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Robust superconducting correlation against intersite interactions in the extended
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The Hubbard and related models serve as a fundamental starting point in understanding the novel experimental
phenomena in correlated electron materials, such as superconductivity, Mott insulator, magnetism. Recent
numerical simulations demonstrate that the next-nearest-neighbor hopping t ′ plays a key role for the supercon-
ductivity. However, the impacts of long-range intersite interactions in such a t ′-Hubbard model are less explored.
Using the state-of-art density-matrix renormalization group method, we investigate the t ′-Hubbard model on a
two-leg ladder with the intersite interactions extended to the fourth neighbors. The numerical results show that the
quasi-long-range superconducting correlation remains stable under the repulsive intersite interactions and these
long-range repulsive interactions only change the ground state quantitatively. In addition, inspired by recent
experiments on one-dimensional cuprate chain Ba2−xSrxCuO3+δ , we find that the nearest-neighbor attractive
interaction significantly enhances the superconducting correlation when it is comparable to the nearest-neighbor
hopping t . Stronger attraction drives the system into an electron-hole phase separation. Finally, we discuss the
effects of the on-site interaction on superconductivity.
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I. INTRODUCTION

Despite the extensive investigations in the last decades,
the microscopic mechanism of high-Tc superconductivity in
cuprates remains one of the challenging puzzles in condensed
matter physics [1,2]. Single-band Hubbard model [3] and
t-J model [4] are the simplest models frequently employed
to understand experimental results in the high-Tc cuprates.
The latter is the strong interaction limit of the former under
hole doping, and it is also the low-energy effective model of
the original three-band d-p model [5], which directly depicts
the physics on the CuO2 plane in high-Tc cuprates. In the
single-band Hubbard model on a square lattice, many phases
observed in high-Tc cuprates are reproduced, such as the an-
tiferromagnetism at half-filling [6–8], the antiferromagnetic
correlation upon hole doping [9], pseudogap [9–12], the stripe
phase where charge density wave (CDW) and spin density
wave (SDW) coexist around 1/8 doping [13,14], and metal
phase in the overdoped regime [15]. This means that the
Hubbard model does capture some ingredients of the high-Tc

cuprates.
However, in the simplest Hubbard model current powerful

numerical methods demonstrated that the ground state is not
the superconducting state [14,16], but a stripe phase with
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the wavelength of charge density λc = 8, which is recently
observed in the experiment [17]. Meanwhile, numerical re-
sults indicate that the superconducting state is a high-energy
excited state, and several stripe phases are highly competi-
tive near the ground state [13,16,18–21]. These results imply
that some crucial ingredients leading to superconductivity are
missing in the simplest Hubbard model. Some other terms,
such as the hopping term beyond the nearest-neighbor (NN)
and the intersite interactions should be taken into account.
Indeed, the next-nearest-neighbor (NNN) hopping t ′ brings
impressive changes into the ground state. It not only chooses
the wavelength of λc = 4 stripe state as the ground state
[22] that is widely observed in experiments [23–25], but
also induces quasi-long-range superconducting correlation on
a four-leg cylinder [26–28]. Very recently, numerical sim-
ulations indicate that the t ′-Hubbard model is adaptable in
qualitatively capturing the physics in high-Tc cuprates [29].
Additionally, in actual materials, particularly in one and two
dimensions, the Coulomb screening is relatively weaker than
that in three dimensions. It is probably hard to screen the long-
range interactions completely, and thus intersite interactions
are still considerable [30,31].

