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Thermal cycle and polaron formation in structured bosonic environments
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Chain-mapping techniques combined with the time-dependent density matrix renormalization group are
powerful tools for simulating the dynamics of open quantum systems interacting with structured bosonic
environments. Most interestingly, they leave the degrees of freedom of the environment open to inspection.
In this work, we fully exploit the access to environmental observables to illustrate how the evolution of the open
quantum system can be related to the detailed evolution of the environment it interacts with. In particular, we give
a precise description of the fundamental physics that enables the finite temperature chain-mapping formalism to
express dynamical equilibrium states. Furthermore, we analyze a two-level system strongly interacting with a
super-Ohmic environment, where we discover a change in the spin-boson ground state that can be traced to the
formation of polaronic states.
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I. INTRODUCTION

The theory of open quantum systems (OQS) provides the
fundamental description of how irreversible and noisy pro-
cesses emerge when a quantum system interacts with the
continua of excitations constituting its surrounding “environ-
ment” [1–3]. As these processes include the ubiquitous—and
essentially unavoidable—real-world phenomena of energy re-
laxation, dephasing and decoherence, the physics of OQS
are implicated in a vast range of quantum phenomena across
physics, chemistry and biology, and are especially important
for future technologies aiming to exploit quantum effects for
computing, communication and energy applications [4–8].

In recent years, particular interest has arisen in the physics
of OQS in the presence of strong system-environment inter-
actions and persistent (non-Markovian) system-environment
memory effects, both of which are typical of functional
molecular and biological nanomaterials [9,10]. Under these
conditions, the dissipative dynamics can no longer be de-
scribed by simple master equations, as the system and its
environments both evolve, and mutually influence each other’s
evolution, on timescales relevant to the process under study.
The correct description must therefore retain real-time details
of the state of the system, its many body environment and
the correlations that arise between them, which presents a
daunting computational challenge.

Tensor network methods [11,12], and in particular efficient
time evolution algorithms for matrix product states (MPS)
[13–18], have recently opened up the possibility of doing
precisely this, allowing for a microscopic characterization of
non-Markovian reduced state dynamics by representing and
propagating the full wave function of the system and its sur-
rounding environment with numerical exactitude. The power
and versatility of this approach, in the form of the original

time evolving density operator with orthogonal polynomials
algorithm (TEDOPA), have been demonstrated through mul-
tiple applications in photonic, molecular, and fundamental
models of decoherence [19–21]; but, as a pure wave func-
tion method, the majority of these studies were confined to
zero-temperature environments. Unfortunately, extending this
formulism to mixed environment states at finite temperatures
would, a priori, require thermal averaging over many expen-
sive simulation runs, and would quickly become intractable,
even at fairly low temperatures, due to the rapid proliferation
of environmental state configurations.

However, the recent development of the thermalized-
TEDOPA (T-TEDOPA) technique appears to have effectively
and elegantly resolved this issue, enabling us to recover finite
temperature results from the evolution of a single pure initial
state [22,23]. As will be described in more detail below, the
essential idea is to introduce new environmental modes with
negative frequencies such that, from the point of view of the
reduced system dynamics, the time evolution starting from the
vacuum state of such an extended environment is equivalent
to the one that would be obtained by starting from a thermal
state in the original environment. A rigorous theorem due to
Tamascelli et al. guarantees that such an equivalent system
can always be found, and also how it is to be constructed
[22]. As pure states admit a straightforward MPS repre-
sentation that can be efficiently time-evolved, T-TEDOPA
seemingly presents remarkably advantageous computational
performance compared to sampling and/or costly evolution of
density matrix operators, and has been shown to correctly cap-
ture finite temperature physics in a range of physical settings
that permit comparisons with real experimental data [10,24].

In this paper, we comprehensively explore the fundamen-
tal system-environment physics that enables T-TEDOPA to
efficiently “mimic” finite-temperature effects, and critically
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FIG. 1. The heating cycle. (a) In the extended environment, excitation of the two-level system is accompanied by creation of an excitation
in the resonant negative frequency mode (system heating). Once excited, the system can decay back to the ground state via creation of an
excitation in the positive frequncy mode (the direction of the cycle shown is arbitrary). The ratio of the uphill and downhill transition rates obeys
detailed balance and thus maintains the correct (mean) thermal populations whilst allowing for thermal fluctuations. Due to the unbounded
Fock spaces of the bosonic modes, this process can continue indefinitely, leading to an unbounded growth of environmental excitations. (b) As
excitation in the environment cannot be destroyed, one pair of extra excitations must be created per cycle, leading to environmental wave
functions developing pair-like quantum correlations among the positive and negative resonant modes.

asses the true numerical advantage that can be found by the
combining T-TEDOPA with recent MPS propagation tech-
niques. Indeed, it is generally observed—though not fully
explained—that T-TEDOPA simulations require more nu-
merical resources, i.e. higher bond and local Hilbert space
dimensions, as well as chain lengths [24,25]. This work is
motivated by a possible underlying reason for this: the recent
observation in Ref. [26] of an unbounded growth in the total
number of excitations in the extended environment for all
finite temperatures. This continuous growth of excitations in
the initially empty environment was shown to occur even after
the system observables had completely relaxed to their (ther-
mal) steady state values, raising concerns about the numerical
efficiency of T-TEDOPA for long-time simulations.

A tentative explanation, referred to as the “heating cycle”
instability, was proposed in Ref. [26], and is sketched in Fig. 1.
This posits that bath dynamics must continue, even after sys-
tem relaxation, in order to capture the thermal fluctuations
characteristic of the thermal state. For a simple two-level
system interacting with a bath in the extended representation,
energetically uphill (downhill) transitions are associated with
the creation of resonant negative(positive)-energy bath exci-
tations. The fact that both system excitation and de-excitation
can be considered as emission into the positive/negative fre-
quency environments, means that both processes can occur
spontaneously, as a result of bosonic quantum fluctuations.
This could thus create a continuous creation of excitations
peaked around the positive and negative resonant frequen-
cies of the extended environment. Unfortunately, the study
in Ref. [26] only considered Ohmic environments, and the
expected resonant peaks in the extended environment popu-
lations could not be resolved due to the additional presence
of thermal pure dephasing processes which cause a large and
broad growth of excitations around zero frequency that masks
all other features.

A first objective of this work is to complete the de-
scription of how dynamical equilibrium states are expressed
in the T-TEDOPA formalism, by obtaining conclusive

evidence for the onset of the thermal cycle instability. Here
we confirm the hypothesis of Ref. [26] in two cases: (1) super-
Ohmic environments where low frequency noise is suppressed
and (2)—to our initial surprise—sub-Ohmic environments
that have strongly enhanced low frequency couplings. Ex-
ploiting the access to full many body information in our
T-TEDOPA/MPS approach, we explore how this apparent
instability manifests in the chain representation used for sim-
ulations (Fig. 2), explicitly connecting the unbounded growth
of excitations in the extended environment to the greater nu-
merical resources needed for finite-temperature simulations.
Crucially, this analysis shows that there are no pathologies
in the chain representation of the dynamics: excitation pop-
ulations on the local chain oscillators are always bounded, so
T-TEDOPA simulations can always give controllably accurate
results for arbitrarily long times and temperatures.

A further implication of the heating cycle is that the cre-
ation of positive and negative frequency excitations occurs in
pairs, so that quantum pair correlations should spontaneously
develop during the dynamics (Fig. 1). Here, we explicitly
reveal the existence of such correlations in the extended en-
vironments, and relate these back to the thermofield approach
of De Vega and Bañuls which is based on the use of two-mode
squeezed vacuum states to mimic the effect of a mixed ther-
mal environment [27]. Indeed, by inverting the thermofield
transformation, we are finally able to “close” the triangle of
environment representations shown in Fig. 2, allowing the
numerical results in the T-TEDOPA chain and the underlying
extended environment to be expressed in the original (phys-
ical) thermal environment. Analysis in this representation at
high and low temperatures provides insights into fundamental
questions such as when an environment can be considered as
a Markovian heat bath, which we shall briefly discuss.

