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Floquet codes and phases in twist-defect networks
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We introduce a class of models, dubbed paired twist-defect networks, that generalize the structure of Kitaev’s
honeycomb model for which there is a direct equivalence between: (i) Floquet codes (FCs), (ii) adiabatic
loops of gapped Hamiltonians, and (iii) unitary loops or Floquet-enriched topological orders (FETs) many-body
localized phases. This formalism allows one to apply well-characterized topological index theorems for FETs to
understand the dynamics of FCs, and to rapidly assess the code properties of many FC models. As an application,
we show that the honeycomb Floquet code of Haah and Hastings is governed by an irrational value of the
chiral Floquet index, which implies a topological obstruction to forming a simple, logical boundary with the
same periodicity as the bulk measurement schedule. In addition, we construct generalizations of the honeycomb
Floquet code exhibiting arbitrary anyon-automorphism dynamics for general types of Abelian topological order.
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I. INTRODUCTION

The traditional approach to topological quantum error cor-
rection involves repeatedly measuring a set of commuting
stabilizers to project the system into a topologically ordered
state that encodes quantum information nonlocally. Floquet
codes (FCs) [1–4] represent an alternative paradigm, in which
a periodic schedule of noncommuting measurement rounds
results in the system continually moving through a dynami-
cally generated sequence of instantaneous code spaces (ICSs).

FCs can exhibit potential practical advantages. For exam-
ple, the original honeycomb Floquet code (HFC) of Haah
and Hastings allows one to effectively measure several qubit
stabilizers through a sequence of exclusively two-qubit mea-
surements [1]. The HFC builds off the structure of Kitaev’s
honeycomb model realizing Z2 (toric-code-type) topological
order, and consists of three rounds of two-body measure-
ments, which do not commute between rounds. After the
initial three rounds are all executed, these noncommuting
two-body measurements effectively determine the six-body
stabilizers that measure the Z2 gauge flux through each hexag-
onal plaquette. Each subsequent round projects the system
into a distinct ICS’s each having Z2 topological order. A
notable property of this code is that the logical e and m loop
operators (corresponding to dragging a pair of e or m anyon
excitations around a noncontractible cycle) interchange, as
e ↔ m after each Floquet period. While the original HFC
model was studied with periodic boundary conditions, further
work has been done to flatten this out into a planar geometry
[3,4], as required for most physical implementations. How-
ever, the e ↔ m exchanging dynamics appears to provide an
obstacle to simple schemes to achieving a planar HFC [3].

While intriguing examples of FCs have been constructed
in specific models [5,6], a systematic framework for charac-
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terizing their universal structure remains elusive. By contrast,
static topological codes can be understood by an equivalence
between topological error correcting codes and topological or-
ders of gapped ground states of local Hamiltonians, which are
governed by a well-established categorical theory of anyons
[7–9]. It is natural to ask whether a similar level of under-
standing of FCs could be achieved by connecting them to
the well-studied topology of unitary Floquet dynamics gener-
ated by local time-dependent Hamiltonians. Progress in this
direction has recently been made by exploring connections
between FCs and adiabatic loops (ALs) through the space
of gapped Hamiltonians [5]. An AL is defined as a one-
parameter family of gapped Hamiltonians H (θ ) with θ ∈ S1,
i.e., H (θ + 2π ) = H (θ ). The study of the topology of ALs
has a long history starting with Thouless’ famous pump [10].
In [5] it was argued that there was a close correspondence
between FCs and ALs, and that, in 2d , topology of Floquet
dynamics corresponded to anyon-permuting action generaliz-
ing the e ↔ m exchanging dynamics of the HFC.

Here, we seek to develop further connections between
FCs and and nonequilibrium dynamical topological phases
of unitary dynamics, that are governed by well-understood
topological invariants [11–21]. Specifically, we explore the
relationship between topological FCs arising from nonuni-
tary dynamics driven by a time-periodic schedule of lo-
cal measurements, and unitary Floquet-enriched topologi-
cal orders (FETs) arising from unitary evolution, U (t ) =
T e−i

∫ t
0 H (s)ds generated by a local, time-periodic Hamiltonian

H (t + 1) = H (t ).
The topology of unitary dynamics is defined for unitary

loops satisfying U (t = n) = 1 for some nonzero integer n.
Under appropriate conditions, unitary loops (ULs) can fur-
ther be extended into stable many-body localized phases
with eigenstate topological order [22] that is modulated by
topologically nontrivial micro-motion within each Floquet pe-
riod. The topology of unitary FETs with Abelian topological
order in 2d is well studied [15,17]. In 2d , unitary loops and
Floquet-MBL phases are governed by (i) emergent dynamical
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symmetries that permute the topological charge of anyon exci-
tations during each period, and (ii) a chiral Floquet (CF) index
ν(U ). Aspects (i) and (ii) are not entirely independent, rather,
as the anyon permuting dynamics may constrain the allowed
values of the CF index. Floquet phases without topological
order have rational values of ν(U ) ∈ Q, whereas for FETs
with Abelian topological order the index can take irrational
“radical”-valued indices, ν(U ) ∈ √

Q [17]. A radical-valued
CF index is necessarily tied to a nontrivial permutation of bulk
anyons during each Floquet period—an anyon “time crystal”.
Physically, log ν(U ) characterizes the amount of quantum
information transported chirally along the boundary during
each period [19]. Additionally, there is a bulk-boundary cor-
respondence linking a radical value of the CF index, to a
nontrivial anyon permuting dynamics of the bulk during each
period.1

In this paper, we define a class of models with Abelian
topological order, which we dub paired-defect networks, for
which there is a (stable) equivalence between discrete-time
measurement dynamics of FCs, and continuously parame-
terized loops of gapped Hamiltonians, unitaries, and MBL
FETs that pass through the same sequence of ICSs as the
FC. Here, by stable equivalence, we mean that the continuous
loops can be defined from a FC up to stacking with some
invertible topological phase (we define the notion of invert-
ibility for dynamical phases below). This equivalence enables
us to port well-established topological index theorems and
bulk-boundary correspondences for unitary FET dynamics,
summarized in the previous paragraph, to establish constraints
on the less-well-understood area of FCs.

As an illustrative example, we show how the honeycomb
FC of Haah and Hastings [1] can be lifted to a unitary circuit U
that has a radical CF index, ν(U ) = √

2Q. We show that this
implies dynamical anomaly constraints on the possible edge
terminations of the HFC Floquet code with open boundaries.
Specifically, we show that a gapped boundary of the honey-
comb FC is only possible if one explicitly doubles the Floquet
periodicity for the boundary measurement schedule.

We then generalize the structure of the spin-1/2 honey-
comb codes to a general family of models that we refer to
as paired twist-defect networks. We construct Floquet codes
and phases from honeycomb networks of twist defects whose
dynamics implements a general anyon automorphism, gener-
alizing the e ↔ m exchanging dynamics of the HFC with Z2

topological order to any Abelian, nonchiral topological orders.
Here, by automorphism, we mean a permutation of anyons
that preserves the topological properties (self- and mutual-
braiding statistics, fusion properties, etc...). We describe both
a general construction of these generalized HFCs and an
explicit family of lattice models with only nearest-neighbor
measurements for a restricted class of twist defects (those
corresponding to an order-two anyon automorphism).

1More precisely a radical chiral index implies a nontrivial bulk
automorphism but the reverse need not be true. This is because the
chiral index is set by the quantum dimension of the defect associated
with the automorphism, which can be rational. In Z4 toric code,
for example, the chiral index associated with the e − m exchanging
automorphism is ν = √

4 = 2.

FIG. 1. Honeycomb Floquet code (HFC). The HFC is defined on
a three-colored honeycomb, with a spin-1/2 on each site/vertex. The
plaquettes are labeled red (R, light centered), green (G, dark cen-
tered), and blue (B, vertical gradient), the three distinct bonds/edges
are labeled x, y, and z, and the sites of each plaquette are labeled
from 1 to 6 as shown. The gray triangle depicts the standard mapping
of spins to Majorana fermions, c, bx,y,z; these can be grouped into
central fermions c on each site, and Z2 gauge links ui j on each edge
as explained in the text.

In addition to constructing a large class of new FC exam-
ples, we expect that our general formalism will be useful in
designing new FCs and algorithmically assessing their code
properties.