Undoubtedly, it will be very difficult to numerically
simulate the doped extended Hubbard model in the two-
dimensional limit. As there are cuprate ladder superconduct-
ing materials [32–34], a deep understanding on these super-
conducting ladders can aid in comprehending the physics
of two-dimensional cuprate materials due to their chemical
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similarity. Actually, the Hubbard-related models on chains
and ladders have been extensively studied [35–46] in the past
decades. But the effect of the long-range intersite interac-
tion on the t ′-Hubbard model are less touched. In this work,
we consider repulsive intersite interactions in the t ′-Hubbard
model as they originate from the Coulomb interaction. The sit-
uation may be different when there exists an electron-phonon
coupling. For example, it was found recently that the Hubbard
model with an attractive NN interaction, which may arise
from electron-phonon coupling, could well explain the results
of angle-resolved photoemission spectroscopy on the one-
dimensional cuprate chain compound Ba2−xSrxCuO3+δ [47].
And recent numerical simulation on the Holstein-Hubbard
chain indicates that an effective NN attraction can be mediated
by long-range electron-phonon coupling [48]. Thus, it is also
worthwhile exploring the t ′-Hubbard model with attractive
NN interaction. Here, focusing on a two-leg ladder and em-
ploying the density-matrix renormalization group (DMRG)
[49–52] method, we investigate the effects of intersite in-
teraction on the superconductivity in t ′-Hubbard model. In
particular, in the repulsive case the interaction is up to the
fourth neighbor. Our numerical results indicate the super-
conducting correlation is slightly weakened but still robust
under the repulsive intersite interactions. The charge den-
sity distribution, density correlation, and spin correlations are
nearly undisturbed under the long-range repulsive intersite
interactions. In sharp contrast to the repulsive interactions, the
attractive NN interaction significantly strengthens the super-
conducting correlation when the attraction is comparable with
the NN hopping t . The spin and density correlations show a
nonmonotonic dependence on the attractive interaction. Prior
to being driven into the electron-hole phase separation (PS),
the ground state is the Luther-Emery (LE) liquid [53]. In
addition, analyzing the different components of pairing cor-
relation, we find that the pairing symmetry tends to be d
wave. At last, we study the impacts of on-site interaction.
Our numerical results show that very strong on-site interac-
tion weakens the superconducting correlation under both the
attractive and repulsive NN interactions. These results will be
shown in detail in the later sections.

The content of the paper is organized as follows. Section II
involves a brief introduction of the model and some details
of DMRG simulations. In Sec. III, we investigate the effects
of repulsive and attractive NN interactions on the t ′-Hubbard
model. In Sec. IV, we probe the long-range repulsive interac-
tions up to the fourth neighbors. In Sec. V, with the presence
of NN repulsive and attractive interaction, we explore how the
ground state is affected by different on-site interaction U . This
paper is closed by a summary in Sec. VI.

II. MODEL AND METHOD

The extended t ′-Hubbard model on a two-leg ladder is
written as

H = − t
∑

〈i j〉σ
(c†

iσ c jσ + H.c.) − t′
∑

〈〈ij〉〉σ
(c†

iσ cjσ + H.c.)

+ U
∑

i

ni↑ni↓ +
∑

i �= j

Vi j (ni↑ + ni↓)(n j↑ + n j↓), (1)

FIG. 1. A sketch diagram of the extended t ′-Hubbard model on a
two-leg ladder. t and t ′ represent the nearest- and the next-nearest-
neighbor hopping, respectively. U is on-site repulsion. V and V1

are the NN and the NNN intersite interactions. Intersite interactions
beyond NNN are not shown here.

where the first and second terms in Eq. (1) represent the
hopping terms between NN and NNN lattice sites, respec-
tively. c†

iσ (ciσ ) creates (annihilates) an electron at site i with
spin σ . The third term is on-site repulsion for two electrons
with different spins, in which niσ is the number of electrons
with spin σ . The last term describes the interaction among
electrons at different sites. We assume the values of Vi j only
depend on the distance between site i and j. To be visually
intuitive, we illustrate the model Eq. (1) in Fig. 1.

In this work, we simulate the model Eq. (1) by utilizing the
DMRG method, which has been shown as the most powerful
method to study one- or quasi-one-dimensional systems. In
numerical calculations, we set the NN hopping amplitude t =
1 as the energy unit, the NNN hopping amplitude t ′ = −0.25,
and the on-site interaction U = 8 unless stated explicitly oth-
erwise. These values are frequently used in related numerical
simulations of high-Tc cuprates. The numbers of electrons
with spin-up and spin-down in Eq. (1) are conserved, respec-
tively. Thus, in the calculations the two U (1) symmetries are
implemented to lower the numerical costs. We retain up to
m = 8000 states, and the largest truncation error is of the
order of 10−7. At least 20 sweeps are performed to ensure
the calculations are well converged. The convergence of our
DMRG results is also checked by the ground-state energy,
expectation values of observations, and the von Neumann
entropy. Our DMRG code is based on the ITensor library [54].