Finally, while most of our numerical experiments are con-
ducted under conditions where a two-level system interacts
with the thermal environment through simple and incoherent
energy exchange (uphill and downhill transitions), the non-
perturbative nature of T-TEDOPA also permits exploration
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FIG. 2. Three equivalent representations of a system coupled to an environment that are compared in this work. (a) a standard, physical
representation of a system coupled to a continuum of oscillators, each of which is in a thermal Gibbs state at temperature β−1. (b) The extended
environment reproduces the effect of the environment of (a) by introducing a second environment containing modes with negative frequencies
and a new, temperature-dependent spectral density J (ω, β ) describing the couplings of positive and frequency modes to the system. Crucially,
the initial state of this extended environment that reproduces the physics of (a) is the vacuum. (c) The T-TEDOPA nearest-neighbour chain
representation is obtained from (b) via a unitary transform based on the J (ω, β ). This 1D form of the Hamiltonian can be efficiently simulated
with MPS methods and provides complementary insight into the environment dynamics we present for (a) and (b).

of situations when this picture breaks down. In this work,
we discover and analyze such a case, where a nonpertur-
bative coupling of a TLS to high frequency super-Ohmic
environments causes a change in the global ground state of
S + E , leading to the spontanteous emergence of coherence
and weakly damped oscillatory motion. The dynamics in
this regime exhibit non-Markovian features that cannot be
captured without treating at least some of the environmen-
tal degrees of freedom on the same footing of the system
[28,29], and the application of our analysis framework—
primarily our measure of quantum correlations in the extended
environment—allows us to trace the observed behavior to the
rapid formation of polaronic states, followed by slow, weakly
damped tunneling of the polarons between degenerate config-
urations of the environment in the new ground state.

The rest of the article is organized as follows. In Sec. II, we
briefly describe the usage of the T-TEDOPA chain mapping.
In Sec. III, we provide details on the setting used in our
investigation. Section IV is devoted the discussion of how
low frequency noise due to pure dephasing dominates in the
sub-Ohmic environment. We then examine the environmental
correlations as signature of the onset of a thermal cycle in
the presence of super-Ohmic environments in Sec. V. Finally,
in Sec. VI, we investigate how polaron formation influences
the dynamics of a two-level system (TLS) strongly interacting
with a super-Ohmic environment. The last section is devoted
to conclusion and outlook.

II. MODELS, BATH REPRESENTATIONS, AND METHODS

The Spin-Boson model [1,3] is the paradigmatic model to
study from a microscopic point of view dissipative quantum
dynamics. Its Hamiltonian, Ĥ = ĤS + ĤE + ĤI , describes the
time evolution of a TLS S interacting linearly with an envi-
ronment E , which consists of a continuum of bosonic modes

(h̄ = 1):

ĤS = εσ̂z

2
, ĤE =

∫ ∞

0
dωωb̂†

ωb̂ω,

ĤI = σ̂x

2

∫ ∞

0
dω

√
J (ω)(b̂†

ω + b̂ω ). (1)

The bosonic operators b̂ω, b̂†
ω denote respectively the anni-

hilation and creation operator of a mode of frequency ω.
They obey to the canonical commutation relations. The sys-
tem’s Hamiltonian ĤS is defined on a two-dimensional Hilbert
space, and does not commute with the interaction Hamilto-
nian. The spectral density function J (ω) defines the density
of the modes and the strength of the coupling of the system to
each mode [30]. Here, we focus on the commonly encountered
power-law spectral functions of the type:

J (ω) = 2αω

(
ω

ωc

)s−1

θ (ω − ωc), (2)

where α is a dimensionless quantity that gives a measure
of the coupling strength of the system to the bath modes.
The Heaviside function ensures that J (ω) has finite support
in [0, ωc]. Spectral functions of this form describe a wide
variety of environments in chemical, condensed phase and
photonic systems [31]. The parameter s defines three classes
of functions: for s < 1 the sub-Ohmic, for s = 1 the Ohmic,
and for s > 1 the super-Ohmic spectral densities.

In what follows, we restrict our attention to factorized ini-
tial states of the form ρ̂SE (0) = ρ̂S (0) ⊗ ρ̂

β
E (0) where ρ̂S (0) =

|ψS (0)〉〈ψS (0)| is a pure state and ρ̂
β
E (0) is a thermal state at

inverse temperature β = (kBT )−1:

ρ̂
β
E (0) =

⊗
ω

e−βωb̂†
ω b̂ω

TrE [e−βωb̂†
ω b̂ω ]

=
⊗

ω

ρ̂ω(β ). (3)
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Furthermore, we assume the dynamics of system and environ-
ment to be unitary, so that the dynamics of the system alone is
recovered as

ρ̂S (t ) = TrE {Û (t )ρ̂S (0) ⊗ ρ̂
β
E (0)Û †(t )}, (4)

where U (t ) = e−iĤt . The bi-linearity of the interaction op-
erator ĤI of Eq. (1) and the Gaussian character of ρ

β
E (0)

guarantee that reduced state ρS (t ) of the system at time t is
completely determined by the environment’s two time corre-
lation function [32]:

Ŝ(t ) =
∫ ∞

0
dωTrE [ρ̂ω(β )Ôω(t )Ôω(0)]

=
∫ ∞

0
dωJ (ω)[e−iωt (1 + n̂ω(β )) + eiωt n̂ω(β )], (5)

where the interaction operator is time evolved in the interac-
tion picture:

Ôω(t ) =
√

J (ω)(e−iωt b̂†
ω(0) + eiωt b̂ω(0)), (6)

and n̂ω(β ) is the Bose-Einstein occupation number at fre-
quency ω and inverse temperature β:

n̂ω(β ) = TrE [ρ̂ω(β )b̂†
ωb̂ω] = 1

eβω − 1
. (7)

As shown in Ref. [22], it is possible to replace the finite-
temperature bosonic bath E by another bath, with support
on an extended range of frequencies. The extended bath is
characterized by a new spectral density function Jβ (ω) such
that its pure vacuum state correlation function matches the
thermal state correlation function [Eq. (5)] exactly. We re-
fer the reader to Ref. [22] for full detail on the derivation;
here we limit ourselves to mention two key points of the
construction proposed by Tamascelli et al.. Firstly, negative
frequency modes are added to the environment, by dilating
the range of frequencies of the spectral density function’s
domain. Secondly, the temperature dependence is moved from
the thermal distribution of the statistical ensemble ρ̂

β
E (0) to the

spectral density function:

Jβ (ω) = 1

2
sign(ω)J (|ω|)

[
1 + coth

(
βω

2

)]
. (8)

A thermally weighted, extended spectral density function
with support on the whole real axis is thus defined. The crucial
consequence is that S(t ) of the original thermal environment
is obtained from the factorized vacuum state of the positive
and negative frequency modes which make up the extended
environment, i.e.,

Ŝ(t ) =
∫ ∞

∞
dω 〈vac| Ôω(t )Ôω(0) |vac〉

=
∫ ∞

0
dωJ (ω)[e−iωt (1 + n̂ω(β )) + eiωt n̂ω(β )], (9)

|vac〉 =
⊗

ω

|0〉ω , b̂ω |0〉ω = 0 ∀ω ∈ R, (10)

and the system-extended bath interaction Hamiltonian reads

Ĥβ
I = εσ̂x

2

∫ ∞

−∞
dω

√
Jβ (ω)(b̂†

ω + b̂ω ). (11)

FIG. 3. The thermalized spectral density function Jβ (ω), at β =
2.0 for different values of the degree s. In the super-Ohmic case
(s = 2) the spectral density is equal to zero at the origin, leading
to a suppression of the low frequency noise responsible for pure
dephasing processes; such source of decoherence is instead present
both in the Ohmic (s = 1) and sub-Ohmic case (s = 1/2) where the
spectral density either does not vanish or diverges at the origin.