II. TURNING THE HONEYCOMB FLOQUET
CODE INTO A LOOP

To motivate the definition of the general paired twist-defect
networks, we begin by reviewing a concrete example: the hon-
eycomb Floquet code (HFC) introduced by Haah and Hastings
[1]. After briefly reviewing the HFC construction, we then
construct a unitary circuit that produces dynamics equivalent
(in a sense defined below) to the measurement-only dynamics
of the HFC. We show that this unitary circuit, shown schemat-
ically in Fig 2, has an irrational CF index, ν(U ) = √

2Q.
From here, we define a class of systems that generalize the
structure of the HFC, discuss equivalence between FCs and
Hamiltonian or unitary loops, and discuss implications of the
irrational CF index for building planar versions of the HFC.

A. Review of the HFC

The HFC consists of a periodically repeating sequence of
three measurement rounds acting on qubits arranged on the
sites of a honeycomb. To define the model, label the three
distinct orientations of bonds on the honeycombs by label
α ∈ {x, y, z} as shown in Fig. 1. Introduce a three-coloring
of plaquettes red (R), green (G), and blue (B). In addition to
the bond-orientation (x, y, z) labels, also label bonds that con-
nect R, G, B plaquettes with R, G, B respectively. For future
convenience, we also number the sites around each hexagonal
plaquette, p by 1 . . . 6 starting from the middle-left corner and
going around in the counterclockwise direction.

Following the notation of Kitaev’s honeycomb model [8],
define the bond operators Pi j = σα

i σα
j where σα=x,y,z are spin-
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(a)

(b)

FIG. 2. Dynamics of the unitarized honeycomb Floquet Code.
(a) Floquet unitary dynamics made up of a sequence of unitaries,
U1,2,3 that map between the ICS’s of the HFC. Step 1,2,3 consists
of a counterclockwise rotation around the B, R, G color plaquettes
respectively. (b) The resulting evolution of the Majorana operators
ci and bond parities Pi j after one period: the bulk Majoranas swap
such that each Pi j evolves to itself up to a phase that depends on
the gauge flux through an adjacent plaquette. The edge Majoranas
evolve in a large open orbit, signaling a radical chiral Floquet index
ν(U3U2U1) = √

2.

1/2 Pauli operators for direction α that coincides with the
x, y, z label of bond i j. Further, for each site i, introduce the
Majorana fermion operators ci, bα

i related to the spin oper-
ators by σα = ibα

i ci. The physical spin model is recovered
by projecting icibx

i by
i b

z
i = 1 on each site. It is convenient to

repackage these operators as Majorana “defects” ci on each
site, and Z2 gauge connections ui j = ibα

〈i j〉1
bα

〈i j〉2
on each bond.

Here, we choose an orientation for each bond, 〈i j〉, and 〈i j〉1,2

label the start and end sites of the bond respectively (in
this way ui j = u ji and one may henceforth ignore the bond
orientations). In this representation Pi j = iciui jc j are simply
interpreted as the (gauge-invariant version of the) fermion
parity of the pair of Majorana defects ci, c j .

The HFC [1] then consists of a repeating sequence of
three rounds of measurements: In round 1,2,3, Pi j are mea-
sured, or “checked”, for each R, G, B bonds respectively.
We refer to these measured bond operators as parity checks
or simply “checks”.2 While the measurement schedule re-
peats periodically, the checks in round r do not commute
with those in round r + 1, and hence the measurement out-
comes are random and generically nonrepeating. However,

2In the subsystem code literature Pi j are often referred to as gauge
operators or gauge checks; a notation that is ripe for confusion with
standard gauge theory formulation of topological orders.

after three rounds, the products of checks Pi j around any
hexagon P (and hence also any contractible loop), given by
�P = ∏

〈i j〉∈�p
Pi j , are determined. �P then commute with

all future measurement checks, to form persistent stabilizers
of the HFC. In the gauged-fermion language, the persistent
stabilizers are simply the Z2 gauge flux �p = ∏

�p
ui j =

±1. Crucial to the performance of the code, the measure-
ment sequence should be chosen to avoid measuring the
flux through noncontractible loops, which represent logical
operators.

After each measurement round, the most recently mea-
sured parity checks and persistent gauge-flux stabilizers
together form the stabilizers of a Z2 topological order that
is topologically equivalent to a toric code. This is referred
to as an instantaneous code space (ICS). The three different
ICSs after the R, G, B measurement rounds are respectively
labeled ICSR,G,B. Each ICS is represented by a distinct, but
topologically equivalent, pairing of the Majorana defects, im-
mersed in a fixed gauge-flux configuration dictated by the
persistent stabilizer values. The states of each ICS can be
labeled by configurations of point-like anyon excitations with
topological charges (also known as topological superselection
sectors), f , m, and e = m × f . We associate a flipped bond
stabilizer Pi j = −1 with a fermion ( f ) excitation. Since the
bond stabilizers are on different (R, G, B) bonds during each
round, the resulting e, m excitation labeling also depends on
the round. For ICSR, we label the Z2 gauge fluxes, �p = −1
on the p ∈ R plaquettes as m excitations, and those on the
B, G plaquettes as e excitations. To understand this color-
dependent labeling, note that the local operator Sy

4 = ic4by
4 in

Fig. 1 changes u45 → −u45, i.e., creates fluxes on plaquettes
labeled R and G and also creates a fermion on the red bond
touching site 4. This shows that it would not be consistent
to label all gauge fluxes as m regardless of color. In our
labeling convention this simply corresponds to the fusion rule
1 = e × m × f . Similarly for ICSG (ICSB) denote the G (B)
fluxes as m excitations and the R, B (R, G) plaquette fluxes as
e excitations.

The logical operators of each ICS can also be labeled
by anyon types e, m, f = e × m. At a coarse grained level,
each type of logical operator a can be viewed as creating
an a particle/antiparticle pair, dragging them around a non-
contractible cycle, and then annihilating them. These loop
operators can be decomposed into a product of many short
line segments whose ends create a/ā anyon/antianyon pairs.
Representative logical operators for the HFC on a torus are
shown in Fig. 3. The f loops through a cycle indicate the
Z2 gauge flux

∏
i j ui j through any cothreaded cycle, and are

persistent logical operators shared by each ICS. The e, m
loops of round r are not persistent operators, but may be
augmented by multiplying by parity checks Pi j of round r to
become logical operators of the next round r + 1. In this way,
the measurement dynamics map each logical operator from
ICSr to those of ICSr+1mod3. A key property of the HFC is
that, after three cycles, the e and m loops are interchanged.

B. Lifting the measurement-only dynamics to a unitary loop

Many of the dynamical features of the HFC, especially
the e ↔ m exchanging property, are also found in the unitary
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(a)

(c)

(b)

FIG. 3. Logical operators of the honeycomb Floquet code (HFC) on a torus. (a) The on-site Pauli operator �σ can be represented in the
Majorana representation by short bubbles, which enclose c and bσ , where each bubble indicates the fermion parity of the pair of enclosed
Majorana defects. This provides a pictorially simple way of expressing and evolving the logical operators. (b) The m (upward red line/arrow)
and e (rightward green line/arrow) logical operators can be built from the bubble operators. e and m logical operators around distinct cycles
of the torus cross at an odd number of points, where they anticommute. (c) The evolution of an m string under the Floquet unitary in Eq. (4).
After one cycle an m logical evolves into an e logical.

dynamics of honeycomb models of Floquet-enriched topo-
logical orders (FETs) [15,17,18]. It is natural to ask whether
these features are related. To establish a connection between
the measurement-only FC dynamics and the unitary FET
dynamics, we design a sequence of unitary circuit evolutions,
U1,2,3 = e−iH1,2,3 , that maps between the ICSs of the R, G, B
measurement rounds of the HFC. In other words, U1,2,3 will
respectively map each state of ICSR,G,B to one in ICSG,B,R.
A closely related circuit structure, dubbed Kramers-Wannier
circuits, was introduced in [5], and used to construct an adi-
abatic path through the space of gapped Hamiltonians. Here,
we focus instead on the nonequilibrium Floquet dynamics of
the entire spectrum of excited states generated by repeated
application of this circuit, which allows us to connect to well-
established topological indices for unitary loops and quantum
cellular automata [11–21].