We adopt open boundary conditions in all the calculations.
The system has N = 2 × L sites, and the largest system size
we simulated reaches L = 96. Strong on-site interaction U
freezes the charge degree of freedom at half-filling, and the
ground state is a Mott insulator. Hole doping makes the mag-
netic order in the insulator unstable and drives the system into
unconventional phases, probably including superconductivity.
The filling factor is defined as Ne/N , where Ne is the electron
number. The concentration of hole is δ = 1 − Ne/N . Here, we
focus on the case where the hole concentration δ = 12.5%.

III. NN INTERACTION

As the NN interaction is the most remarkable one except
for the on-site interaction, we focus on the effects of NN
interaction on the t ′-Hubbard model in this section.

A. Numerical convergence

Before discussing the results in our work, we will demon-
strate the convergence of DMRG results and details in fitting
the DMRG data. For this purpose, we plot the results for
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FIG. 2. DMRG results for V = 0.4 and L = 64. (a) shows the
singlet pairing correlation function �rr . �rr is fitted by the function
Bsc(x − x0 )−Ksc , which is shown by the brown line. (b) displays
the real-space density profile. The brown wavy line is the fitting
via the function (3). (c) and (d) are the spin and charge density
correlation, respectively. The brown lines are power-law fittings
of top points with the formula Bs(x − x0 )−Ks and Bc(x − x0 )−Kc ,
respectively. Kα (α = sc, s, c) in the panel (a), (c), and (d) is the
corresponding power exponent. The legend shows the states kept in
the DMRG simulations where k = 1000.

V = 0.4 and L = 64 in Fig. 2 as a representative to show
the convergence in pace with the number of retained states.
For the future reference, we present some raw data of the
ground-state energy in the Supplemental Material [55]. Here,
we use the singlet pairing correlation to diagnose the super-
conductivity, which is defined as

�rr (x − x0) = 〈�†
r (x0)�r (x)〉. (2)

The spin-singlet pairing-field operator �†
r (x) is given by

�†
r (x) = 1√

2
[c†

(x,0),↑c†
(x,1),↓ − c†

(x,0),↓c†
(x,1),↑], where the site is

labeled by (x, y) with the rung index x and leg index y = 0, 1.
The subscript r means that the bond is along the rung direc-
tion. Similarly, we can define �

†
l (x) with the bond along the

leg direction. x0 labels the reference position, which should
be chosen carefully. First, it should be far enough from the
edge to avoid the edge effect. Second, we should keep enough
sites for a reliable fitting. In our calculations, we choose
x0 = 5 for L = 64 and x0 = 6 for L = 96, respectively. We
have checked that the fitted exponents are almost unchanged
with a larger x0. The charge density profile is given by
n(x) = 〈n(x,0) + n(x,1)〉/2. z component of the spin correla-
tion function is Gz(x − x0) = 〈Sz

(x,y)S
z
(x0,y)〉, and charge density

correlation D(x − x0) = 〈n(x,y)n(x0,y)〉 − 〈n(x,y)〉〈n(x0,y)〉. These
two functions do not depend on the index y since the two legs
are equivalent, which is confirmed numerically. The number
of retained states m ranges from 3000–6000 with an increment
of 1000. When the number is greater than or equal to 4000, all
the results are well converged as shown in Fig. 2. Therefore,

FIG. 3. The superconducting correlation, charge density profile,
spin correlation, and density correlation are shown for repulsive NN
interaction V = 0.2, 0.4, 0.6, and 0.8. The lattice size is L = 96. The
brown lines in these figures are fittings of the results of V = 0.2,
and the corresponding Luttinger parameter extracted is given in each
panel.

in this case 4000 states are sufficient to obtain accurate nu-
merical results.

We try to fit the superconducting correlation function �rr

by the power function B(x − x0)−Ksc , which is shown in brown
line in Fig. 2(a). A good fitting suggests a superconducting
ground state. The charge density distribution can be fitted via
a trigonometric function multiplied by a spacing-dependent
amplitude,

n(x) = n0 + Acos(Qx + φ), (3)

where A = A0[x−Kc/2 + (Lx + 1 − x)−Kc/2] and Q are the
wave vector of CDW. The spin and density correlations be-
have in an oscillating form, so we use the top points to fit
the correlations with a power function, which are shown in
Figs. 2(c) and 2(d), respectively.