The equivalence result provided by Tamascelli et al. in [22]
ensures that the system’s reduced dynamics determined by the
interaction with the original bath, described by the spectral
density J (ω) and starting from a thermal state at inverse tem-
perature β, is equivalent to reduced dynamics determined by
the interaction of the system with the extended bath with spec-
tral density Jβ (ω) and starting from the (pure) vacuum state.
Examples of thermalized spectral densities are provided in
Fig. 3. T-TEDOPA therefore shifts thermal contributions from
the initial state of the environment to the interaction strength
with the harmonic oscillators of the extended environment.
Interestingly enough, detailed balance condition instead of
being encoded in the statistics of the initial thermal state of
the oscillators ρ̂ω(β ) [see Eq. (3)] of the original bath is now
encoded in the ratio between the thermalized spectral density
evaluated at opposite frequencies ±ω, namely,

Jβ (+ω)

Jβ (−ω)
= eβω. (12)

As we will see in the following sections, this property has
interesting consequences and is fundamentally related to the
determination of the heating cycle.

The second step in our simulation procedure is to map the
spin-boson Hamiltonian (1) to a chain-like configuration, with
only local interactions. In fact, the interaction Hamiltonian ĤI

couples the system to each mode in the bath, creating correla-
tions between the system and all of the environmental modes
at the same time. Furthermore, the coupling structure of ĤI is
unfit to be represented as an MPO, which has a linear struc-
ture, without introducing undesirable long-range interactions.
One way to overcome this problem is to exploit the obser-
vation, proven in Ref. [33], which establishes that a system
linearly coupled to a reservoir with a spectral density J (ω) can
be unitaliry transformed into a semi-infinite chain where the
system is coupled only to the first mode of a new chainlike en-
vironment. By mapping the interaction onto nearest-neighbor
couplings, this approach enables simulations to compute the
complete many-body dynamics of both the system and the
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environment [34]. Once the chain representation is obtained,
nonperturbative simulations of the open quantum system can
be conducted using tensor network techniques, specifically
thermalized time evolving density operator with orthogonal
polynomials (T-TEDOPA) [22].

The chain mapping transformation starts from the introduc-
tion of the operators

ĉ†
n =

∫ ∞

−∞
dωUn(ω)b̂†

ω, Un(ω) = √
Jβ (ω) p̃n(ω), (13)

with p̃n(ω) indicating polynomials that are orthogonal with
respect to the measure dμ = Jβ (ω)dω. In terms of the bosonic
operators ĉω, ĉ†

ω, satisfying the canonical commutation rela-
tions, the Hamiltonian (1) reads

ĤC = ĤS + ĤC
I + ĤC

E

= ĤS + g0σ̂x(ĉ0 + ĉ†
0)+

×
∞∑

k=0

ω j ĉ
†
k ĉk +

∞∑
k=1

gk (ĉ†
k ĉk−1 + H.c.). (14)

We refer the reader to Refs. [22,33] for a full account on
the (T-)TEDOPA chain mapping. Here we limit ourselves to
mention that the chain modes frequencies ωk and coupling
constants gk depend on the orthogonal polynomials p̃n(ω)
which, in turn, depend on the spectral density Jβ (ω). While in
some cases orthogonal polynomials for specific measures dμ

can be analytically found, stable numerical routines, such as
ORTHPOL [35], are in general exploited to determine the chain
coefficients [36].

In conclusion, the T-TEDOPA chain mapping reformulates
the OQS problem as a 1D many-body problem with only
nearest-neighbor interactions: the dynamics can be efficiently
simulated with tensor network methods, and in particular with
the recently developed bond-adaptive one-site time-dependent
variational principle algorithm for MPS time evolution, which
has been used to obtain the numerical results presented in this
paper (see Appendix A) [24].

III. SETUP

The features of the environment, and therefore of the noise
it induces on the system, are dictated by the spectral density
function and by the initial state of the environment which, in
our setting, are synthesized by Eq. (8). The behavior of the
spectral density around the origin plays an important role: in
the sub-Ohmic case s = 1/2, the thermalized spectral density
Jβ (ω) diverges at zero frequency; in the Ohmic case s = 1,

it has a finite value Jβ (0) > 0, whereas it is equal to zero in
the super-Ohmic case s � 2. Therefore we expect pure de-
phasing processes, happening at low frequency and typically
associated to inelastic scattering processes, to account for a
consistent part of the system-environment exchanges in the
Ohmic and sub-Ohmic cases. Since there is no energy transfer,
pure dephasing processes do not affect the populations of
the TLS. Conversely, a suppression of the pure dephasing
noise should occur for the super-Ohmic environment. The
interaction with modes of frequency around the energy gap
of the TLS ω ≈ ε, where Jβ (ω) is nonzero for any value of s,
can drive a transition through emission/absorption processes.

Finally, nonresonant high frequency modes cause the forma-
tion of polaronic states of the TLS and of the environment,
leading to the renormalization of the frequency gap of the
dressed TLS [37].

We remark that in what follows we take full advantage
of the possibility provided by T-TEDOPA to inspect not
only the open quantum system’s degrees of freedom but also
those of the surrounding environment. Indeed, measurement
performed on the harmonic oscillators of the chain mapped
environment, can be used to determine properties of the os-
cillators in the original “star configuration.” This provides a
most powerful tool to underpin the fundamental mechanisms
determining the evolution of the open quantum system.

Before proceeding with the presentation of our results, we
provide some detail on the setting used throughout this work.
We consider spectral densities of the form (2), namely Ohmic
spectral densities with hard-cutoff at ωc. The TLS energy gap
is set to ε = 0.2ωc. The open quantum system dynamics are
explored in the low and high temperature regimes defined
by the parameter κ = εβ for the choice κ = 400 and 0.4,
respectively. For the sake of definiteness, and without loss of
generality, in what follows we set ωc = 1. In order to look at
the impact of the shape, i.e., Ohmic, sub-Ohmic, etc., of the
spectral function on the underlying physics of the T-TEDOPA,
we use a s-dependent overall system bath coupling constant α

[see Eq. (2)], i.e.,

α ≡ α(s) = α′/εs, (15)

with α′ = 0.01. This choice makes the Markovian TLS de-
cay rate independent of s, enabling easier comparison of the
results (see Appendix C for more details).

In order to enable efficient simulation of the evolution of
the system and of the environment degrees of freedom we ex-
ploit the T-TEDOPA chain mapping described in the previous
section. As to allow for numerical simulation we will truncate
the resulting semi-infinite chain of harmonic oscillators after
N = 120 sites: this choice allows to avoid any finite-size
artifacts within the considered ωct = 100 simulation time.
For more details on the parametrization of the MPS/MPO
used for the DTDVP time evolution, we refer the reader to
Appendix A.

IV. EVIDENCE OF PURE DEPHASING PROCESSES
IN THE SUB-OHMIC ENVIRONMENT

We start by considering the TLS, initially set in the ex-
cited |ψS (t = 0)〉 = |1〉 state, interacting with a sub-Ohmic
environment (s = 1/2) at low and high temperatures. As men-
tioned in the previous section, in T-TEDOPA the oscillators
in the chain are initially in the vacuum state (10). The time
evolution of the 〈σ̂z〉 is shown in Fig. 4: in the high tempera-
ture case, the system quickly converges to a steady state that
is nearly, but not exactly, zero; at low temperature, instead,
the value of 〈σ̂z〉 approaches a markedly negative value: the
system is relaxing toward its ground state. Figure 5 shows
the average occupation number of the chain modes. At low
temperature, a finite number of excitations is introduced in
the chain by the system, forming a wave packet that propa-
gates along the chain; at high temperature, on the other hand,
the system never stops introducing new excitations on the
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FIG. 4. Sub-Ohmic case s = 1/2. The TLS population 〈σz〉 as a
function of time, for the initial state of the system |ψS (t = 0)〉 = |1〉,
at low (κ = 400) and high (κ = 0.4) temperature.

chain, creating a steady wave which propagates faster than
in the low temperature case. We moreover observe that the
creation of new excitations in the chain persists well after the
system has reached the steady state. Considered that the chain
Hamiltonian terms in the last line of equation (1) conserve
the number of excitations, this behavior witnesses the onset
of a nonequilibrim steady state, where energy is continuously
exchanged between the system and the chain.