To construct the sequence of Ua’s, note that the parity
checks for the R and G measurement rounds of the HFC
differ by a 60◦ rotation of each B plaquette, and the transitions
G → B and B → R can be similarly accomplished by rotating
the R and G plaquettes respectively. To implement this action
with a unitary, we introduce local unitary operators that cycli-
cally permute the Majorana operators counterclockwise about
a given hexagonal plaquette P,

Cp = B12B23B34B45B56, (1)

where Bj,i = e
π
4 c j ui j ci braids Majorana mode ci around c j ,

B†
j,i

(
ci

c j

)
Bj,i = ui j

(−c j

+ci

)
. (2)

Referring to the numbering convention of sites on each pla-
quette shown in Fig. 2, this cyclic permutation operator Cp

has the following action on the bond parity checks:

Cp :

{
Pi,i+1 → Pi+1,i+2 i 
= 5
P5,6 → −�pP12

(3)

where we take site numbers i modulo 6. In other words, each
of the bond parity checks is cyclically permuted around the
edge of the hexagon. In addition, one bond P6,5 parity check
picks up a phase equal to the gauge flux �p through the p; this
will be crucial to recovering the e → m exchanging dynamics
of the HFC.

We then define

U1,2,3 =
∏

p∈B,R,G

Cp, (4)

which can each be generated by local Hamiltonians H1,2,3 =
−i logU1,2,3. Then, we define the continuous-time unitary
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Floquet evolution

U (t ) = T e−i
∫ t

0 H (s)ds,

H (t ) = 3

⎧⎨
⎩

H1 0 � t < 1/3
H2 1/3 � t < 2/3
H3 2/3 � t < 1,

(5)

where T denotes time ordering, and we have set the Floquet
period to 1 for convenience.

(a) Bulk dynamics. Let us first examine the bulk dynamics
of this unitary model on a closed graph without a bound-
ary. Consider starting from a state in ICSR with a given set
of anyon excitations, and applying U (t = 1) = U3U2U1. The
gauge fluxes �p commute with unitaries in each step, and
remain invariant under the evolution. The bond parities switch
according to

P12 → �RP12,

P34 → �GP34,

P56 → �BP56, (6)

where the site and plaquette labeling is indicated in Fig. 2.
Crucially, if there is a gauge flux on plaquette p after one
period, one adjacent bond parity of flips, i.e., during each
period each flux binds a fermion, permuting e and m exci-
tations. The unitary dynamics also exchanges the e and m
logical operators of the code as shown in Fig. 3(b). Evolving
for two periods preserves each stabilizer of ICSR as well as
the logical operators, and hence the model indeed satisfies the
desired unitary loop property.3

(b) Edge dynamics and topological invariant. We can intro-
duce an edge into the unitary model by considering the system
on an open subregion A of the honeycomb and applying Cp

only to plaquettes p that lie completely within A. To visualize
the resulting dynamics, note that, acting on the Majorana op-
erators ci the idealized unitaries defined above simply “hop”
the Majoranas between sites, attaching a gauge string

∏
i j ui j

as they move. The resulting pattern of motion is shown in
Fig. 2. Majorana modes in the bulk are locally swapped along
R bonds, whereas those on the boundary undergo long chiral
loops encircling the system.

One can verify by inspection that one Majorana mode is
translated across each boundary bond per Floquet period. This
is the hallmark of a radical chiral Floquet (CF) phase [17,18],
which are characterized by an irrational unitary CF index
ν[U ] = √

2Q [17,18]. Since the gauge-field dynamics of ui j is
trivial in this model, we can fix the values of ui j and consider
only the residual Majorana degrees of freedom ci in this gauge
fixed background. It is then straightforward to confirm that the
Majorana translation dynamics of the edge of this model result
in a radical value of the CF index, ν[U ] = √

2. For details we
refer the reader to Appendix A where we evaluate this index
by directly evaluating it via the formula defined in [18].

(c) (Non)uniqueness of the unitarized model. We note
that the two conditions that (i) the sequence of unitaries
produce the same sequence of ICS’s as the HFC, and (ii)

3Notice that the unitary loop here is not an identity at t = 1, instead
U (t = 1) implements an automorphism of the code space. Neverthe-
less we call U (t ) a unitary loop.

the unitary evolution forms a unitary loop, do not uniquely
specify the model. However, previous rigorous results [18]
show that the CF index exhaustively classifies unitary loops
of interacting fermion systems, and establish a bulk-boundary
correspondence in which the e → m exchanging bulk dynam-
ics always accompanies an irrational CF index ν ∼ √

2Q.
Under stacking of unitaries the CF index multiplies, ν(U1 ⊗
U2) = ν(U1U2) = ν(U1)ν(U2). Hence, any other way of lift-
ing the HFC to a unitary loop would at most differ from this
model by stacking with an “invertible” rational CF phase that
does not affect the quantum information storage properties of
the model. For example, reversing the orientation of the action
of Cp → C†

p in each step produces a model with analogous
properties, but with the inverse value of the unitary CF index
ν = 1/

√
2 = 1

2

√
2, which differs from ν(U ) for the counter-

clockwise model by stacking with a rational CF phase with
ν = 1

2 . We will show below, for a large class of FCs that
generalize the spin-1/2 HFC structure, that the unitary loop
version of the FC is defined up to stacking with an invertible
(i.e., with rational CF index) Floquet topological phase.

(d) Extension to MBL-protected Floquet-enriched topolog-
ical (MBL-FET) order. We can further extend the unitary loop
model U defined above to a (meta)-stable MBL phase4 by
flashing on an MBL Hamiltonian with eigenstate topological
order equivalent to that of ICSR after the final step. Specifi-
cally, modify U3 → e−iHR

MBLU3, where

HR
MBL = H0 + V,

H0 = −
∑
�p

λp�p −
∑
i j∈R

1 + �pi j

2
μi jPi j + . . . , (7)

where λ,μ are coupling constants with strong spatial
randomness, and “ . . .′′ indicate generic perturbations that
respect the emergent dynamical e ↔ m symmetry of the
bulk dynamics and are much smaller than the typical size
of λ,μ. The flux factors in the last term have been chosen
such that [U, H0] = 0. In the high-frequency limit (where the
terms H0 and λ have small coefficients � 1), quasienergy
spectrum of the unitary evolution is given by the effective
Hamiltonian Heff ≈ H0 + V S + . . . , where V S = 1

2 (V +
U †VU ) is the symmetrization of V with respect to an
(emergent-dynamical) e ↔ m permutation symmetry, and
. . . denote higher-order corrections in the high-frequency
expansion. Depending on the perturbations . . . , there are two
possible fates for this model. The e ↔ m symmetry could
be spontaneously broken resulting in an MBL anyon time
crystal [17], or resonances between the degenerate hybrid
e/m excitations could lead to a breakdown of MBL. For
details, we refer the reader to [17], which analyzes a similar
MBL Hamiltonian for a topologically equivalent Floquet
honeycomb model.

4MBL is expected to be only metastable in 2d [23] due to
an avalanche instability to rare thermalizing regions. However, at
strong disorder, the timescale for this avalanche stability is double-
exponentially long in disorder strength, and we will treat this
ultralong timescale as effectively infinite for practical purposes.
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III. RELATING FLOQUET CODES AND
CONTINUOUS LOOPS

For the HFC example above, we saw that there were
continuously parameterized adiabatic or unitary loop(s) that
(i) pass through the same sequence of ICS’s, and (ii) imple-
ment the same operation (e ↔ m exchange) on the logical
subspace of the code as for the measurement-only HFC
model. This motivates us to define an equivalence relation
between Floquet codes and loops based on if they all satisfy
(i) and (ii). In this section, we discuss some general considera-
tions about whether and under what conditions an equivalence
between FCs and loops might exist. Then, in the following
section we formulate a specific class of FCs that generalize
the HFC, for which we can directly establish an equivalence.

A. Refining the notion of equivalence

Before embarking on this we highlight two subtleties in
defining an equivalence between codes and loops that arise
in the HFC example. In the following, we will restrict our
attention to local codes and loops, which can be generated by
strictly local measurements or Hamiltonians respectively.

First, note that the trajectories of individual states gener-
ally differ between the measurement-only or parameterized
unitary dynamics, and only the evolution of the logical sub-
space of the codes match. For example, the local measurement
outcomes in each step of the HFC are random, so that, after
one Floquet cycle of measurements a state initially in ICSR

returns to a state in ICSR but with a generically different
pattern of fermion excitations on the red bonds. In contrast,
the unitary dynamics produce deterministic state evolutions.
For this reason, we define criterion (ii) above only in terms of
the logical subspace.

