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Charge and spin gaps in the ionic Hubbard model with density-dependent hopping
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We calculate the charge gap �EC and the spin gap �ES of the ionic Hubbard chain including electron-hole
symmetric density-dependent hopping. The vanishing of �EC (�ES) signals a quantum critical point in the
charge (spin) sector. Between both critical points, the system is a fully gapped spontaneously dimerized insulator.
We focus our study in this region. Including alternation in the hopping, it is possible to perform an adiabatic
Thouless pump of one charge per cycle, but with a velocity limited by the size of the gaps.
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I. INTRODUCTION

The ionic Hubbard model (IHM) consists of the usual Hub-
bard model with on-site Coulomb repulsion U supplemented
by an alternating one-particle potential �. It has been used to
study the neutral-to-ionic transition in organic charge-transfer
salts [1,2] and the ferroelectric transition [3]. More recent
studies have established that the chain at half filling has three
different thermodynamic phases, and different gaps, correla-
tion functions, and other properties have been studied [4–12].
The unit cell consists of two sites with on-site energies ±�.
Chains with larger unit cells have also been studied [13,14].

The model studied in this paper is the IHM with
density-dependent hopping (DDH). It is the version without
alternation of the hopping (δ = 0) of the interacting Rice-
Mele model [15] including DDH. Because of its relevance for
quantized charge pumping, we describe the full Hamiltonian,
also including δ, as

H =
∑

jσ

[−1 + δ (−1) j](c†
jσ c j+1σ + H.c.)

× [tAA(1 − n jσ̄ )(1 − n j+1σ̄ ) + tBBn jσ̄ n j+1σ̄

+ tAB(n jσ̄ + n j+1σ̄ − 2n jσ̄ n j+1σ̄ )]

+ �
∑

jσ

(−1) jn jσ + U
∑

j

n j↑n j↓. (1)

The first term is the DDH, which is alternating for δ �= 0. The
amplitudes tAA, tAB, and tBB correspond to hopping of a particle
with a given spin, when the total occupancy of both sites for
particles with the opposite spin is 0, 1, and 2, respectively.
In the following, we assume the electron-hole symmetric case
tBB = tAA, which is the one implemented experimentally with
cold atoms [16–20]. � is the alternating on-site energy and U

is the on-site Coulomb repulsion. tAB = 1 will be taken as the
unit of energy.

The model with � = δ = 0 has been derived and studied
in two dimensions as an effective model for cuprate supercon-
ductors [21–24]. In one dimension, also, superconductivity is
favored for some parameters [25–29]. Our interest in DDH
here is that for tAB larger than the other two, the fully gapped
spontaneously dimerized insulating (SDI) phase is favored
[30–34]. This is important for fully adiabatic quantized charge
pumping of one charge. So far, charge pumping has been
studied in the interacting Rice-Mele model in the absence of
DDH (tAA = tAB = tBB) [35–38].

The well-studied IHM [Eq. (1) with δ = 0 and tBB = tAA =
tAB] has three phases: the band insulating (BI) phase, the Mott
insulating (MI) phase, and a narrow spontaneously dimerized
insulating (SDI) phase in between. An intuitive understanding
of the first two phases is provided by the zero-hopping limit, in
which the occupancies of the different sites are 2020. . . (BI
phase) for � > U/2 and 1111. . . (MI phase) for � < U/2.
For finite hopping, the SDI phase appears in between, as first
shown by bosonization [4] and described in more detail later
using an approximate mapping to an SU(3) Heisenberg model
[8,9].