Figure 6 shows the average occupations in the extended
bath (see Appendix E for details on the frequency sampling),
obtained by inverting the chain mapping transformation. The
conservation of the total number of excitations in the chain
mapping ensures that the TLS injects only a finite number of
excitations into the extended environment at low temperatures
as it decays to the ground state. Consequently, only modes res-
onant with the system transition energy are populated, leading
to an emission spectrum. In contrast, in the high temperature
regime, the continuously generated modes on the chain give
rise to an unbounded growth of the extended bath modes
around the origin, qualitatively following the shape of the ther-
mal effective spectral density shown in Fig. 3. Indeed, as the
total excitation energy of the chain and extended environment
must be the same, we can understand the continuous growth

FIG. 5. Sub-Ohmic case s = 1/2. The average occupation num-
ber 〈ni〉 of the chain modes as function of the chain site index i in the
low (κ = 400) and high (κ = 0.4) temperature regime at the times
ωct = 80 and ωct = 100.

FIG. 6. Sub-Ohmic case s = 1/2. The average occupation num-
ber 〈nω〉 of the extended environment modes as a function of ω, at
times ωct = 80 and ωct = 100 and different temperatures. At low
temperature (κ = 400), a single small peak centered around the TLS
transition frequency ε = 0.2ωc is clearly visible in the inset. At high
temperature (κ = 0.4), the spike at zero frequency can be associated
with pure dephasing noise, whereas the small peaks at ±ε can be
related to energy exchange processes between the system and the
environment.

of the peaks in the extended picture as resulting from the
growing area under the chain population curves in Fig. 5, due
to the persistent tail that is left behind as the leading wave
front moves along the chain. We note that while the number
of excitations at each individual chain site remains bounded,
the total number of excitations across the entire chain contin-
ues to grow indefinitely. Therefore simulating extended time
periods requires longer chains and, consequently, additional
computational resources.

We note that the population of low frequency bath modes in
the extended picture is linked to pure dephasing noise which
is the dominating process in the high temperature regime for
Ohmic and sub-Ohmic environments [3]. Previous evidence
of pure dephasing noise in the Ohmic (s = 1) environment
has been discussed in Ref. [26], but the broad Gaussian pure
dephasing peak masks all other thermal processes, such as en-
ergy exchange. Here, by contrast, the sharp peak around zero
frequency enables us to resolve the two small peaks around
ω ≈ ±ε, which correspond to emission/absorption processes
of the TLS into the extended environment.

V. TESTING THE THERMAL CYCLE HYPOTHESIS IN
THE SUPER-OHMIC ENVIRONMENT

In this section, we discuss the super-Ohmic scenario
(s = 2). As mentioned before, in the presence of super-Ohmic
environments, low frequency noise is suppressed and ther-
mal processes dominate the exchanges of energy between the
system and the extended environment. Super-Ohmic environ-
ments thus provide the ideal setting to test the thermal cycle
hypothesis which, we remind, should manifest as a continuous
growth of the average occupation number of the environmen-
tal modes having frequency close to the transition energy of
the system.
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FIG. 7. Super-Ohmic case s = 2. The TLS average population
〈σz〉 as a function of time for |ψS (t = 0)〉 = |1〉, at low (κ = 400)
and high (κ = 0.4) temperature.

As Fig. 7 shows, the time evolution of the system observ-
able 〈σ̂z〉 in the low and high temperature regime is quite
similar to the one shown in Fig. 4 (referring to the sub-Ohmic
case). Indeed, at short times it is possible to discern small
oscillations suggesting some form of coherent dynamics. The
evolution of the average occupation of the chain oscillators
for the super-Ohmic case considered here, shown in Fig. 8,
shares some features with the sub-Ohmic case (Fig. 5): at
high temperature a continuous stream of excitations is con-
tinuously being injected by the TLS into the chain, whereas
at low temperature the wave of excitations has a pulse-like
shape, corresponding to a a finite total number of excitations
traveling along the chain. On the other side, we can observe
that average occupation of the chain sites is much smaller
than in the sub-Ohmic case: the rate at which excitations
are “pumped” into chain by the interaction with the system
is smaller in the super-Ohmic scenario. Figure 9 provides
instead a conclusive evidence of the heating cycle hypothesis.
As a matter of fact, the suppression of low frequency noise
allows for the formation of two well visible peaks close to
the (renormalized, vide infra) system transition energy ω ≈
ε̄κ=0.4 < ε. The height of such peaks, moreover, goes on in-
creasing even when the system has reached a stationary state,
thus confirming the continuous creation of pairs of excitations

FIG. 8. Super-Ohmic case s = 2. The average occupation num-
ber 〈ni〉 of the chain modes as function of the chain site index i at the
times ωct = 80 and ωct = 100.

FIG. 9. Super-Ohmic (s = 2) case. The average occupation num-
ber of the extended environment modes as a function of ω at
low/high (κ = 400/0.4) temperatures determined at times ωct = 80
and ωct = 100. At low temperature (κ = 400), a small peak around
the renormalized transition energy of the system, i.e., ω ≈ +ε̄κ=400;
at finite temperature (κ = 0.4), two peaks appear at ω ≈ ±ε̄κ=0.4,
corresponding to absorption (−ε̄κ=0.4) and emission (+ε̄κ=0.4) of
energy from the TLS into the extended environment.

of opposite frequency as predicted by the thermal cycle hy-
pothesis. It is furthermore easy to check that the population
unbalance between opposite frequency modes satisfies, at any
time, the detailed balance condition (12).

Beside supporting the heating cycle hypothesis, these ob-
servations well clarify that when the thermal equilibrium state
is reached the energy goes on flowing from the system to the
extended environment and vice-versa, leading to the cyclic
behavior [26]: the overall system-environment stationary state
is therefore a stationary nonequilibrium state. We also ob-
serve that the system-bath interaction creates entanglement
between the system and the bath degrees of freedom. The
new (polaronic) eigenstates of system and environment are no
longer system/bath factorized and the renormalized transition
energy of the system ε̄κ=0.4 is red-shifted (ε̄κ=0.4 < ε). The
value of the renormalized energy, moreover, can be estimated
by looking at the frequency values corresponding to the max-
ima of the peaks in Fig. 9. We remark that the renormalized
energy gap is temperature dependent, and we notice that
ε̄κ=0.4 < ε̄κ=400.

As a final proof of the thermal cycle, we examine the cor-
relations between environmental modes of opposite frequency
value at finite temperature in the extended environment. As
discussed before, pairs of excitations having opposite frequen-
cies are expected to be highly correlated around the energy
of the TLS gap, since emission/absorption processes must
happen at rates determined by the relation (12). Figure 10,
showing the frequency-frequency correlations

C(ω,ω′) = 〈b†
ωb†

ω′ 〉 − 〈b†
ω〉〈b†

ω′ 〉 (16)

for the high temperature super-Ohmic case, confirms the pres-
ence of these predicted antidiagonal correlations. That this
arises from thermal effects is also evidenced by the continuous
vanishing of these peaks, as the temperature is lowered (not
shown). We remark that a similar correlation landscape is
expected also in other thermalization schemes, as the ther-
mofield approach [27], where an auxiliary environment of
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FIG. 10. High temperature (κ = 0.4), super-Ohmic (s = 2) case.
The correlation function C(ω,ω′) at the final time-step of the
simulation. Modes of opposite frequency are strongly correlated,
evidencing the heating cycle. These anticorrelated peaks vanish as
temperature is reduced.

bosonic modes of negative frequencies is entangled via two-
mode squeezing with a positive frequency bath in order to
purify the mixed thermal state of the physical environment.