Second, the correspondence between the HFC and ULs
is one-to-many: There are multiple ULs that reproduce
(i) and (ii) of the HFC, which differ by stacking with a non-
topologically ordered Floquet topological phase with rational
CF index. The UL for this rational CF phase satisfies U (t =
1) = 1, implying that the eigenstates of U (t = 1) can be
chosen to be short-range entangled. We will refer to ULs with
this property as invertible, generalizing the terminology for
“integer” topological phases of gapped ground states. Here,
by “stacking”, we mean that one can extend a unitary loop,
U (t + n) = U (t ) by adding additional degrees of freedom
and/or adding additional “trivial” dynamics within the period.
Specifically, we allow modifying the generating Hamiltonian
H0(t + 1) = H0(t ) by adding an extra step,

H0(t ) → H (t ) =
{

2H0(2t ) 0 � t < 1/2
2H1(2t ) t/2 � t < 1,

(8)

where H1(t ) generates a trivial unitary loop UH1 ≡
T e−i

∫ 1
0 H1(t )dt = 1. To get some intuition for this expression,

note that the evolution for one period is UH = UH1UH0 = UH0 .
With this in mind, we define an equivalence class of ULs by
moding out stacking with invertible Floquet phases, and look

for a stable equivalence between FCs and these equivalence
classes of ULs.

B. General considerations

In general, Floquet codes and loops are not equivalent in
the sense defined above.

a. Chiral topological order. For instance, ALs may have
ground states with chiral topological orders (i.e., which have
chiral edge states on an open manifold), which cannot be
reached by measuring a sequence of local operators [24]. For
this reason, we will exclude consideration of ICSs with chiral
topological order.

b. Measurements can generate LRE. Another complication
is that whereas loops generated by local Hamiltonians can-
not modify the long-range entanglement (LRE) structure of
a state, measurement-based dynamics can generate LRE. For
instance, whereas a constant-depth unitary circuit cannot alter
topological order, a constant depth measurement-circuit can
convert between certain classes of short-range entangled and
long-range entangled states [8,25,26]. Hence, a local FC may
exhibit a sequence of ICS’s with distinct types of topological
order that cannot be traversed by constant depth, local adia-
batic or unitary evolution. Several 3d examples of FCs posses
this property [27,28] including one that hops between fracton
ordered and conventional topological ordered states.

Consequently, to look for possible equivalences, we will
demand that all ICSs of the FC have the same stably
equivalent topological order (i.e., equivalent up to adding
short-range entangled degrees of freedom and entangling with
a constant-depth circuit).

This condition on its own is not sufficient to equate codes
and loops. For example, given a loop that passes through
a sequence of stabilizer-state ICS’s, one may be tempted to
define a Floquet code simply by measuring the stabilizers of
each ICS. Yet, even with local measurements, one can end
up effectively measuring nonlocal logical operators, thereby
collapsing the encoded quantum information and ruining the
code. For example, measuring the x, y, and z bonds of the HFC
rather than the R, G, and B bonds results in the measurement
of logical operators of the code. Hence, we will need to place
additional constraints on the ICS to obtain an equivalence.

c. Relation between adiabatic and unitary loops. A UL,
U (t ) always defines an AL: choose a base-point for the AL by
a local, gapped Hamiltonian H (0) that commutes U (t = 1),
and then define H (θ ) = U †(2πt )H (0)U (2πt ). For instance,
when U (1) implements an automorphism of a topological
order, we may take H to be a local Hamiltonian that realizes
that topological order. However, the reverse is not obviously
true: Since an AL define the time evolution only on a single
state (the ground state), whereas defining a UL requires one
to lift that action consistently to the entire spectrum of excited
states. A sufficient condition for being able to lift an AL to
a UL is if the AL is many-body localizable [22]. Many-body
localization (MBL) is not compatible with certain ingredients
such as chiral or non-Abelian topological orders, continuous
non-Abelian symmetries, or spontaneously broken continuous
symmetries [29]. Hence, in the following we will restrict our
attention to systems with Abelian topological order, and with
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only Abelian symmetries (in fact, we will generally ignore
symmetry throughout).

IV. GAUGED, PAIRED MAJORANA NETWORKS

We next introduce a class of systems called paired-defect
networks, that generalize the structure of Kitaev’s honeycomb
model. Namely, their dynamics will implement an arbitrary
anyon automorphism on the logical operators and local exci-
tations. We then establish a general equivalence between FCs,
and ALs, ULs, and MBL FETs that pass through the same
ICS’s. As explained above, to establish this equivalence, we
restrict our attention to Abelian, nonchiral topological orders.

A. Gauged fermion codes

The Kitaev honeycomb model can be described as a gauged
fermion system with Majorana “defects” ci on each site i of
the honeycomb, and Z2 gauge connections ui j on the edges
〈i j〉 of the honeycomb.

The Floquet honeycomb code has a particularly simple
structure in this representation: The persistent stabilizers are
the gauge flux through the plaquette

∏
〈i j〉∈� ui j , and the in-

stantaneous check are projectors onto parity of Majorana pairs
Pi j = iciui jc j . After one cycle of measurements, the fluxes
become frozen into a fixed nondynamical pattern, and subse-
quently only the fermion degrees of freedom have nontrivial
dynamics. In this case, we can regard ui j as a background,
nondynamical gauge field and consider just the system of
Majorana fermions.

This structure can be extended to a network of Majoranas
on vertices of a general graph (with even number of sites) with
gauge links on edges. We define a paired Majorana network
code on such a graph as one stabilized by the flux through
each face of the graph, and the fermion parities Pi j of a fixed
pairing of the Majoranas. Without loss of generality, we can
consider only nearest-neighbor pairings (possibly by adding
extra edges to the graph). Similarly, define a paired Majorana
network Floquet code as an FC for which each ICS is a paired
Majorana network code.

For this structure, there is a succinct condition for whether
a given schedule of local Majorana-pair measurements results
in the measurement of a logical operator. Each pairing defines
a dimer cover of the graph, with each dimer representing
an edge connecting the paired Majoranas. Formally, we can
represent any dimer cover as an element of a Z2 module on
the edges of the graph, i.e., a formal sum of edges with Z2

coefficients. Consider the dimer covers Di and Di+1 corre-
sponding to subsequent ICSs in a FC. The sum Di + Di+1

defines a loop configuration on the graph (see Fig 4). After
subsequent measurement rounds, the gauge flux through each
loop is also measured, since

∏
〈i j〉∈loop Pi j = iL

∏
〈i j〉∈loop ui j ∼

�loop. Since logical operators of the code are given by gauge
fluxes through noncontractible loops, the requirement that a
measurement sequence does not measure a logical is that
Di + Di+1 does not contain any noncontractable loops for any
measurement round i. We refer to this as the “no-long-loops”
condition.

It is straightforward to establish an equivalence between
Floquet codes, loops, and Floquet MBL phases for gauged
Majorana defect networks satisfying this no-long-loops con-

FIG. 4. Dimers and loops. Each ICS of a paired Majorana net-
work is represented as a dimer cover (shown here for a square
lattice). Here, black dots represent Majoranas and red and blue bonds
represent the pairings of two different ICS’s. Transitions between two
ICSs correspond to loop configurations (dashed lines). The appear-
ance of noncontractible loops indicates that the logical operators can
be inferred from the sequence of local dimer measurements.

dition. Additionally, in what follows we assume that the
size of the loop configurations Di + Di+1 is bounded by
some length scale ξ . This is because in order to have a “good”
code in the fault-tolerant sense we need to bound the size of
the stabilizers, otherwise an error can hop across an arbitrarily
large stabilizer, thereby spoiling the code distance.

1. Adiabatic loops

We begin by relating FCs and ALs. Given an AL that
passes through ICSs that are paired Majorana network codes
satisfying the no-long-loop condition, one can directly con-
struct an FC that passes through this same sequence of ICSs
simply by measuring the stabilizers for these ICSs.

Conversely, given a Majorana network FC satisfying the
no-long-loops condition, we can define a gapped path between
Hamiltonians {Hi} with ground states in ICSi corresponding to
pairing pattern Di with a fixed set of fermion parities for each
bond with overall even-fermion parity for all the bonds (in
order to correspond to a valid state of the spin/qubit system).
Namely, we can always consider interpolating from Hi to Hi+1

separately within each loop of Di + Di+1 with no interac-
tions between different loops. This adiabatic path is gauged
free-fermion Hamiltonian, which only has bilinear fermion
interactions within the small loops of Di + Di+1. Hence, each
loop has a finite size gap (except for accidental level crossings,
which can always be avoided) and the interpolation can be
done adiabatically. The sequence of adiabatic paths defined
by transitions between the ICSs therefore defines an AL that
passes through the same sequence of ICSs.