In addition, we also checked the convergence with respect
to system sizes. For two sizes L = 64 and L = 96, the nu-
merical results show that finite-size effects are negligible.
Accordingly, for simplicity, we will use L = 64 or L = 96 to
discuss our results.

B. Repulsive interaction

Now we consider the effects of the NN interaction V . And
in this section we focus on the repulsive one, i.e., V > 0.
Figure 3 shows the effects of the V on the superconducting
correlation, charge density profile, spin correlation, and den-
sity correlation. The strengths of V ranges from 0.2–0.8 with
an interval 0.2. First, we can see from Fig. 3(a) that as the
V increases the superconducting correlation decreases. This
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indicates that the superconducting correlation is weakened by
the NN interaction. However, the power-law behavior is kept
in the parameter range considered here and thus the V does not
destroy the superconductivity. For the V as large as V = 1.6
(not shown here), the superconducting correlation still satis-
fies a power law. Second, n(x), Gz(x − x0) and D(x − x0) are
insensitive to V , which are shown in Figs. 3(b), 3(c), and 3(d).
Figure 3(b) indicates that the CDW is robust in the presence
of the NN interaction. The wavelength of charge density is
λc = 8, and there is one hole in each stripe. In particular,
Gz(x − x0) and D(x − x0) for V = 0.2, 0.4, 0.6, and 0.8 can
be well fitted by a power function, respectively. Further, from
the spin correlation function we can find domain walls in
the antiferromagnetic background where holes are enriched.
The period of spin order λs is about 16, which is twice
of λc.

The numerical results above signify the robustness of
the overall ground-state properties of the t ′-Hubbard ladder
against the repulsive NN interaction V . It is clear that the
CDW and superconductivity coexist in the ground state. The
NN repulsion weakens the superconducting correlation, but
less impacts on the charge density distribution. When the NN
interaction is small, the Luttinger parameter Kc extracted from
the charge density function D(x − x0) is comparable to Ksc,
as we show in Fig. 2. With the increase of repulsive NN
interaction, we have Kc < Ksc. Namely, the CDW dominates
in the ground state. These numerical results imply that the
CDW is favorable in the presence of the NN repulsion.

C. Attractive interaction

The numerical results above indicate that the ground
state is not inclined to superconductivity in the presence
of repulsive NN interactions. Recent experiments on a one-
dimensional cuprate chain can be well understood via the
Hubbard model with an attractive NN interaction [47].
Furthermore, numerical simulations have identified an ef-
fective, attractive interaction induced in the one-dimensional
Holstein-Hubbard model with long-range electron-phonon
interaction [48]. The experimental and numerical works re-
newed the interest in the Hubbard model with attractive
NN interaction [56–60]. In the one-dimensional chain, the
ground state exhibits p-wave superconductivity [57]. And
the correlation of d-wave superconductivity is enhanced by
attractive interaction on a four-leg cylinder [58]. Here, we
consider the t ′-Hubbard model with attractive NN interaction
on the two-leg ladder. Through extensive numerical simula-
tions, we give more attention into how the superconducting
correlation, density correlation, spin correlation, and single-
particle correlation Gc are affected by the attractive NN
interaction. Cooperating with recent numerical simulations,
we can better understand the Hubbard model with attractive
interaction.

The main results of attractive NN interaction are summa-
rized in Figs. 4 and 5. In Fig. 4, the correlation functions on
the two sides of |V | = 0.60(5) have different dependencies on
the NN attraction. When |V | > 1.45(5), as shown in Fig. 5(d),
the charge undulation in the bulk disappears and the system
exhibits regions with enriched holes and electrons. According
to these, a rough ground-state phase diagram can be mapped

FIG. 4. Correlation functions for various attractive NN interac-
tions. The lattice size is fixed L = 96. (a) is the superconducting
correlation, and it increases with the increase of |V |. The enhance-
ment of superconductivity becomes remarkable when |V | > 0.8.
The density correlation function in (b) always decays algebraically.
Though weak attraction slightly weakens the density correlation, it
is strengthened by strong NN attraction. In (c), the spin correlation
is enhanced under a small |V | but it is suppressed by a large |V |,
which corresponds to the closing and reopening of the spin gap. The
single-particle Green function Gc, shown in (d), decays algebraically
under a small |V |, but exhibits an exponential decay as V becomes
strong, which implies that the single-particle excitation gap opens
when strong attractive |V | is introduced. ξα (α = s, G) in (c) and