We conclude this section by discussing the evolution of
the original bath, consisting of positive frequency “physical”
harmonic oscillators, determined by the interaction with the
system. So far, in fact, we have presented results referring
to thermalized extended environments by looking at both the
evolution of the chain oscillators and of the chain normal
modes. Recovering the value of the observables of the phys-
ical modes is therefore an important step to complete the
description presented in this work. We can do so by reverting
the T-TEDOPA transformation described in Sec. II. We refer
the reader to Appendix D for details on such inversion proce-
dure; here we stress that it is the first time, to the best of our
knowledge, that such a back-mapping from the extended T-
TEDOPA environment to the original environment is defined.
In Fig. 11, we show the average occupation number for the
modes in the original domain [0, ωc] for the super-Ohmic
case in the low temperature regime κ = 400 and the system
starting from its excited state |1〉. As discussed above (see
also Fig. 7) this setting the system decays to its ground state
by emitting energy at its renormalized transition frequency
ω ≈ ε̄κ=400. Such emission process perturbs significantly the
state of the environment, creating excitations in the modes
ω ≈ ε̄κ=400. We remark that such persisting changes of the
environmental state due to the interaction with the TLS in the
environment are a potential signature of nonperturbative, or
non-Markovian dynamics: the environment state can not be
described as unperturbed, or memory-less [2,30,38].

At high temperature, the interaction with the system leads
to much less evident perturbations of the state of the environ-
ment. Figure 12 shows that the average occupation number of
the bath modes only slightly deviates, at the final time ωct =
100, from its initial value determined by the Bose-Einstein

FIG. 11. Average occupation number 〈n̂ω〉 of the physical (pos-
itive frequency) environmental modes of the super-Ohmic (s = 2)
environment at low temperature (κ = 400) at different times. A peak
due to the emission of energy from the TLS to the bath is clearly
visible at ω ≈ ε̄κ=400.

density distribution n̂ω = 1/(eβω − 1). In the physical envi-
ronment, there is no sign of the peaks clearly visible in the
extended environment of Fig. 9: interestingly, it seems that
the extended environment is not merely a computational tool
needed to gain computational efficiency, but also makes man-
ifest some interesting physical properties that are not visible
in the original environment picture, such as the renormalized
energy of the finite temperature TLS interacting with the
bath. Of course, the ability to look at the behavior of the
bath in the physical picture could, in future work, provide
interesting insights for nonequilibrium problems such as heat
flows between environments, or questions related to quan-
tum thermodynamics and energy management in quantum
devices [6].

In both the low and high temperature regimes, after the
system’s dynamics has relaxed, the total number of physical
excitations reaches a stable value, as expected: the growth in
the occupations happening in the extended bath is a mathe-
matical representation of the thermal fluctuations that excite

FIG. 12. Average occupation number 〈n̂ω〉 of the physical (pos-
itive frequency) environmental modes of the super-Ohmic (s = 2)
environment at high temperature (κ = 0.4) at different times. The
environment can be approximated by a heat bath.
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FIG. 13. Average occupation number 〈n̂ω〉 of the extended envi-
ronment modes in the super-Ohmic s = 3 case at low temperature
(κ = 0.4) at different times. Unlike the sub-Ohmic and s = 2 cases,
a broad range of excitations appear across all frequencies, in addition
to the absorption-emission peak that appears at a strongly renormal-
ized TLS energy gap.

and de-excite the system, but does not reflect in an infinite
growth of physical modes.

VI. CHANGE IN THE GROUND STATE OF THE
SUPER-OHMIC ENVIRONMENT

In the previous sections, we have provided evidence of the
fact that T-TEDOPA, by treating the system and the environ-
ment on the same footing and thus leaving the environmental
degrees of freedom available for inspection, provides a most
powerful tool for the understanding of the fundamental mech-
anisms underpinning open quantum systems dynamics, such
as the onset of dephasing and heating cycle.

Here we exploit T-TEDOPA as to further investigate the
onset of polaron formation and its impact on the dynamics
of the TLS. Polaron formation is associated with the dressing
of the TLS dynamics by the high frequeency modes on an
environment, leading to renormalization of TLS energy gaps,
or tunneling matrix elements [3,39]. To this end it is expedient
to consider a super-Ohmic scenario with s = 3: the higher
degree allows, on the one side, to further suppress low fre-
quency noise and enhance high frequency modes and, on the
other, to increase, for our choice of the coupling factor α(s)
[see Eqs. (15)], the system-bath overall coupling. Moreover,
as to isolate polaron formation from other effects, in this
section we will restrict our attention to the low temperature
regime (κ = 400). In the presence of ultrastrong coupling, the
interaction of the system with the s = 3 environment pop-
ulates many environmental modes. This is clearly shown in
Fig. 13: as time passes we see the formation of a higher peak,
centered around the renormalized transition energy of the sys-
tem, followed by number of smaller peaks extending across all
frequencies up to ωc. Interestingly, the frequency-frequency
correlation plot shown in Fig. 14 reveals that, at the final
time ωct = 100, there are non-negligible correlations among
all the populated modes. In further contrast to the correlation
plots for the s = 2 case, we also see that the largest intensities
occur at high frequencies, and there is negligible correlation
at the (renormalized) absorption-emission peak. This pattern

FIG. 14. Super-Ohmic (s = 3) environment at low temperature
(κ = 400). The correlation function C(ω,ω′) at the final time-step of
the simulation exhibits a grid-like pattern.

of correlation, we shall show, is consistent with the formation
of polaron states of the TLS.

The evolution of the TLS is shown in Fig. 15. In particular,
the green solid line corresponds to the evolution of 〈σz(t )〉
when the system starts from the excited state |ψS (t = 0)〉 =
|1〉. We can appreciate that, even if the interaction with the
environment is stronger than in s = 2 case considered in the
previous section, the system does not emit all of its energy
to the environment and, therefore, does not relax, within the
considered time, toward the expected 〈σz〉 = −1 ground state.
Instead, after an initial steep decay, the z-polarization of the
system shows a very slow decrease accompanied by oscilla-
tions that are much more pronounced than in the s = 2 case,
as if the presence of the bath were somehow inducing some

FIG. 15. The population (〈σz〉) and coherence (〈σx〉) dynamics
in the super-Ohmic s = 3 case at low temperature (κ = 400). Green
solid line: |ψS (t = 0)〉 = |1〉; the initial decay is well fitted by
the curve f s=3

z (t ) = aze−�zt + cz, with az = 1.268, �z = 0.521, and
cz = −0.153 (dashed green line). Solid blue and solid orange lines:
the dynamics of the coherence 〈σx〉, with the system starting from
|ψS (t = 0)〉 = 1

2 (|1〉 + |0〉) for, respectively, s = 2 and 3. Dashed
blue and dashed orange lines correspond to the fitting curves for the
s = 2 and s = 3 cases (fitting parameters provided in the main text).
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sort of “coherent driving” of the system. Even more interest-
ingly, the dashed (orange) line shows that, when initialized
in the state |+〉 = (|0〉 + |1〉)/

√
2, namely the eigenstate of

σx belonging to the eigenvalue +1, the system exhibits a pre-
cession around the z axis at frequency ωx = 0.102 ≈ ε̄κ=400;
such precession frequency corresponds to the location of the
highest peak of Fig. 13, which we can once more associate
to the renormalized transition frequency of the system. By
comparing such precession motion with the one obtained in
the s = 2 case (solid blue line of Fig. 15), it is clear that the
frequency and damping rate of the oscillations of 〈σx(t )〉 is
smaller in the s = 3 case, even though the system-bath cou-
pling is much stronger in the latter case. More precisely, the
〈σx(t )〉 is well fitted by the curve f s=3

x (t ) = ax cos(ωxt )e−�xt ,
with ax = 0.937, ωx = 0.102, and �x = 0.003, whereas for
s = 2, the fitting curve f s=2

x (t ) has the same form as f s=3
x but

with coefficients ax = 0.987, ωx = 0.157, and �x = 0.010.
We also remark the appearance of high frequency oscillations
for the observable 〈σ̂z〉s=3, which we attribute to ringing ar-
tifacts, introduced most likely due to the hard cutoff in the
frequency domain of the spectral density function of Eq. 2.