The phase diagram of the model has been constructed in
Ref. [5] using the method of crossings of excited energy
levels (MCEL) based on conformal-field theory [30,39–42].
For this model (also including density-dependent hopping),
the method also coincides with that of jumps of charge and
spin Berry phases used in Ref. [31]. The basis of the MCEL
is that in one dimension, the dominant correlations at large
distances correspond to the smallest excitation energies. Thus,
the crossings of excited levels in appropriate symmetry sectors
therefore correspond to phase transitions. The Lanczos algo-
rithm, using total wave vector, inversion symmetry [43], and
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time-reversal symmetry, has been used in order to separate the
different symmetry sectors, limiting the maximum size to 16
sites. The results were obtained extrapolating to the thermo-
dynamic limit [5]. Open-shell boundary conditions (OSBCs)
were used, which correspond to periodic BCs for a number of
sites, L, that are multiples of 4 and antiperiodic BCs for even
L that are not multiples of 4.

For fixed U , small �, and half filling as assumed here, the
system is in the MI phase with zero spin gap. Increasing �,
at the point � = �s, a spin gap �ES opens, signaling the
transition to the SDI phase. The transition is of the Kosterlitz-
Thouless type [4]. Although the spin gap is exponentially
small near the transition, the MCEL allows one to identify it
unambiguously and accurately from the crossing of the even
singlet with lowest energy and the odd triplet of lowest energy
(both states have higher energy than the ground state). Also,
at � = �s, the spin Berry phase γs [5,31] jumps from π to
0 mod(2π ). Further increasing �, rather soon, at the point
� = �c, a charge transition from the SDI to the BI phase
takes place in which the charge reorders. At this point, there is
a crossing of the two singlets of lowest energy with opposite
parity under inversion. In the BI phase, the ground state is the
singlet even under inversion, while it is the odd singlet in the
other two phases. All of these states have wave vector 0 for
� �= 0. In turn, this crossing leads to a jump in the charge
Berry phase γc from π to 0 mod(2π ). As explained above, for
� = �c and using OSBCs, the charge gap �EC defined as the
absolute value of the difference in energy between the ground
state and the first excited state at half filling (called exciton
gap [6] or internal gap [35] in other works) vanishes at the
charge transition.

Changes in γc are proportional to changes in the polariza-
tion. Actually, calculations of the charge Berry phase form the
basis of the modern theory of polarization [44–52]. A jump
in π in γc is consistent with a displacement of an electronic
charge per unit cell in half a unit cell (to the next site), on
average. This is the change of polarization that corresponds
to the change in site occupancies from 1111. . . to 2020. . . .
The IHM in a ring has inversion symmetry with center at any
site [43] and, as a consequence, γc and γs can only be 0 or
π mod(2π ). In other words, they are Z2 topological numbers
protected by inversion symmetry [44].

If a modulation of the hopping δ is introduced, the in-
version symmetry is lost and γc can change continuously.
This permits one to transfer one charge to the next unit cell
in a Thouless pump cycle in the (�, δ) plane (see Fig. 1).
This can be understood as follows. Starting at a point (�1, 0)
with �1 > �c, γc = 0. Then, introducing a finite δ, with the
appropriate sign, γc increases continuously with increasing
|δ|. Decreasing � to a value �2 < �c and returning δ to zero,
the point (�2, 0) is reached where γc = π . Continuing the
cycle with the opposite sign of δ, γc continues to increase
and reaches the value γc = 2π at the end of the cycle at
(�1, 0). This corresponds to the displacement of one unit
charge by one unit cell according to the modern theory of
polarization. The values of the Berry phases in the cycle and
time-dependent calculations of the charge transferred have
been presented in Ref. [35]. Moreover, this pumping proce-
dure has been recently realized experimentally [36], allowing
one to study the effects of interactions in the field of quantized

FIG. 1. Schematic representation of the pump trajectory. Dashed,
dotted, and solid lines indicate the BI, SDI, and MI phases of the IHM
(at δ = 0), respectively.

topological charge pumping in driven systems, which has been
of great interest in recent years [37,53].