(d) is extracted by fitting the correlation functions via Aαe− x−x0
ξα , and

ηG in (d) is given by fitting the data at V = −0.2 via the formula
BG(x − x0)−ηG .

out. The ground state is a superconducting phase when |V | <

0.60(5), it is an LE liquid phase for 0.60(5) < |V | < 1.45(5),
and a PS when |V | > 1.45(5).

In the superconducting phase, both the superconducting
correlation and charge density correlation decay algebraically.
Moreover, we found that Ksc < Kc. With the increase of |V |,
the superconducting correlation is stable and only slightly
enhanced while the density correlation and single-particle
correlation is weakened marginally. In addition, the spin
correlation decays exponentially and the single-particle corre-
lation decays algebraically, implying gapped spin and gapless
single-particle excitations. In this phase, as shown in Fig. 4(c),
the spin correlation is enhanced when we increase |V |. After
crossing the phase transition, the system is in an LE liquid
superconducting phase, which is supported by the following
evidence. First, Ksc and Kc satisfy the relation Ksc × Kc ∼ 1.
The results of |V | = 1.2 is a prime example of this phase.
The parameters Ksc and Kc, extracted from power fittings, are
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FIG. 5. Typical charge density distributions for different V with
the system size L = 96. Since the open boundary condition is
adopted, electrons prefer to stay at the boundaries for small |V |, while
holes on the edges are energetically favorable for a large |V |. If V is
not strong enough, as shown in (a), (b), and (c), the modulation of
charge density is maintained. In (d), The modulation is destroyed by
strong NN attractive interaction, electrons are gathered in bulk, and
the holes are at the two edges, indicating a PS.

shown in Figs. 4(a) and 4(b), respectively, and their product
gives 1.046. Second, in Fig. 4(c), the spin correlation shows
an exponential decay when |V | is far away from the critical
point because of the reopen of a spin gap. The behavior of
the single-particle Green’s function shown in Fig. 4(d) has a
noticeable change in comparison with that in the supercon-
ducting phase. It can be well fitted by an exponential function,
thus the single-particle excitation is gapped. Due to finite-size
effects, Ksc × Kc is larger than 1.0 when |V | is much smaller
than 1.2. The superconducting correlation, shown in Fig. 4(a),
is significantly enhanced by the NN attraction. As the |V |
grows, the density correlation is also strengthened; at the same
time, the valleys in density correlation become shallow. This is
because that large |V | tends to stabilize the CDW and thus the
fluctuation becomes weak. From Figs. 4(c) and 4(d), it is clear
that the spin and single-particle correlations are suppressed by
|V |. Nevertheless, the superconductivity can not be continu-
ously enhanced by the NN attraction. As shown in Fig. 5(d),
the system is then driven into electron-hole phase separation
by strong NN attraction. In this phase electrons and holes
tend to occupy different regions. Due to the OBC employed
in our DMRG simulation, the holes prefer to stay on the two
edges while the electrons tend to stay in between, which is
energetically favored when strong NN attraction is involved.
Particularly, strong attraction destroys both the superconduc-
tivity and CDW. For example, when |V | = 1.5, as shown in
Fig. 5(d), it is clear that the charge density distribution cannot
be fitted by the function in Fig. 2. The evolution of the charge
density distribution for various V is shown in Fig. 5.

Though the enhancement of superconducting correlation
by NN attraction is analogous to the results of the four-leg
cylinder [58], our results show that the t ′-Hubbard model on

FIG. 6. Three different superconducting correlations, �rr , �rl,
and �ll, for L = 96 are shown. Their behaviors in both cases tell
us that d-wave superconductivity is favored.