2. Unitary loops

To establish an equivalence to ULs, note that the change
between Di and Di+1 pairing patterns is equivalent to per-
forming a permutation of the fermions within each loop of
Di + Di+1, and applying a ±1 phase depending on the flux
configuration. The no-long-loops condition implies that each
of these loops are small, such that this can be performed with
a finite depth unitary circuit Ui,i+1. The sequence of unitaries
defined by transitioning between the adjacent ICSs then define
a local unitary evolution. This unitary evolution is not yet
a loop: it preserves the dimer covering representing the first
ICS, D1, but, it may permute the different individual dimers

195134-7



SULLIVAN, WEN, AND POTTER PHYSICAL REVIEW B 108, 195134 (2023)

making up D1. We therefore seek to close the loop by adding
additional steps of unitary evolution.

Denote the permutation of dimers in the first Floquet period
as g ∈ SN/2 where N is the number of Majorana sites (N is
necessarily even). To undo the permutation, we can separately
reverse each of the cycles of g by adding additional dynamical
steps that do not affect the logically encoded information.
Specifically, after a finite number of local unitary steps, each
dimer can move at most a bounded distance away from its
original position. Hence, each cycle is represented by a 1d
loop through the dimers of D1, where each loop segment
has bounded size. Therefore undoing each cycle of g can
be accomplished by a 1d quantum cellular automata (QCA)
[11] that executes a permutation of dimers. Such QCAs are
exhaustively classified by a chiral index, and can always be
written as the composition of local 1d Hamiltonian dynamics
and chiral translation of dimers along the cycle. Since the
dimers are pairs of Majoranas, the chiral index takes rational
values. Moreover, all 1d QCAs acting on a closed region R
can be generated by the boundary dynamics of a local 2d
Hamiltonian acting on a 2d region A that is bounded by
R, ∂A = R [14] (note that we always consider a 2d or
higher-dimensional system in order to have topological or-
der). Therefore, we can undo the permutation g, to close the
sequence of unitaries in a loop, by stacking the system with
rational CF phases on 2d subsystems. Since these rational
CF phases do not affect the topological code space, they will
preserve the dynamics within this logical space.

These considerations show that, for FC acting on paired
Majorana networks, there are many unitaries that pass through
the same ICSs and have the same dynamics within the logical
space. However, these differ only by stacking with with 2d
(invertible) rational CF phases.

3. Floquet MBL phases

Finally, since the ICSs of the paired Majorana codes
are compatible with MBL, any UL acting on a paired
Majorana network can be stabilized into an Floquet MBL
phase by flashing on a disordered Hamiltonian consisting of
the Hi = ∑

s∈Si
λsSi where Si are the (spatially local) stabiliz-

ers for the ICS for measurement round i, and λs are spatially
random couplings, to define the unitary evolution for one
period U (t = 1) = ∏

i Ui,i+1e−iHi .

4. Breaking up long loops

We next argue that, if a sequence of ICS’s fails the no-
long-loops condition, then it is possible to add intermediate
ICS’s that break up the long loops with additional measure-
ment rounds, possibly involving additional ancilla Majorana
degrees of freedom freedom to the lattice that decouple from
the original graph at each of the original ICSs. Long loops
arise when Di and Di+1 differ by changing the 1d topological
invariant of the Majoranas along a long loop � (i.e., toggling �

between a topological and trivial superconducting wire). We
can break up this loop as follows. First, add ancilla copies of
the Majorana fermions along the loop �, which are measured
in the same pairing pattern as Di ∩ � and Di+1 ∩ � in rounds
i and i + 1, respectively. Since these ancilla do not pair with
any of the original Majorana fermions at step i and i + 1, the

modified ICSs for these measurement rounds differ simply
by stacking a short-range entangled 1d fermion chain, and
are hence stably equivalent to the original ones. Then, to
break up the long-loop formation, add an extra measurement
round i + 1/2, in which we pair each ancilla Majorana with
its partner in the original system. The modified sequence then
satisfies the no-long-loops condition.

As an example, we illustrate this for a different imple-
mentation of the honeycomb Floquet code, in which the
bond parities are measured on the x → y → z → x → . . .

bonds rather than on the Kekule-type R → G → B → R →
. . . bond measurement schedule. Subsequently measuring x
and then y bonds results in long diagonal loops (similarly
for the transitions y → z and z → x between measurement
rounds) as shown in Fig. 5(b). However, we may add ad-
ditional measurement rounds, which break up these loops
with second nearest-neighbor measurements. The modified
six-round schedule x → x′ → y → y′ → z → z′ → x → . . .

is shown in Fig. 5(a). In this case, no additional ancillas
are needed; the primed rounds consist of fermion parity
measurements between next nearest neighbor sites. In the
qubit representation these next-to-nearest dimers correspond
to three-body Pauli operators as can be seen in Fig. 5(b). The
Floquet code associated with this schedule evolves between
six instantaneous code spaces, each of which can be mapped
to the Wen-plaquette model [30] on a square superlattice.
After one full round the an e − m exchanging automorphism
is performed. This can be verified explicitly or through the
edge dynamics of an associated unitary loop. The failure of the
s → y → z schedule to encode a logical subspace is related to
the failure to satisfy the no-long-loops condition; the presence
of the noncontractible loop in the ICS eliminates the nonlocal
degeneracy. By equivalence discussed above this is further
related the impossibility of an AL passing through the ICSs.
This relationship is shown schematically the in Figs. 5(c) and
5(d). By breaking up the long loops the x → x′ → y → y′ →
z → z′ → x → . . . schedule has an associated AL, which
avoids the gapless points the x → y → z loop is constrained
to pass through.

B. Application: Topological index and dynamical anomalies for
HFC boundaries

As an application of this formalism, we next show how the
equivalence between FCs and ULs places dynamical-anomaly
constraints on the type of allowed boundaries of the qubit
HFC. Since any paired Majorana FC, such as the HFC or any
modification that preserves this structure, is equivalent to a
UL, they are both governed by the bulk-boundary correspon-
dence and dynamical chiral-Floquet edge anomalies of the
UL. Specifically, for ULs bulk e ↔ m exchanging dynamics,
implies a radical CF index ν(U ) ∈ √

2Q, which implies that
there is no way to form a gapped/localized boundary [17] that
preserves the time-translation symmetry of the bulk dynamics.
The equivalence between FCs and ULs of paired-defect-
network form, implies that there is similarly an obstruction to
forming a gapped/logical edge of the HFC with a boundary
measurement schedule of the same period as the bulk.

Previous constructions for a planar HFC with
gapped/logical boundary [3] modified the bulk measurement
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FIG. 5. Breaking long loops. (a) The x → x′ → y → y′ → z → z′ schedule described in Sec. IV A 4. The ICSs correspond to toric code
states and a full measurement cycle implements an e − m swapping automorphism. (b) Long loops formed between x and y measurements
in the x → y → z schedule. (c) The primed rounds consist of next-nearest-neighbor parity measurements, which are three-body in the Pauli
representation. We depict a measurement from round z′ as an example. (d) The famous phase diagram of the Kitaev honeycomb model. Any
closed loop interpolating between JX = 1 → JY = 1 → JZ = 1 → JX = 1 must intersect the shaded grey region of gapless Hamiltonians.
This implies the corresponding x → y → z code will contain long loops. (e) By adding next-nearest-neighbor terms to the honeycomb model
we can define an AL JX = 1 → JX ′ = 1 → JY = 1 → JY ′ = 1 → JZ = 1 → JZ ′ → JX = 1, represented here by a hexagon, which avoids the
shaded gapless region. The existence of this AL indicates that the x → x′ → y → y′ → z → z′ code contains no long loops.

sequence by doubling the periodicity and measuring
R → G → B → G → B → R′ bonds where R and R′
differed at the edge. This sequence effectively performs
the noncontractible loop R → G → B, and then undoes this
loops by reversing its direction. The full six-step sequence
has no overall e ↔ m exchanging action on logical operators.
The unitarization of this process would be to consider
alternating between chiral unitary evolution U1, ν(U1) = √

2
and antichiral unitary evolution U2 with ν2 = 1/

√
2, to get an

overall trivial index ν(U2U1) = 1 for the full evolution.
A related perspective comes from the equivalence of FCs

and ALs for this class of systems. Namely, if we have an AL
that exchanges e ↔ m excitations, then there is no gapped
boundary Hamiltonian with the same periodicity as the bulk.
Specifically, there are two types of gapped boundaries of
the Z2 gauge theory corresponding to condensing either e
or m at the edge. Since one period of the HFC evolution
exchanges e and m particles, it also exchanges these types
of gapped boundaries. Hence, there is no periodic boundary-
Hamiltonian that is both gapped and invariant under this e ↔
m exchange.