A problem with the pumping cycle mentioned above is that
it usually crosses the MI segment between the points (�s, 0)
and (−�s, 0) at which the spin gap vanishes. Since unavoid-
ably this segment is traversed at a finite speed, spin excitations
are created, leading to the loss of adiabatic quantized pumping
[35,36] (we note that introducing δ in the MI phase, a spin
gap �ES opens proportional to |δ|2/3 for small δ [35]). To
avoid this problem, one might choose the crossing point �2

inside the SDI phase, that is, �s < �2 < �c (as shown in
Fig. 1), and then the system is fully gapped in the whole
trajectory. However, at � = �2, both gaps �EC and �ES are
small and their magnitude is not known. Previous calculations
of �ES were affected by strong finite-size effects in the SDI
region and were limited to very large values of U [6]. On the
other hand, it has been recently shown that the SDI phase is
enlarged at small values of U if density-dependent hopping
is introduced [32]. A density-dependent hopping can be ex-
perimentally engineered by near-resonant Floquet modulation
[16–20].

The particular pumping cycle represented in Fig. 1 is mo-
tivated by the following reasoning. In the segment δ = 0,
�s < � < �c, both the charge and the spin gaps are finite, but
they are small. Introducing δ in the MI phase, a spin gap pro-
portional to |δ|2/3 for small δ [35] rapidly opens and then one
can reduce the value of � increasing the charge gap, without
significantly reducing the spin gap. The competition between
both gaps in the above-mentioned segment will become clear
in Sec. III.

In this work, we calculate both gaps, �EC and �ES , inside
and near the SDI phase, and explore the optimum value of �2

for which the smallest gap is maximum. We use the density-
matrix renormalization group (DMRG) method [54–58], as
described in Sec. II. We find that to calculate �ES , open
BCs are more convenient, while to calculate �EC , a ring
with OSBCs leads to the optimum results, improving previous
estimates and allowing one to calculate the charge gap within
the SDI phase with unprecedented accuracy.
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The paper is organized as follows. In Sec. II, we de-
scribe the methods used to calculate the gaps. The results
are presented in Sec. III. Section IV contains a summary and
discussion.

II. METHODS

To perform the energy level calculations, we have used
the DMRG method with a code that relies on the ITensors
library for JULIA [59]. Conveniently setting Sz sectors, we
have calculated ground and excited states with a fixed bond
dimension of 900. The truncation error is, in the worst case,
of the order of 10−6 for periodic BCs (PBCs), and 10−10 for
open BCs (OBCs).

In general, it is convenient to use OBCs rather than PBCs
because the entanglement is lower in the former case, leading
to more accurate results in less amount of time. In turn, this
fact permits one to reach larger systems. This is particularly
important for the spin gap �ES because, even in regions of
parameters for which �ES = 0 in the thermodynamic limit, it
is finite for finite systems, scaling as 1/L for increasing system
size L [40]. We have calculated the spin gap by extrapolating
the results for different system sizes using a quadratic function
in 1/L. The calculations were done for systems between L =
40 and L = 100, except in the case of U = 10, where we have
used sizes up to L = 64.

For the charge gap �EC , which is the difference of energies
between the first excited state and the ground state in the
singlet sector, the situation is different. For OBCs, we find
similar difficulties as those found before [6] for calculating the
gap in the SDI phase and particularly near the transition to the
BI phase, where it should vanish in the thermodynamic limit.
The reason is the following. As it is clear using the MCEL
method mentioned in Sec. I, the ground state and the first
excited state have opposite parity under inversion, being the
even state is the one of lowest energy in the BI phase, and both
states cross at the BI-SDI transition. For a chain with OBCs
and an integer number of unit cells, the inversion symmetry is
lost, the crossing becomes an anticrossing, and extrapolation
to the thermodynamic limit becomes problematic. Therefore,
we change the method using a ring with OSBCs, as described
below.