a two-leg ladder with NN attraction displays some different
behaviors from those on a four-leg cylinder. Here, we find
Ksc < Kc is always satisfied before entering PS phase, while
this is satisfied on a four-leg cylinder only when |V | is com-
parable to the NN hopping t . Moreover, though Kc increases
when |V | < 0.4(1) for the two-leg ladder, both Kc and Ksc

decrease as |V | increases in the range 0.4(1) < |V | < 1.45(5).
This behavior is also distinct from that in a four-leg cylin-
der, where Kc and Ksc always have an opposite dependency
on |V |. Before entering the PS, the superconducting corre-
lation in Fig. 4(a) is enhanced overall by the NN attraction,
while single-particle correlation is continuously weakened.
Interestingly, the spin and density correlations shows an op-
posite nonmonotonic dependency on the NN attraction, which
indicates that competition exists between them. Both the su-
perconducting and density correlations decay algebraically,
suggesting the coexistence of superconductivity and CDW in
the superconducting and LE liquid phases, and superconduct-
ing dominates the ground state as Ksc < Kc.

D. Pairing symmetry

At the end of this section, we briefly discuss the pairing
symmetry of the superconducting correlation. Though a two-
leg ladder does not have the same spatial symmetry in the leg
and rung direction, it may still help us to gain some insights
into the pairing symmetry in the two-dimensional case. Here,
three different superconductivity correlations, �rr (x − x0),
�rl(x − x0), and �ll (x − x0) are used to diagnose the pairing
symmetry, where the index r and l indicate the bond in the
rung and leg, respectively. The superconductivity correlations
for two typical V are plotted in Fig. 6. The correlations
between bonds in the same direction, i.e., �rr and �ll, are
positive, but �rl is negative. This is the characteristic fea-
ture of the d-wave symmetry. Our results indicate that for
the t ′-Hubbard model, in the presence of repulsive or attractive
NN interaction, the superconductivity tends to be d wave.
When the strength of NN attractive interaction is comparable
to NN hopping t , the d-wave superconductivity is significantly
enhanced. The dependency of superconductivity on the NN
attraction is consistent with recent DMRG simulations on a
four-leg square cylinder [58]. Thus we expect that a d-wave
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FIG. 7. Correlation functions with repulsive intersite interactions
beyond the NN neighbor. The legends represent the values of intersite
interaction in the form of (V1,V2,V3), which are shared by these
subfigures. (a) is the superconducting correlation between rungs,
the repulsive NNN interaction V1 slightly weakens the correlation.
For the third neighbor and the fourth neighbor interactions, the
superconductivity correlations are nearly the same. Meanwhile, the
superconductivity correlation is hard to be fitted by an exponential
function, but a power function can give a good fitting. The spin
correlation function, density-density correlation, and single-particle
Green’s function, shown in (b), (c), and (d), respectively, are insen-
sitive to these interactions. Both the spin correlation and density
correlation follow a power law. The single-particle Green function
decays exponentially, and it satisfies Gc(x − x0) ∼ e−(x−x0 )/ξG . The
fittings in these subfigures are for (0.6, 0.4, 0.2).

superconductivity may be stabilized by NN attraction in a
two-dimensional square lattice.

IV. LONG-RANGE REPULSIVE
INTERSITE INTERACTION

Now we consider the repulsive intersite interactions be-
yond the NN one, up to the fourth neighbors. In the following,
we set the NN interaction V = 0.8. The results of L = 64 are
shown in Fig. 7. The superconducting correlation is shown in
Fig. 7(a). With the increase of the NNN interaction from V1 =
0.4 to V1 = 0.6, the superconducting correlation is suppressed
slightly. However, with V1 = 0.6 and the long-range third- and
fourth-neighbor interactions involved, there is no remarkable
effect on the superconducting correlation. The specific values
of these interactions are given in the legend of Fig. 7 in
the form of (V1,V2,V3). Just as in the case of NN interac-
tion, the power law well fits the superconducting correlation,
indicating the robustness of the superconductivity correla-
tion to the long-range interactions. In the whole process, the

charge density profile (not shown), density correlation, spin
correlation, and the single-particle Green’s function are insen-
sitive to these repulsive interactions. If we take a closer look,
the density correlation and single-particle Green’s function
are subtly suppressed by these long-range interactions, while
these long-range intersite interactions marginally enhance the
spin correlation. Except that the single-particle Green’s func-
tion decays exponentially, both spin and density correlations
decay algebraically.