However, this argument suggests that it should be possible
to gap the boundary by simply doubling the periodicity of the
boundary without altering the bulk. Schematically, we could
choose Hboundary(t ) = {He 0 � t < 1

Hm 1 � t < 2 where He,m respectively
represent boundary Hamiltonians for the e, m condensed
boundaries. Returning to the FC setting, we can confirm that
such a period-doubled gapped/logical boundary is indeed
possible for the HFC. An example is drawn in Fig. 6. Here,
we consider a zig-zag edge of the honeycomb, modified to
a trivalent graph as shown in Fig. 6(a). The check oper-
ators of each round are highlighted in Fig. 6(d); the bulk

measurements are unchanged(R → G → B) and boundary
measurement schedule has period six(solid R → solid G →
solid B → dashed R → dashed G → dashed B). By inspec-
tion, one can see that each adjacent measurement round
contains only short loops such that no logical operators are
measured. By contrast, one can verify by inspection, that
repeating the solid-line boundary conditions would result in
the measurement of a long f loop around the boundary upon
going from the B → R step.

We note that, for this construction, one needs to directly
measure gauge fluxes through the downward facing boundary
triangle plaquettes shown in Fig. 6(c), as these are not accu-
mulated as persistent stabilizers of the other measurements.
Additionally, the boundary Majorana pair measurements are
not nearest neighbor on the original lattice, and require several
spin measurements. These boundary measurements spoil the
two-body measurement structure of the original HFC code.
While potentially of practical importance for error correction
thresholds, for the purposes of exploring general topological
features of FCs, we view such details as nonuniversal engi-
neering challenges.

One can also explicitly track the evolution of logical oper-
ators that terminate on the boundary as shown in Fig. 6. The
logical operators are either e or m strings that terminate on the
open boundary. To form a logical qubit one needs to consider
a plane with multiple holes punched out to form multiple non-
contractible loops; however, for simplicity we simply show
the end points of operators on one boundary. Starting with
the solid-red ICS, we can label the logical operators as e or
m strings depending on whether or not they terminate within
or outside the red edge bond. To track the evolution of this
operator to the next round, one needs to relabel it by tacking

195134-9



SULLIVAN, WEN, AND POTTER PHYSICAL REVIEW B 108, 195134 (2023)

(a)

(d)

(b) (c)

FIG. 6. Period-doubled gapped boundary of a planar HFC. (a) HFC with boundary described in Sec. IV B. Boundary measurement schedule
has period six: solid red, solid green, solid blue, dashed red, dashed green, dashed blue, solid red... (b) Pauli string corresponding to the long
arc checks on the boundary. (c) The flux through the triangles on the boundary are not inferred by the checks and must be explicitly measured.
(d) Evolution of an e logical operator terminating on the boundary. The check measurements performed in each round are highlighted. At each
stage r the logical operator is modified with the r − checks such that the resulting string commutes with the r + 1 − checks. After six rounds
of evolution the operator remains an e string.

on R stabilizers to form an operator that commutes with the
G measurements. Following the evolution through one bulk
Floquet period, we see that the edge operator evolves as shown
in Fig. 6.

This example illustrates that, while the direct construction
of gapped boundaries of the HFC can be complicated to con-
struct, the insights from the ALs and ULs can identify possible
universal mechanisms for their construction, rather than trying
to build them by (potentially tedious) trial and error.

V. GENERAL TWIST DEFECTS

We next aim to generalize the paired Majorana structure of
the HFC to other types of topological order. To this end, a key
step is to recognize the Majorana fermions in the Kitaev model
as twist defects [31–33], i.e., braiding an e particle around
a Majorana turns it into an m particle and vice versa. The
notion of twist defects can be adapted to any Abelian topolog-
ical order with anyon types a, b, c . . . , that posses an anyon
automorphism σ : a → σ (a), which preserves the self- and
mutual statistics of the anyons, θσ (a) = θa, θσ (a),σ (b) = θa,b.
We refer to anyons that are uncharged by the automorphism
[i.e., σ (a) = a] as invariant anyons.

Numerous examples of such anyon automorphisms have
been worked out for a large class of topological orders [34].
For our purposes, two representative examples are

(1) DZN , with generalized e ↔ mq automorphism. We de-
note a ZN quantum double model, a.k.a. a ZN toric code or
ZN gauge theory by DZN . This theory has anyons {e jmk}
with j, k = 0, 1, 2, . . . N − 1. There are automorphisms, σ :
e �→ mq, m �→ ep with pq = 1 modN . Here, dσ = √

N and
the invariant anyons are emq or multiples thereof.

(2) D3
ZN

, with S3 permutation automorphism. Z3
N gauge

theory, i.e., three copies of ZN toric code, with particles
{1, ei, mi . . . } with i = 1, 2, 3 labeling the copy. This theory
has an S3 automorphism that permutes the different copies
of the ZN toric code.(not to be confused with the quantum
double D(S3) where S3 is the gauge group of the gauge theory)
For example, we can consider twist defects that cyclically
permute the copies, σ : ai �→ ai+1 for a ∈ e, m, f . This defect
has quantum dimension dσ = N4/3, and the bound state of like
anyons in each copy (of the form a1a2a3) are invariant.

These twist defects are not deconfined excitations of the
topological order, but rather are confined defects that must
be written into the Hamiltonian. For example, they may oc-
cur at the ends of 1d “wires” inside the topological phase.
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Further, twist defects always come in defect/antidefect pairs.
For example, in the Z2 gauge theory, Majorana twist de-
fects can arise at the ends of a segment of topological
superconducting wire made from the emergent fermions ( f ).
Even though the underlying topological order is Abelian, the
twist defects are non-Abelian [31,34], and have quantum di-
mension dσ > 1.

Define a defect network model to consist of a background
topological order, with twist defects sitting at the vertices of
some graph. A 2d defect network can be equivalently viewed
as “gluing” together open, simply connected 2d patches
(“cells”) of topological order a in patch p to an topologically
equivalent anyon, φp′,p(a) specified by some transition func-
tion φ. A twist defect arises at the triple intersection of patches
p1, p1, p3 if vp3,p2,p1 = φp1,p3 ◦ φp3,p2 ◦ φp2,p1 
= 1. This cellu-
lar construction of defect networks was introduced by [35] to
classify crystalline symmetry protected- and enriched- topo-
logical orders. Here we adapt this approach to explore Floquet
codes and phases. In the language of [35], we will consider
only invertible, point-like defects. We note that the transition
functions φp′,p have a “gauge” freedom under relabeling the
anyons in p and p′, however, the twist-defect indicator, v is
invariant under such gauge transformations. This continuum
approach will be explored in Sec. V A.

Defects can also be used to create a kind of parton con-
struction to describe lattice models with local interactions
following the “slave-genon” approach of [36]. This general-
izes Kitaev’s Majorana parton construction for the honeycomb
model to general twist defects.5 In general, the local Hilbert
space for these models will not be qubits, but rather qudits
with d2

σ levels where dσ is the quantum dimension of the twist
defect. We make use of this approach in Sec. V B to realize
lattice models for generalized FCs.

In general we can define paired-defect network codes as
ones in which each twist defect σi is paired with an antidefect
σ̄ j such that there is a definite fusion channel for the pair.
Paired-defect network FCs are then defined as those whose
ICSs each have this property. Note that the fusion product can
always be measured by local operators using anyon interfer-
ometry. Namely, by creating a, ā pairs, braiding the a around
the defect pair, and reannihilating it with ā, and measuring the
accumulated phase. These operations are local, commute with
one another, and there always exists a set of anyons a whose
braiding phases uniquely determines the fusion outcome.

Following the same arguments presented for the Majorana-
defect networks, for paired twist-defect networks, there is an
equivalence between FCs, ALs, ULs, and MBL FETs (note
that the twist-defect networks inside a background Abelian
topological order are MBL-able since the fusion outcomes of
these non-Abelian defects are always Abelian [29]).

