCL of Fe5GeTe2, whereas this is not the case for the L2 BCL
of Fe4GeTe2 and L1/L2 BCLs of Fe5GeTe2 [Figs. 2(e), 2(f),
3(c)–3(f)] due to the hopping between orbitals of Fe in dice
lattice. We find that the bands from BCL model Hamiltonians
with A′(k) �= 0 can well reproduce the bands obtained from
first-principles calculations, which support that the flat bands
originate from the BCLs of Fen=4,5GeTe2.

It is worth discussing whether the flat bands of
Fen=4,5GeTe2 are itinerant or local. Flat bands can be classi-
fied into two types: trivial flat atomic bands and nontrivial flat
bands [57]. Flat atomic bands originate from the localization
of orbitals or isolated atoms, resulting in negligible overlaps
between atomic wave functions [57]. Conversely, nontrivial
flat bands emerge from extended wave functions with sub-
stantial overlaps and hoppings [57], indicating the itinerant
character. In the case of Fen=4,5GeTe2, the significant overlaps
and hoppings between the orbitals suggest that their flat bands
are itinerant.

C. Flat-band ferromagnetism

In the absence of spin polarization, all flat bands formed by
the d orbitals of Fe are close to the Fermi energy due to the
partial occupation of the d orbitals. These flat bands result in
sharp peaks of the non-spin-polarized density of states (DOS)
near the Fermi energy. According to the Stoner theory, these
peaks can lead to spontaneous magnetization [43,59,60]. The
critical condition for the instability is expressed as U > 1/NEF

[59], and here NEF denotes the DOS at the Fermi energy.
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FIG. 4. Electronic structures of Fe4GeTe2 calculated by first-
principles calculations with U = 3.0 eV. (a) The non-SOC band
structure. (b) The SOC band structure. (c) The spin-polarized DOS
without SOC. (d) The Fermi surfaces with up spin are in red, while
the Fermi surfaces with down spin are in blue.

As the value of U increases, the energies of states with
up and down spin will decrease and increase respectively,
leading to a spin-polarized DOS. Consequently, flat bands
near the Fermi energy in non-spin-polarized band structures
can give rise to ferromagnetism. The spin-polarized DOS con-
tributes to the magnetic moment, which can be quantified as
m = n↑ − n↓, where n↑/n↓ represents the number of occupied
states with the up/down spin. The magnetic moment increases
with increasing U , which is also confirmed by the results of
first-principles calculations [Figs. 5(a) and 7(a)].

V. ELECTRONIC STRUCTURE AND MAGNETIC
PROPERTIES

A. Fe4GeTe2

We perform first-principles calculations to investigate the
electronic structure and magnetic properties of Fe4GeTe2. In
our calculations, we employ U = 3.0 eV to obtain the band
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FIG. 5. Magnetic properties of Fe4GeTe2 calculated by first-
principles calculations. (a) The U dependence of magnetic moments
of unequivalent Fe atoms. (b) The non-spin-polarized DOS.
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FIG. 6. Electronic structures of Fe5GeTe2 calculated by first-
principles calculations with U = 3.0 eV. (a) The band structure
without SOC. (b) The band structure with SOC. (c) The spin-
polarized DOS without SOC. (d) The Fermi surfaces with up spin
are in red, while the Fermi surfaces with down spin are in blue.

structure, DOS, and Fermi surfaces. The results suggest that
the band structures with and without SOC are similar, imply-
ing that SOC has a negligible effect on the electronic structure
of Fe4GeTe2 [Figs. 4(a) and 4(b)]. The non-spin-polarized
DOS indicates the NEF value is about 8.8 states/eV. Consider-
ing the Stoner criterion as U > 1/NEF , Fe4GeTe2 satisfying
the Stoner criterion requires U to be greater than 0.11 eV.
Although the precise value of U cannot be ascertained, ac-
cording to this paper [11], the effective U value in Fe4GeTe2

is significantly higher than 0.11 eV. Hence, our calculations
indicate that Fe4GeTe2 should meet the Stoner criterion. The
spin-polarization DOS is consistent with the ferromagnetism
[Fig. 4(c)]. The band structure and Fermi surfaces [Fig. 4(d)]
indicate the Fe4GeTe2 is a quasi-2D ferromagnetic metal.

By gradually increasing the U , we observe a gradual in-
crease in the magnetic moments of the Fe atoms of Fe4GeTe2.
As illustrated in Fig. 5(a), the magnetic moments of Fe1
(Fe1′) and Fe2 (Fe2′) surpass 1.5 μB when U = 0.0 eV. Fur-
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FIG. 7. Magnetic properties of Fe5GeTe2 calculated by first-
principles calculations. (a) The U dependence of magnetic moments
of unequivalent Fe atoms. (b) The non-spin-polarized DOS.
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thermore, we identify the presence of nearly flat bands in
the non-spin-polarized band structures (Fig. 2) and the corre-
sponding peaks in DOS [Fig. 5(b)]. These sharp peaks near the
Fermi energy suggest that Fe4GeTe2 exhibits characteristics of
an itinerant flat-band ferromagnet [59].