A possible interpretation of these results can be given fol-
lowing the analysis presented for the Rabi model in Ref. [40].
There the authors consider a TLS coupled to a single quan-
tum harmonic oscillator, with the total Hamiltonian of the
TLS and the mode of the same form as our Hamiltonian
(1) (with a single mode in the bath); they moreover show
that, whereas in the weak coupling limit, the interaction with
the system results in negligible displacement of the ground
state of the harmonic oscillator, at strong coupling the lowest
eigenstates of the overall TLS-mode Hamiltonian correspond
to those of a particle in a (symmetric) double-well potential
caused by strong environmental displacements. In our setting,
on the other side, we are dealing with a bath comprising
an infinite number of harmonic modes. The results shown
in Fig. 15 suggest however that, in the presence of a large
enough system-bath coupling, a mechanism similar to the one
discussed in Ref. [40] is at play. This might be expected in
the case of strongly super-Ohmic environments, as the spec-
tral density becomes increasingly peaked around the cutoff
frequency, leading to a quasimonochromatic, underdamped
bath correlation function with qualitative similarity to that of a
single damped oscillator. To make this concrete, we can return
to the chain Hamiltonian of the system [Eq. (14)] and separate
out the first bath mode (“the reaction coordinate” [34,41–43])
to obtain the following form:

ĤC = ĤS + g0σx(ĉ0 + ĉ†
0) + ω0ĉ†

0ĉ0

+
∞∑

k=1

ω j ĉ
†
k ĉk +

∞∑
k=1

gk (ĉ†
k ĉk−1 + H.c.). (17)

For sufficiently strong coupling (large g0), we could con-
sider the last two terms of the first line in Eq. (17) to be
the reference Hamiltonian H0, with HS and the terms of the
second line acting as perturbations on the system and the
collective reaction coordinate [34,41–43], respectively. In this
case, the exact (degenerate) groundstates of H0 are given by
|ψ±〉 = |σx=±1〉 ⊗ exp(∓g0ω

−1(c0 − c†
0))|0〉, i.e., the mode is

simply displaced in a direction that depends on the sign of the

TLS projection along the x axis. If we were to consider the
energy of H0 as a continuous function of a coherent state of
the mode with displacement q, we would find a parabolic form
with minima at q = ∓g0/ω0 for spin states |σx=±1〉. If we now
reintroduce a small bare system Hamiltonian HS in this basis,
we would expect energy gaps to emerge at the (now) avoided
crossing of these parabolas, leading to a double “potential”
V (q) for the TLS,as sketched in Fig. 16 (left).

In the ultra-strong coupling regime considered here, the
spin dynamics shown in Fig. 15 suggests that the presence of
the TLS does indeed lead to the appearance of a double-well
structure in V (q̂), as depicted in Fig. 16. At the minima of the
two wells, the system eigenstates are no longer those of the
bare TLS Hamiltonian (σ̂z) but rather those of the system-bath
interaction Hamiltonian (σ̂x). This explains the relaxation of
〈σ̂z(t )〉 to zero, rather than 〈σ̂z(t )〉 → −1, as might be ex-
pected at low temperatures. However, if the potential barrier
between the two wells is low enough, a particle can tunnel
from one well to the other so that the dressed ground state is
in a superposition of the two wells. In this configuration, the
action of the free system Hamiltonian is to tunnel from one
well to the other and the tunneling rate will be proportional
to the (renormalized) TLS’s frequency ε̄κ=400. In the picture
of Fig. 16, this renormalization can be seen to arise from
the reduced overlap of the oscillator wave functions in each
well: as the potential minima become mutually displaced, the
probability to tunnel from one minimum to the other vanishes
exponentially [3,39,44].

Taken together, the numerical results suggest a rich, mul-
tistage dynamics that are sketched in Fig. 16. Initially and
ultrarapidly, the excited TLS decays onto the lower potential
surface where the oscillator wave functions bifurcate and relax
on timescales ≈ ω−1

c to the minima of the potential, creating
a “catlike” superposition state. The “tunneling” provided by
HS causes the lowest energy states of the system to be super
positions of the localized dressed states, split by ε̄. The last
stage of the dynamics is then the bath-induced relaxation (by
emission into the bath) to the lowest of these delocalized
states. This is particularly slow for strongly super-Ohmic
baths, as the renormalization reduces the effective energy
gap, and we would expect that the energy lost rate would
be proportional to ε̄s. This also explains the slower damping
of the s = 3 coherence, compared to s = 2. Related results
have very recently been discussed in Ref. [45], which presents
a comprehensive numerical study of TLS dynamics in the
presence of a zero-temperature super-Ohmic bath, albeit from
a system-only perspective. From these data and analysis of the
independent boson model, they identify an inverse timescale
ωc after which a significant slow down in TLS tunneling
dynamics is observed which has a nonmonotonic dependence
on the bath exponent s. As super-Ohmic baths are among the
most frequently encountered environments in solid state sys-
tems, understanding the phenomenology reported in Ref. [45]
in terms of explicit environmental observables would be a
very interesting area for future T-TEDOPA studies.

Finally, we note that the final, delocalized “polaron” state
is approximately given by |gs〉 ≈ |1〉x − |0〉x [44]. Due to the
entanglement with the TLS, tracing over the TLS state leaves
the environment in an equal mixture of coherent states with
opposite displacements, although these states are overlapping
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FIG. 16. Polaron dynamics for strongly coupled super-Ohmic environments. (a) The strong system-environment coupling to the collective
“reaction coordinate” mode creates an adiabatic double well potential for this mode, parameterized by its classical displacement q. Importantly,
on such adiabatic surfaces, the “local” eigenstates of the TLS change continuously as a function of q; in the strong coupling case, the lowest
energy states require the TLS to be eigenstates of σx , as opposed to the weak coupling case (black) in which they would be eignestates of the
bare TLS Hamiltonian, i.e., σz. (b) The TLS excitation and the initial environment wave function (Gaussian vacuum) decay onto the lower
potential surface where (c) the reaction coordinate state splits and relaxes towards the two local minima. (d) due to the finite overlap of the
oscillator wave functions in each potential minimum, the TLS can undergo renormalized (polaronic) tunneling between minima, leading to
slow oscillations in 〈σx (t )〉 which, as shown in the numerical results, can be very weakly underdamped, even in spite of the very strong system
coupling.

(given that tunneling is still observed). The fact that the re-
duced density matrix contains oppositely displaced coherent
states means that the average value of the displacement is
zero, whereas the expectation value of quadratic operators is
non zero. Thus, the appearance of multimode correlations in
Fig. 14 can be shown to be a consequence of the entangled
(polaronic) ground state formed in the regime discussed in this
section. Indeed using the approximation |gs〉 ≈ |1〉x − |0〉x,

it is easy to show that C(ω,ω′) = ωc

√
J (ω)J (ω′ )

ωω′ , which for
s = 3 gives C(ω,ω′) ∝ √

ωω′/ωc. This naturally explains the
stronger signals at high frequency, as well as some of the other
structures of the spectrum. The entanglement with the TLS is
essential for this signature to appear, as it is equally straight
forward to show that all correlations vanish identically, if the
environment were displaced in just one unique direction (sim-
ple product of coherent states). Also the seemingly discrete,
gridlike pattern of correlations in Fig. 14 can be motivated by
the emergence of the polaronic dynamics sketched in Fig. 16.
Since the reduced density matrix of the environment features
oppositely displaced coherent states, modes across the entire
frequency range are populated. As time progresses, these
coherent states become increasingly displaced, involving a
broader range of Fock states in the environment based on
Poissonian statistics. In other words, we expect the “grid” of
TLS mediated correlations to become finer over time as the
polarons are formed. Initially, the correlations are localized
at the TLS frequency only, and then involve more discrete
modes as time progresses. This is also visible in Fig. 13,
where the number of peaks in the occupations increases with
progressing simulation time. Such a behavior is also present
in the independent boson model (pure dephasing) [1], which
is analytically solvable and can be used as a benchmark test.