A. Generalized honeycomb Floquet codes from continuum
twist-defect networks

To illustrate the construction of FCs and phases from twist-
defect networks, we next construct a generalization of the

5Restricting to two-body interactions this construction can only
realize tripartite graphs, but a general local graph can be constructed
by considering interactions between higher numbers of spins.

honeycomb code of Haah and Hastings to arbitrary nonchiral,
Abelian topological order with nontrivial anyon permutation
symmetry σ .6

We start by forming a honeycomb by gluing together
hexagonal plaquettes of a given topological order with twist
defects σ on each of the A sublattice sites and antidefects σ̄

on each of the B sublattice sites.7 We then three-color the pla-
quettes with labels R, G, B, as was done with the qubit HFC.
We choose the branch-cuts for the twist defects to reside along
the red links, meaning that an anyons’ topological charge gets
transformed from a to σ (a) upon crossing a red link (with
orientation shown in Fig. 7(a).

The measurement schedule follows that of the qubit HFC,
measuring R then G then B bonds. The Majorana parity mea-
surements of Sec. II A are replaced with “braiding check”
measurements: We measure the phase that results from cre-
ating an anyon/antianyon pair, wrapping the anyon around a
small loop enclosing the bond and then reannihilating it with
the antianyon. This anyon interferometry measurement par-
tially determines the fusion channel of the σ, σ̄ pair on each
bond. In order to completely determine the fusion channel it is
sufficient but not necessary (see Appendix B) to measure the
aforementioned braiding process for each generating anyon
{a1, a2, ...aN } of the TO. In each round r = R, G, or B a min-
imal set of braiding checks are performed around each bond of
type r, collapsing the degeneracy introduced by the presence
of the defects, and leaving behind a state of the ICS with only
the topological degeneracy due to the underlying Abelian TO.

After each measurement round, logical operators of the
ICS are anyon string operators that wrap around noncon-
tractible loops, which do not intersect any defect lines. They
will need to be modified constantly by measured braiding
checks in order to commute with the next round of measure-
ments. The evolution of logicals is depicted in Fig. 7, it is
clear that after a full cycle of measurement an a anyon string
is converted into a σ (a) string.

Persistent stabilizers and error correction. We can think
of the patchwork defect model as a kind of topological quan-
tum memory, where some quantum state is stored nonlocally.
From this point of view, open anyon strings correspond to
errors: if one of these strings is allowed to wrap a noncon-
tractible cycle a logical operation is performed, toggling the
state of the system without our knowledge. To correct these
errors we must be able to locally detect the presence of an
open anyon string. It follows that error correction requires
some set of braiding measurements on the hexagonal patches
of the defect network.

One could measure the phase obtained by braiding a
complete set of generating anyons around each hexagonal
plaquette. This proves to be excessive though, as some of these
measurement outcomes can be inferred from persistent sta-
bilizers, which form from the braiding check measurements.
These persistent stabilizers commute with every braiding

6We note that, at an abstract level, this construction can also de-
scribe adiabatic loops and Floquet codes with chiral or non-Abelian
topological order.

7Here, we use σ to denote both the defect and its associated anyon
automorphism.
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(a) (b)

(c)

FIG. 7. Evolution of logical operators in the generalized twist-defect HFC. (a) As anyon a passes through edge connecting σ (filled circle)
and σ̄ (open circle) it is transformed into σ (a). (b) An anyon a string can be moved through a pair of defect lines by multiplying it by a
closed ā loop, which passes through the same defect lines. (c) The colored loop around each bond represents the collection of all the braiding
measurements carried out in each round. Since these have been measured, after each round one can employ the move shown in (b) to modify an
anyon string so that it commutes with the measurements of the upcoming round. The net result is that the implementation of the automorphism
σ after one full cycle.

check measurement, playing the role of the flux operators (see
Fig. 1) in the Majorana example.

Let us consider the exact form of these persistent stabi-
lizers. Imagine we have just completed the round 1 and the
braiding of anyon a is measured on every red bond. Next,
suppose anyon b braiding is measured on every green bond in
round 2. At this point, plaquette stabilizers that are products

(a)

(b)

FIG. 8. (a) The blue check represented as an anyon c loop in-
tersects the plaquette operator Pa,b at four points, by deforming the
anyon a, b lines across the defect we obtain the effective anyon line
of type σ−1(a)σ−1(b)āb̄ in gray, which must fuse to vacuum for it to
commute with all the blue checks, σ−1(a)σ−1(b)āb̄ = 1 ⇒ σ (ab) =
ab. (b) The reduction of the persistent stabilizer Pa,b, notice the anyon
ab is invariant by the persistent stabilizer condition and can be moved
inside the hexagon.

of checks around any blue plaquette will be generated. We de-
note these plaquette operators by Pa,b. For Pa,b to be persistent
stabilizers it must commute with all subsequent measure-
ments. In Fig. 8(a) diagrammatic calculation is shown and
the persistent stabilizer condition is found to be σ (ab) = ab.
Using this condition the persistent stabilizer can be reduced to
a bσ (b̄) loop inside the plaquette.

The braiding statistics between bσ (b) and another anyon c
are given by

θc,bσ (b) = θc,b − θc,σ (b) (9)

= θc,b − θσ−1(c),b = θcσ−1(c),b. (10)

Therefore c will commute with all persistent stabilizer when
θcσ−1(c),b = 0 for all b. Thus implies cσ−1(c) = 1 or σ (c) =
c. From this we can conclude that the persistent stabilizers
cannot detect invariant anyons.

In order to detect errors corresponding to invariant anyons
we can add supplemental braiding measurements of con-
tractible loops inside the plaquettes of the defect lattice.
Generically, if the TO has generating anyons {a1, a2, . . . aN },
braiding some subset {a1, a2, . . . , aQ}, where Q < N ,8 will
accomplish the task. To reiterate, these braiding measure-
ments commute with all of braiding checks and so do not
require a round of their own: they can be freely included in
any of the R, G, or B rounds. The choice of how the inclusion
is carried out presumably affects fault tolerance properties.

8If the invariant anyons are generated by { f1, f2, . . . , fQ} we can
pick Q < N generating anyons {a1, a2, . . . , aQ} such that the braid-
ing matrix (
 f a)i j = 
 fia j has rank Q.
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Generically though the resulting schedule is capable of de-
tecting any local error.

B. Generalized honeycomb Floquet code lattice models from
twist-defect partons

The above continuum description of the defect networks
can be converted into an exactly solvable lattice model when-
ever the underlying topological order admits such a lattice
model description. As a brute-force construction, one could
consider a network of patches of string-net models [7]). How-
ever, the resulting lattice model will generally be cumbersome
and involve measurement of many-spin terms.

In this section we present an alternative defect network
construction, which naturally furnishes a lattice model de-
scription. The construction is based on the twist-defect parton
(also known as “slave-genon”) approach introduced by [36].
This approach yields generalized HFC models with nonchi-
ral Abelian topological order with order-two twist defects
(i.e., for which twisting twice restores the anyons). For this
family of generalized HFC models we derive a measurement
schedule corresponding to two-site Pauli measurements and
describe the automorphism generated by measurements. Un-
like the continuum description the parton construction only
implements anyon automorphisms with order 2 (σ 2 = 1).

Schematically, the twist-defect parton construction follows
that of Kitaev’s Majorana representation of spins-1/2, but
replaces the Majorana defects of the Z2 topological order,
with arbitrary twist defects σ , of a general Abelian topolog-
ical order TO0. Parton constructions describe a local Hilbert
space as a projection from a larger auxiliary Hilbert space.
Following Ref. [36], the auxiliary Hilbert space can be viewed
as a small island of topological order TO0, with two twist
defect/antidefect (σ/σ̄ ) pairs. The physical Hilbert space is
then obtained by projecting each island (site) into the sector
with trivial total topological charge. This projection plays
the role of the gauge constraint cibx

i by
i b

z
i = 1 in the spin-1/2

Kitaev model, which forces the four Majorana defects to have
overall trivial fermion parity, yielding a bosonic spin model.
Here, a notable distinction from the original spin-1/2 Kitaev
honeycomb model arises: Although in Kitaev’s honeycomb
model, paired phases of the Majorana defects also had the
same type of Z2 topological order, the Abelian (paired-defect)
phase of generalized Kitaev models may have a completely
different type of topological order TO, distinct from TO0. For
example, Ref. [36] used islands of fractional quantum Hall
(FQH) bilayers, with interlayer-genon defects as the twist-
defect partons, to construct a generalized Kitaev honeycomb
model with ZN topological order.