The Lanczos method used in the MCEL has divided the
Hilbert space in different symmetry sectors, but the method is
limited to 16 sites at half filling [5,30,32]. Our method allows
us to use larger system sizes, but we do not have access to
the different symmetry sectors. In any case, just plotting the
energy of the ground state and first excited state as a function
of � in a ring, both energy levels and the crossing can be
clearly identified. This is illustrated in Fig. 2 for a typical case.

We find that by extrapolating the energies of L that are
multiples of 4 for a ring with PBCs (which coincide with
OSBCs for the chosen L) between L = 12 and L = 32 using
a quadratic function in 1/L, an accurate and reliable result
for �EC in the thermodynamic limit is obtained. Two exam-
ples of the extrapolation are presented in Fig. 3. The second
one corresponds to DDH. In both cases, it is clear that as
� increases, the separation between the extrapolated values
of the charge gap also increases. In other words, the slopes
of the gap as a function of � are different at both sides of

FIG. 2. Ground state and first excited state as a function of � for
32 sites and PBCs.

the transition. Taking into account this fact, we find that the
difference between the odd and even states can be well fitted
by the following function with four parameters:

Eodd − Eeven = (� − �c)

[
A + B tanh

(
� − �c

C

)]
. (2)

Examples will be shown in the next section.

FIG. 3. Difference of energy between the even and odd states of
lowest energy as a function of the inverse of the systems size L for
all L that are multiples of 4 in the range 12 � L � 32 with PBCs for
several values of � and two sets of other parameters. The transition
is calculated to be at �c = 4.226 (0.978) for the top (bottom) figure.
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FIG. 4. Spin gap as a function of the inverse of the systems size
L with PBCs for parameters indicated inside each figure.

Comparing with previous results using the MCEL in
smaller systems [32], we have also found that using OSBCs,
the crossing between the first excited state in the sector with
total spin projection Sz = 0 (corresponding to the even singlet
[32]) and the lowest-energy state in the sector with Sz = 1
(an odd triplet [32]) corresponds to the crossing at � = �s

that signals the opening of the spin gap �ES , and the SDI-MI
transition, as explained in Sec. I.

Therefore, our methods might also be used to improve the
accuracy of the phase diagrams calculated with the MCEL,
extending the results to larger systems.

In Fig. 4, we show three examples (the last one with DDH)
of the extrapolation of the spin gap, calculated as the differ-
ence in energy between the lowest states in the sectors with
Sz = 1 and Sz = 0 using OBCs. When the extrapolated gap is

FIG. 5. Charge gap (blue circles) and spin gap (red squares) as
a function of � for two values of U and tAA = tBB = tAB = 1. Blue
solid [red dashed] line is a fit using Eq. (2) [Eq. (3)]. Vertical lines in
the top figure separate the different phases of the IHM.

very small, the dependence of the spin gap with size behaves
like 1/L, as expected from conformal-field theory in a system
without spin gap [40]. For the top figure, the gap is expected
to vanish at �s = 1 using the above-described MCEL up to
28 sites. The extrapolated value of the spin gap turns out to be
of the order of 10−4, which provides an estimation of the error
in the spin gap.

We have found empirically that sufficiently far from �s

and in the SDI phase, or in the BI phase near the SDI-BI
transition at � = �c, the dependence on � of the spin gap
is well described by the expression

�ES = Asexp[Bs(� − Cs)]. (3)

III. RESULTS

In this section, we describe our results for the charge and
spin gaps in the IHM with DDH [Eq. (1) with δ = 0 and tBB =
tAA]. We also take tAB = 1 as the unit of energy.

In Fig. 5, we show the gaps for the model without DDH
and two values of U . The maximum difference between any
excited state and the ground state in the SDI phase is denoted
by �EM . This value is obtained at the crossing between both
studied gaps. The value of � at this crossing is denoted as
�M . We also denote, by a cross in the axis of the abscissa in
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FIG. 6. Same as Fig. 5 for tAA = tBB = 0.5 and tAB = 1.

the figures, the point at which the spin gap closes according to
the MCEL, as describer in Sec. II.