VII. CONCLUSION AND OUTLOOK

In this work, we have gained new insights into how
T-TEDOPA’s pure wave function formalism addresses the

dynamical nature of finite-temperature nonequilibrium steady
states, and provided new ideas on how to exploit the extended
environment of T-TEDOPA not only to gain computational
advantage but also to compute physical observables. Our
findings conclusively confirm the hypothesis of the thermal
cycle in both the sub-Ohmic and super-Ohmic chain-mapped
environments. This confirmation is based on the observation
of the continuous extension of the occupied oscillators of
the chain, which is shown to be nonpathological, and the
corresponding unbounded growth of the emission/absorption
peaks in the extended environment. Additionally, we provide
a microscopic characterization of pure dephasing arising from
the spectral density function in the sub-Ohmic environment.
In the super-Ohmic environment, we reveal the thermal cycle
as correlated emission into positive and negative frequency
modes in the extended environment representation. To com-
plete the description, we recover the picture in the original
environment, where we find that our results match the ex-
pected stationary occupations of the environmental physical
modes. Furthermore, we report a novel case in which non-
perturbative coupling between the TLS and its environment
leads to the formation of polarons, and thus to a change in
the ground state of the spin-boson model. This change is
evident in the system observables, where tunneling dynamics
are observed, as well as in the correlations of the extended
environment.

The approach introduced in this paper has a broad scope
and can be exploited for the investigation of OQSs which
have so far been mostly treated perturbatively, e.g., within
the Markov approximation. The possibility to track the evo-
lution of environmental degrees of freedom in the strong
coupling and non pure-dephasing regime can be most rele-
vant for the understanding of the fundamental mechanisms
underpinning a larger class of open quantum system dy-
namics, with possible fundamental and technological impact.
Solid-state implementations of qubits [46,47], nanoscale
quantum thermal machines [48,49], sensing and metrol-
ogy [50], energy-charge conversion and exciton transport in
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solid-state devices [51,52], or biological light harvesting com-
plexes [53,54], are typical instances in which deviations from
a Lindbladian evolution can play a significant role. The
methodology proposed in this work can provide, for example,
a systematic tool for the definition of effective reduced envi-
ronments, able to preserve the most relevant features of the
environment while allowing for more efficient simulation of
complex open quantum systems by classical means [55–58].
Furthermore, the newfound ability to examine previously un-
charted environmental modes might be instrumental in the
domain of reservoir engineering [59,60], where the dynamics
of an OQS are manipulated by tailoring its interaction with
the environment. The demonstration of a strong system-bath
coupling leading to polaronic coherent dynamics provides an
example how a reservoir might be designed in order to induce
longer coherence times in the TLS.
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APPENDIX A: COMPUTING THE TIME EVOLUTION
WITH MPS METHODS

In this Appendix, we specify the tensor network time evo-
lution techniques that we used to perform the simulations, and
we provide detail on the choice of parameters. Tensor network
representations of many-body states [11,12,61] naturally en-
code the information about the entanglement structure of a
quantum state, and offer an efficient representation for weakly
correlated states. In particular, MPS enable to efficiently
represent and to simulate the dynamics of one-dimensional
problems: the finite temperature dynamics of the spin-boson
model can be calculated using MPS thanks to the T-TEDOPA
chain mapping. In fact, the chain-mapped spin-boson Hamil-
tonian can be straightforwardly written as a matrix product
operator (MPO), dictating the time evolution of the pure initial
state of the system and of the environment |ψ (0)〉SE , which
has the following MPS representation in the diagrammatic
notation:

|ψ(0) SE = S

iS

A1

i1

A2

i2

... AN

iN

χS χ1 χ2 χN−1

(A1)
The tensors {S, Ai} are the sites of the MPS. Each site has a

free leg that runs over the values: {ik}d
k=1. The dimension d of

the k-th leg is the number of values that the index ik can take.
We set it to be d = 10, after having checked with preliminary
trials that a larger dimension was not changing the results, but
had a larger computational cost. In addition to that, the k-th
site is connected to the tensors Ak−1 and Ak+1 through virtual
legs, of dimensions χk−1 and χk , respectively. They are known
as bond dimensions, and they are correlated to the amount

of entanglement in the MPS. The total number of complex
coefficient that we need to store in order to represent an MPS
is Nχ2d . For the MPS representation to be efficient, bond
dimensions (and therefore correlations) must be low.

To compute the time evolution, we exploited the dynami-
cally evolving time-dependent variational principle algorithm
(DTDVP) [24,62]. The choice of using DTDVP is advan-
tageous in comparison to both the one-site (1TDVP) and
two-site (2TDVP) version of TDVP [17,18]. The main ad-
vantage of the one-site 1TDVP algorithm is that it preserves
the unitarity of the MPS during the time evolution. Its main
problem, conversely, is that the time evolution is constrained
to happen on a manifold constituted by tensors of fixed
bond dimension, a quantity closely related to the amount of
entanglement in the MPS, and such a bond dimension has
therefore to be fixed before the beginning of the time evolu-
tion. This strategy will necessarily be non optimal: the growth
of the bond dimensions required to describe the quantum state
should ideally mirror the entanglement growth induced by the
time evolution. 2TDVP allows for such a dynamical growth of
the bond dimensions, and therefore better describes the entan-
glement in the MPS. It suffers however of other drawbacks:
first of all, a truncation error is introduced (by the means
of an SVD decomposition), which entails a loss of unitarity
of the time-evolved MPS. Moreover, 2TDVP has bad scaling
properties with the size of the local dimensions of the MPS:
this is a major issue when dealing with bosons, as it is the case
in this work. The DTDVP algorithm [63] combines the best
features of 1TDVP and 2TDVP: it preserves unitarity, it has
the same scaling properties of 1TDVP, and it adapts the bond
dimensions to the entanglement evolution at each site and
at each time step. DTDVP does not suffer from a truncation
error, but introduces only a projection error.

The DTDVP algorithm requires a maximal bond dimension
to be specified, in our case χmax = 100, and a precision, p =
0.001, defined using a convergence measure [62].

APPENDIX B: THE COMPUTATIONAL COST
OF T-TEDOPA

The T-TEDOPA approach gives the significant advantage
of obtaining finite temperature dynamics with a pure state as
the initial state of the time evolution. If instead the dynamics
started from a thermal state:

ρ̂β =
∑

n1n2...

e−β
∑

i niωi |n1n2 . . .〉 〈n1n2 . . .| (B1)

sampling the thermal probability distribution of the statisti-
cal ensemble of possible initial states would be intractably
expensive. At the same time the computational cost for fi-
nite temperature simulations should increase. Tensor network
methods work efficiently when the physical states represented
by MPS are weakly correlated: the correlations between
modes of opposite frequency introduced by the thermal cycle
(between modes around zero frequency by the pure dephasing
noise) will therefore cause a significant increase in the com-
putational effort required to carry out the simulations.

In fact, the correlations between the pairs of opposite fre-
quency excitations will increase the entanglement in the chain
modes, resulting in higher values for the bond dimensions
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FIG. 17. Bond dimensions evolution for the super-Ohmic case.
The inverse temperature is β = 2.0, the initial state of the system
is |1〉. In the top graph, the bond dimension χ is plotted against the
chain site index, at different time stamps. In the bottom graph, a heat-
map of the bond dimension χ is shown in function of the chain site
(x axis) and of the simulation step (y axis).