B. Fe5GeTe2

We further perform first-principles calculations to analyze
the electronic and magnetic properties of Fe5GeTe2. As shown
in Figs. 6 and 7, the band structures, DOS, and Fermi surfaces
are similar to those of Fe4GeTe2. The non-spin-polarized DOS
indicates the NEF value is about 7.4 states/eV. The effective
value of U is greater than 0.14 eV [11], which satisfies the
Stoner criterion. Therefore Fe5GeTe2 should also be an itiner-
ant ferromagnet.

However, there is a significant difference in the magnetic
properties of Fe5. For U � 0.7 eV, the magnetic moments of
Fe5 are negligible, while it has a sudden increase between
U = 0.7 and 0.8 eV. We explain this phenomenon based on
the band structure of the L1 BCL which is a quasi-dice lat-
tice. The energy levels of Fe5 orbitals are slightly lower than
those of Fe4 due to their different coupling to Te1. Then,
bonding and anti-bonding bands are formed through the hop-
ping between Fe4 and Fe5 orbitals. The anti-bonding band
is primarily composed of Fe4 orbitals, whereas the bonding
band is dominated by Fe5 orbitals. The Fe4-dominated bands
are very close to the Fermi energy, resulting in the sponta-
neous magnetization of Fe4. As the value of U increases, the
Fe5-dominated flat bands cross the Fermi level, leading to a
pronounced enhancement in Fe5’s magnetic moment.

We also investigate the effect of external pressure on the
magnetic moment of Fe5 for Fe5GeTe2. For simplicity, the
cell volume is kept unchanged, applying pressure along the z
direction causes stretching in the xy plane. The compression
along the z direction is primarily accommodated by the vdW
gaps, resulting in negligible alteration to the vertical spacing
among atoms within each octuple layer. Consequently, the
pressure primarily influences the intralayer hoppings due to
the in-plane stretching. Therefore the hopping between Fe4
and Fe5 slightly decreases, causing the energy level of Fe5 to
approach the Fermi energy. Therefore the magnetic moment
of Fe5 increases with the pressure in the z direction, as illus-
trated in Fig. 8. Though pressure-induced magnetic transitions
of Fe5 may be detectable through neutron scattering [61],
such measurements are relatively challenging. Our calcula-
tions find that the total magnetic moment changes with the
magnetic variation of Fe5, which can be readily quantified.
Therefore measuring the total magnetic moment is a more
convenient approach to indicate the magnetic transitions of
Fe5.

VI. CONCLUSION

In this study, we investigate the origin of the nearly flat
bands and ferrimagnetism in Fen=4,5GeTe2. Our analysis re-
veals that the lattice structure of these materials can be viewed
as three stacked BCLs along the z direction. The presence of
different orbital numbers on two sublattices results in nearly
flat bands. We demonstrate that the observed ferromagnetism
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FIG. 8. The dependence of the magnetism of Fe5GeTe2 on
external pressures calculated by first-principles calculations. The
percentages indicate the proportion of deformation in the z-direction.
(a) The U dependence of Fe5’s magnetic moments under different
external pressures. (b) The U dependence of total magnetic moments
under different external pressures.

in Fen=4,5GeTe2 arises from these nearly flat bands according
to the Stoner theory. By combining model calculations with
first-principles calculations, we find that the magnetic moment
of Fe5 in Fe5GeTe2 is sensitive to Coulomb interactions U and
external pressure, which might be experimentally observed.

The emergence of flat-band ferromagnetism in
Fen=4,5GeTe2 predominantly depends on the lattice structure,
orbital characteristics, and electron filling number. These
findings contribute to our understanding of the electronic
and magnetic properties of vdW ferromagnets, specifically
Fen=4,5GeTe2.
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APPENDIX: A BRIEF PROOF OF FLAT BANDS IN BCLs

Firstly we ignore the intrasublattice hoppings and the crys-
tal field splitting of orbitals on the A sublattice, so Ak = εI ,
where I is an identity matrix and ε is the onsite energies of
orbitals on A sublattice. We set ε as the zero energy point:

Hk =
(

O Sk

S†
k Bk

)
(A1)

Diagonalizing NB × NA rectangular matrix Sk , we have

Sk = Wk�kV
†

k (A2)
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Here, �k is a rectangular diagonal matrix with NA − NB

zero rows:

�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1 0 0 . . . 0
0 ε2 0 . . . 0

0 0 ε3
. . . 0

...
. . .

. . .
. . . 0

0 0 . . . 0 εNB

0 0 . . . 0 0
...

... . . .
...

...

0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

Then we perform a similarity transformation on Hk as

Hk =
(

Wk O
O Vk

)(
O �k

�
†
k bk

)(
W †

k O
O V †

k ,

)
(A4)

where bk = V −1
k Bk (V †

k )−1. So that Hk is similar to a ma-
trix that contains NA − NB zero rows, which implies that Hk

possesses at least NA − NB zero-energy solutions with any k.
Then we could conclude that a BCL has at least NA − NB

degenerate flat bands at the onsite energy of orbitals on A
sublattice. This proof does not make requirements on the form
of Bk . Therefore intrasublattice hoppings and crystal field
splitting of orbitals on the B sublattice do not affect the flat
band.
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