From the figures, one can see that the spread of the SDI
phase, �c − �s (near 0.14 for U = 4 and 0.24 for U = 10),
and also �EM (about 0.011 for U = 4 and 0.017 for U =
10) is larger for larger values of U than for moderate ones.
The former fact is in agreement with calculations of the
phase diagram using up to 16 sites [5], although �c − �s

is a little bit smaller in our case. Our values should be more
accurate since we have calculated �c and �s using up to 32
and 28 sites, respectively.

In Fig. 6, we analyze the effect of DDH, decreasing tAA =
tBB to half the value of tAB = 1, for two extreme values of U ,
leaving the intermediate values of U for Fig. 7. For U = 10,
the maximum value of the gap �EM (near 0.0181) increases
slightly with respect to the case tAA = tBB = 1 (0.0173). This
effect is rather surprising because one naively expects that by
reducing the average value of the hopping, both �EM and the
amplitude of the SDI phase should decrease. Therefore, the
effect of introducing DDH overcomes the effect of reducing
the average hopping regarding �EM . Instead, the amplitude of
the SDI phase, �c − �s, decreases slightly (0.226 compared
to 0.242).

As discussed earlier [32], for small values of U , the ampli-
tude of the SDI phase increases markedly since it continues
to exist even for � = 0. However, the magnitude of the max-
imum gap �EM is reduced by 25% (to 0.0135) when U is
reduced from 10 to 1.

FIG. 7. Same as Fig. 6 for intermediate values of U .

In order to look for the largest possible value of �EM

in the presence of DDH, we have calculated the gaps for
intermediate values of U . The result is shown in Fig. 7. While,
qualitatively, the results for U = 3, 4, and 5 are similar, differ-
ing by less than 7% for these values of U , the maximum gap
�EM = 0.0188 is obtained for U = 4. Instead, the maximum
spread of the SDI phase (0.25) is obtained for U = 5, but it is
only 2% larger than the corresponding value for U = 4.

IV. SUMMARY AND DISCUSSION

We have calculated the charge and spin gaps of the
spontaneously dimerized insulating (SDI) phase of the
ionic Hubbard model, including electron-hole symmetric
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density-dependent hopping. We have developed a method us-
ing the DMRG method to calculate the charge gap, which
presents advantages with respect to previously used ones,
leading to substantially more accurate values. In addition,
phase diagrams constructed by the method of crossing of
energy levels might be calculated more accurately than using
only Lanczos methods, if they are combined with the DMRG
method (the former can be used to identify the symmetry
sectors).

The results might be useful to present experiments with
cold atoms in which quantized Thouless pumping of one
charge is observed, when a pump cycle in the two-dimensional
space (�, δ) enclosing the point (�c, 0) is performed in a re-
alization of the interacting Rice-Mele model [Eq. (1)], where
�c is the value of � at the transition between the SDI and the
band insulating (BI) phase. A fully adiabatic pump is possible
if the Mott insulating (MI) phase is avoided. This phase lies at
the segment between the points (�s, 0) and (−�s, 0), where
±�s are the points of the MI-SDI phase transitions. For this
purpose, the SDI phase should be traversed.

Fixing tAB = 1, we find that the maximum gap inside the
SDI phase is about 0.019. This is a rather small value, which
by simple estimates seems to require a velocity about 10
times smaller than that used in available experiments [36] to
guarantee adiabatic pumping in crossing the point (�M, 0).
However introducing δ, the gap increases quickly (as |δ|2/3

in the MI phase). A time-dependent calculation, possibly de-
creasing the velocity near (�M, 0), would be useful to check
this procedure.

The effect of density-dependent hopping, reducing tAA =
tBB and keeping tAB = 1, is moderate in increasing the gap,
although it is important if the average hopping is kept at the
same value. Its main effect is that for small U , the extension
of the fully gapped SDI phase is strongly increased.
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