χi of the system and the environment MPS [see Eq. (A1)
in the Appendix A], and therefore the computational cost of
the simulation. The higher the bond dimensions, the more the
computational resources needed to store in memory and time
evolve the MPS. The growth in computational cost mirrors
the growth in entanglement that high bond dimension values
represent. Thanks to time evolution algorithm used in our
simulation (DTDVP) [62], it is possible to follow the evolu-
tion of the bond dimensions at each chain site and at each
simulation step, represented in Fig. 17 for the super-Ohmic,
finite temperature case β = 2.0. The maximum value reached
by χ is for the first bond dimensions: a possible explanation
could be that the correlations created in the thermal cycle,
between positive and negative frequency modes, are mediated
by the system. In accordance with expectations, higher tem-
peratures correspond to higher entanglement in the MPS and
hence a higher computational effort: in the low temperature
case of β = 2000.0, the maximum value reached by the bond
dimensions is χmax = 7.

APPENDIX C: REMARKS ON THE SUBSTITUTION
OF THE COUPLING CONSTANT

In the super-Ohmic case, s = 2, the spectral density func-
tion has, in the considered interval [−ωc, ωc], a lower value so
that the coupling to the environmental modes is weaker than
in the Ohmic case. This would translate in longer decay times
in the super-Ohmic case; to make the decay rate independent
of s, the value of the coupling strength α in Eq. (8) has been

rescaled in the following way:

α(s) = α

εs
. (C1)

This rescaling makes the decay rate independent of s, thus
allowing to have a constant decay rate for all of the s values.
In fact, the decay rate is a function of the spectral density
function Js(ε, β ), proportional to α, at the frequency value of
the system ω = ε:

Js(ε, β ) = +αε
|ε|s
ωs−1

c

(
1 + coth

(
βε

2

))
θ (|ε| − ωc) (C2)

The substitution α → α(s) makes the decay rate, and conse-
quently the relaxation time T1 defined in Sec. III, independent
of the value of s, allowing for the observables to reach steady
values in the same simulation time for any value of s. The
change of the coupling strength α(s) is reflected in the chain
mapping as a change in the system-chain coupling coefficient
g0 [see Eq. (14)] that has to be recalculated using the rescaled
αs, whereas the other chain coefficients are left unchanged.

APPENDIX D: THE INVERSE THERMOFIELD
TRANSFORMATION

In the thermofield approach [27], the first step is to in-
troduce an auxiliary environment of noninteracting bosonic
modes of negative frequencies:

Ĥ aux = Ĥ −
N∑

k=1

ωk ĉ†
k ĉk, (D1)

where the Hamiltonian Ĥ is the bosonic Hamiltonian:

Ĥ = ĤS +
N∑

k=1

ωkb̂†
kb̂k + σ̂x

2
⊗

N∑
k=1

gk (b̂†
k + b̂k ). (D2)

The two environments, of positive and negative frequencies,
are assumed to be in a thermal environment at inverse tem-
perature β; the second step is to apply a thermal Bogoliubov
transformation to change the basis. The applied transforma-
tion produces two-modes squeezed states:

â1k = e−iGb̂keiG = cosh(θk )b̂k − sinh(θk )ĉ†
k ,

â2k = e−iGĉkeiG = cosh(θk )ĉk − sinh(θk )b̂†
k,

(D3)

where the exponent of the squeezing operator is G =
i
∑

k θk (b̂†
k ĉ†

k − ĉk b̂k ), and θk is dependent on the temperature
as in the following relations, where the average number of
excitations in the kth mode is 〈n̂k〉 = 1/(eβωk − 1):

cosh(θk ) =
√

1 + 〈n̂k〉 =
√

1

1 − e−βωk
,

sinh(θk ) =
√

〈n̂k〉 =
√

1

e+βωk − 1
.

(D4)

The Bogoliubov transformation defines a new squeezed vac-
uum state, which we write in terms of the vacuum state |
0〉
of the bosonic modes (original and auxiliary) of the operators
b̂k , ĉk:

|
〉 = eiG |
0〉 , â1k |
〉 = 0, â2k |
〉 = 0. (D5)
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From the vacuum state, we can obtain the thermal state of the
original environment:

ρ̂E = Traux{|
〉 〈
|}, (D6)

and it can be now used as pure an initial state for both of the
environments.

We now explain how to invert the thermofield transforma-
tion. The matrix M defining the transformation of Eq. (D3)
is invertible: it is therefore possible to obtain the modes of
the original (b̂k) and auxiliary (ĉk) environments as linear
combination of the Bogoliubov-transformed modes â1k and
â2k . We explicitly write the transformation:
⎡
⎢⎢⎣

â1k

â2k

â†
1k

â†
2k

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosh θk 0 0 − sinh θk

0 cosh θk − sinh θk 0
0 − sinh θk cosh θk 0

− sinh θk 0 0 cosh θk

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

b̂k

ĉk

b̂†
k

ĉ†
k

⎤
⎥⎥⎦ (D7)

and its inverse:⎡
⎢⎢⎣

b̂k

ĉk

b̂†
k

ĉ†
k

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cosh θk 0 0 sinh θk

0 cosh θk sinh θk 0
0 sinh θk cosh θk 0

sinh θk 0 0 cosh θk

⎤
⎥⎥⎦

⎡
⎢⎢⎣

â1k

â2k

â†
1k

â†
2k

⎤
⎥⎥⎦.

(D8)

It is now possible to obtain the mean value of the number
operator for the physical modes as a function of mean values
that we already have evaluated:

〈b̂†
kb̂k〉 = cosh θk sinh θk (〈â2kâ1k〉 + 〈â†

1kâ†
2k〉)

+ sinh2 θk (1 + 〈â†
2kâ2k〉) + cosh2 θk〈â†

1kâ1k, 〉
(D9)

where we exploited the bosonic commutation relations to ob-
tain â1kâ†

1k = 1 + â†
1kâ1k . In the thermofield case, a negative

frequency ω2k is associated to each positive frequency ω1k .
The sampling is therefore symmetric around zero. This marks

a difference with T-TEDOPA, where the sampling of frequen-
cies is obtained through the thermalized measure dμ(β ) =√

J (ω, β )dω, and is not symmetric. To recover the results
for the physical bath of frequencies starting from the results
of our simulations, conducted using the T-TEDOPA chain
mapping, we need to do an extrapolation for all of the mean
values appearing in Eq. (D9), in order to have their values
for each ω at −ω as well. Given this need, the enlarged grid
of frequencies (Appendix E) is particularly useful. To sum up:
from our simulations we obtained the occupations of the chain
modes ĉk; we inverted the unitary transformation that defines
the chain mapping [as in Eq. (13)] to obtain the modes in the
extended bath n̂b

i ; we inverted the thermofield transformation
M to obtain the physical modes occupations in the bath of
positive frequencies.

APPENDIX E: TECHNICAL OBSERVATION ON THE
FREQUENCY SAMPLING

As a final technical observation, we note that by exploit-
ing the wave-like propagation of the chain modes during the
dynamics, and the analytical properties of the chain mapping,
it is possible to calculate both the occupations and the corre-
lators of the modes in the extended bath for a finer grid of
frequency values, instead of only using the N = 120 chain
modes. The excitations propagate on the chain as waves: if the
wave has not reached the i site, the site i + 1 will have zero
as the occupation value 〈ĉ†ĉ〉 = 0. Therefore we calculate
the chain coefficients for a chain of M = 700 sites, and we
artificially enlarge, with 0s as entries, the matrices with the
expectation values of the chain modes creation and annihila-
tion operators on the time evolved state of the system and the
environment. For example, blocks of zeros are added to the
N × N matrix Ni j = [〈ĉ†

i ĉi〉], so that it becomes an M × M
matrix. It is reasonable to do so: it is as if the dynamics
was happening on a longer chain, where the modes not yet
reached by the excitation’s wave stay unoccupied. On the cor-
responding sites, N < i < M, the chain modes creation and
annihilation operators will have zero as an expectation value.
A longer chain, as explained in Sec. II, will result in a better
sampling in the extended bath domain. Once we obtain the
frequency sampling {ω1, ω2, . . . }, the spectral density Jβ (ωi )
must be weighted by the corresponding frequency interval
[ωi+1, ωi].
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[50] A. Smirne, J. Kołodyński, S. F. Huelga, and R. Demkowicz-
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