From the above numerical results, we can conclude that the
ground-state properties of t ′-Hubbard model are robust un-
der these long-range repulsive intersite interactions. Though
the intersite repulsion between electrons tends to weaken the
superconductivity, the algebraic superconducting correlation
is not destroyed by the intersite interactions. Since these
repulsive intersite interactions always tend to weaken the su-
perconductivity, reducing these repulsive interactions should
be beneficial for the superconductivity.

V. VARIATION IN ON-SITE INTERACTION

In our discussion above, we fix the on-site interaction
U = 8. In this section we turn to study the effects of on-
site interaction. When electrons are less localized and the
bandwidth are large, the U is relatively smaller. On the other
hand, the physics of the large U limit of the Hubbard model
under doping are also interesting. Here we take V = ±0.4 and
consider several U . t and t ′ are fixed as before. Our results are
shown in Fig. 8.

Despite some minor differences for ±|V |, the charge den-
sity profile and the correlations in Fig. 8 share many common
behaviors in their dependency on U . First, the supercon-
ducting correlation increases as U decreases and tends to be
saturated. For example, the strength of the superconducting
correlation at U = 4 is almost the same as that at U = 2. Sec-
ond, the density distribution can be well fitted by the formula
(3) only when U is around 8. For larger or smaller U , the
CDW becomes unstable and the formula (3) is no longer valid.
Moreover, the oscillation amplitude decreases and tend to
disappear. Such an instability under a very large U agrees with
a previous study of the Hubbard model on a four-leg cylin-
der [28]. Our results imply that uniform superconductivity is
likely to form under a small U . Here, our numerical results
demonstrate that there is no close relationship between the
superconductivity and the stripe in the t ′-Hubbard model on a
two-leg ladder. The superconducting correlation is established
at small U , and it is weakened as U increases. The power
decay behavior is robust in the whole range of U considered
here. However, the CDW appears only when Uc1 < U < Uc2 .

Under ±|V | interactions, the density-density correlations,
spin correlations, and the single-particle Green’s functions
(not shown), obey a power-law decay behavior, implying that
the spin excitation and charge excitation are gapless. The
density correlations are slightly suppressed with the increase
of U . Compared with the case of attractive V , the density-
density correlation are easier to weaken under repulsive V .
The spin correlation is enhanced at first and then suppressed
when U increases, and it has a broader enhancement window
for repulsive V .
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FIG. 8. With the system size L = 64, the two rows are the results under different Hubbard U for the NN interaction V = 0.4 and V = −0.4,
respectively. From left to right, the columns are the superconducting correlation, charge density distribution, density correlation, and spin
correlation. In (a1) and (a2), a large U tends to weaken the superconducting correlation. Under the same U , the superconducting correlation
for a repulsive V is weaker than that for an attractive V . The CDW order, given in (b1) and (b2), is stable under medium strength of U , where
U = 6, 8, 10. (c1) and (c2) display the density correlations. They decay algebraically and are slightly weakened overall with the increment of
U . The spin correlations in (d1) and (d2) are enhanced at first and then suppressed as U increases. In both cases they decay in a power law. For
clarity, except for the superconducting correlation of U = 2, the data for U = 2, 6, 10 are not shown.

VI. CONCLUSIONS

Using the DMRG method, we have systematically inves-
tigated how the intersite interactions affect the ground state
of the t ′-Hubbard model on a two-leg ladder. Our numerical
results show that the repulsive intersite interactions do not
change the ground state qualitatively, although such interac-
tions do weaken the superconducting correlation qualitatively.
On the other hand, when the NN interaction V is attractive
both the spin and charge correlation functions become sensi-
tive to such a interaction, and the superconducting correlation
can be significantly enhanced. A strong enough NN attrac-
tion drives the system into a phase separation. Our numerical
results give strong numerical evidence that the superconduc-
tivity is strengthened by a NN attraction, especially when V
is comparable to the NN hopping amplitude t , agreeing with

a recent DMRG study on a four-leg cylinder. In addition, the
charge density wave is favorable when U is around 8, both
weaker and stronger U make the charge density unstable.

Our numerical results can help us understand the novel
physics in superconducting cuprate ladder materials. Fur-
thermore, since the ladder is a bridge between one- and
two-dimensional systems, our work can also shield some
lights in revealing the high-Tc superconductivity in cuprates.
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