In the parton description, the local, gauge-invariant “spin”
operators on each site: T a

i,α are defined by braiding anyon a
around the pair α = x, y, z of defects on site/island i, as shown
in Fig. 9. The local operators obey the algebra

T a
z T b

x = eiθa,bσ (b) T b
x T a

z , (11)

T a
x T b

y = eiθa,bσ (b) T b
x T a

y , (12)

T a
y T b

z = eiθa,bσ (b) T b
y T a

z , (13)

T a
α T b

α = T ab
α , T a†

α = T a
α . (14)

FIG. 9. Generalized HFC. The bottom right panel shows the
microstructure of a site, which consists of four defects of TO0. The
operators T a

α are defined to be braiding of anyon a around certain de-
fect pair. Two logicals L1(a), L2(a) after the red round measurement
are depicted, with L1(a) being the product of red loops braiding along
the path and L2(a) being the product of blue loops braiding along
the path. More generally one defines an L1(a) string along a path
that avoids the red plaquette, and whenever the string intersects a
bond it takes half of the check operator on that bond. One defines an
L2(a) string along a path that lies on the red bonds, and on each red
bond (i j) of type α1 one writes T a

i,α2
T a

j,α3
where α1, α2, α3 are distinct.

The two logicals intersect at a single site, which causes them fail
to commute. The top right panel shows their commutation relation
is L1(a)L2(b) = e2π iθa,bσ (b) L2(b)L1(a). It is straightforward to confirm
from this construction that logicals of the same type commute and
preserve fusion, [Li(a), Li(b)] = 0, Li(ab) = Li(a)Li(b).

The gauge constraint T a
x T a

y T a
z = 1, implies that in the phys-

ical subspace T a
y ≡ T a†

x T a†
z . To form a local, on-site Hilbert

space, we then construct a representation of this algebra for
any Abelian TO0 and σ .

The anyons that are invariant under σ form a subgroup
of TO0

9 that we denote by Inv(σ ) := {a ∈ TO0, σ (a) = a}.
Denote the quotient group TO0/Inv(σ ) by TOσ

0 and its el-
ements, the equivalent class of a, by [a]. Let H = C[TOσ

0 ]
be the group algebra over TOσ

0 , that is, the formal linear
combinations of group elements with complex coefficients.
H has a standard basis { |[a]〉; a ∈ TO0} and has dimension
D = |TO0|/|Inv(σ )|. Define T a

x , T a
z by their action on the

basis as

T a
z |[g]〉 = eiθa,ḡσ (g) |[g]〉, T a

x |[g]〉 = |[ag〉]〉. (15)

This representation is well defined, since the phase factor of
T a

z does not depend on the choice of g, θa,ḡσ (g) is zero for any
g ∈ Inv(σ ), and it forms the desired representation.

Note that, in this representation, T a
α = 1 for any a ∈

Inv(σ ). Namely, T a
z = 1 because the phase factor in Eq. (15)

satisfies θa,gσ (g) = θg,aσ (a) = 0, and T a
x = 1 since [ag] =

[a][g] = 1[g] = [g]. In all examples known to us, the single-

9We use TO0 for both the Abelian topological order itself and the
group of its fusion rules, which is a finite Abelian group.
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site Hilbert space H is a tensor product Cd1 ⊗ Cd2 ⊗ · · · and
the operators T a

α are products of generalized Paulis.

1. Measurement scheme and automorphisms

The measurement schedule mimics that of HFC: Plaquettes
and bonds are three colored by R, G, B labels. In each round
check operators T a

i,αi j
T a

j,αi j
on bonds of certain color are mea-

sured for all anyons a. We analyze the persistent stabilizers
of this code in Appendix C, and show that, together with the
checks in any given round, they completely fix the local ex-
citations of the ICS, leaving only a finite-dimensional global
topological logical space corresponding to a certain topolog-
ical order TO. The persistent stabilizers can be deduced by
considering combinations of checks that commute with the
checks of all the R, G, B rounds. For example, as a candidate
persistent stabilizer on the B plaquette take checks around its
R and G edges that form its perimeter, with T a

i T a
j checks on

type-R edges and T b
i T b

j checks on type-G edges. Denote such
plaquette stabilizer as Pa,b. It commutes with all the R and G
checks. The diagrammatic calculation shown in Fig. 8 shows
the condition for this plaquette operator to commute with all
B checks is σ (ab) = ab, which has solution b = σ (a). Any
other solution would only differ from σ (a) by an invariant
anyon, which will not affect Pa,b. Thus we can denote the
persistent stabilizer as P[a](recall T a

α = 1 for any invariant a,
thus Pa only depends on the equivalent class [a]). For each
plaquette we now have |TO0|/|Inv(σ ) persistent stabilizers.

We next examine the logical operators of this code.
For each anyon a, two distinct logical string operators,
L1(a), L2(a) can be defined, by analogy to the qubit HFC.
These are depicted in Fig. 9, and satisfy commutation
relations,

[Li(a), Li(b)] = 0, Li(ab) = Li(a)Li(b),

L1(a)L2(b) = e2π iθa,bσ (b̄) L2(b)L1(a). (16)

We emphasize that the topological order TO0 and twist defects
σ in the parton construction are completely auxiliary degrees
of freedom, and are generally distinct from the induced topo-
logical order of the code TO. We are now in a position to
deduce the structure of TO. Li(a) are string operators that
create anyon strings of TO. Denote the anyon of TO generated
by the loop Li(a) with a ∈ TO0 as Fi(a). For Abelian topo-
logical orders, the fusion rules and mutual statistics θF (a),F (b)

can be determined purely from the algebra of the anyon string
operators. In our case we have Fi(a) × Fi(b) = Fi(ab) and
the nontrivial mutual statistics are θF1(a),F2(b) = θa,bσ (b). In-
variant anyons of {TO0, σ } are mapped to vacuum, Fi(a) = 1
if σ (a) = a, since Fi(a) has trivial braiding with all other
anyons. Therefore, each type of string operator is capable of
creating |TO0|/|Inv(σ )| = D anyons, TO will have in total
|TO| = D2 = (|TO0|/|Inv(σ )|)2 anyons (including the vac-
uum sector).

Having worked out the induced topological order TO,
we next examine the Floquet dynamics of logical operators
(“logicals”). Following similar reasoning as in the HFC model
one will find that that there is a permutation, L1(a) ↔ L2(a)
after each Floquet period. This corresponds to an order-two
anyon permutation of TO, F1(a) ↔ F2(a), which we denote

TABLE I. Notation: U (1)N is the 1
N Laughlin state, DZN stands

for ZN toric code, subscripts on anyons are layer labels.

Auxiliary topological
order and twist-defects
partons on sites: TO0, σ

Resulting topological
order in paired-defect

network ICS’s and
automorphisms: TO, ϕ

U (1)N × U (1)N , a1 ↔ a2 DZN , e ↔ m
DZN , a → a, N = 2n > 2 D2

Zn
, a1 ↔ a2

DZN , a → a, N = 2n − 1 D2
ZN

, e1 → e2
2, m1 →

mn
2, e2 → en

1, m2 → m2
1

DZN , e → mp, m →
eq, pq = 1modN

DZN , e → mp, m → eq

as ϕ. Moreover ϕ is an automorphism of TO since it preserves
all anyon braiding statistics

θF1(a),F2(b) = θa,bσ (b) = −θa,b + θa,σ (b) (17)

= −θa,b + θσ (a),b = θaσ (a),b, (18)

which is equal to the exchanged value θF2(a),F1(b) = θb,aσ (a).
In Appendix D we derive a few different examples of the

topological order TO, ϕ, induced for an HFC with on-site
degrees of freedom described by σ twist-defects partons of
auxiliary topological order TO0. The results are summarized
in Table I.

2. Generalized honeycomb Floquet code: An example

Here we provide exposition of one example of GHFC. This
GHFC follows from setting the island topological order TO0

to be the Z4 Toric code, and the Island defect to be the a → ā
defect. Following the procedure of constructing GHFC, the
on-site Hilbert space is spanned by the quotient TO0/Inv.
Here the anyons that are invariant under a → ā are generated
by e2 and m2. Therefore the quotient group is generated by
representatives [e] and [m], each now having order 2. The
on-site Hilbert space is therefore C2 ⊗ C2, i.e., two qubits.
{|[e] j[m]k〉| j, k = 0, 1} is a basis for the on-site Hilbert space.
The on-site operators are now T [e]

x,y,z, T [m]
x,y,z. From the definition

of these operators (15) we have, for example,

T [e]
z |[e] j[m]k〉 = eiθe,e j mkσ (ē j m̄k ) |[e] j[m]k〉 (19)

= eiθe,m2k |[e] j[m]k〉 (20)

= (−1)k|[e] j[m]k〉, (21)

from which we conclude T [e]
z = Z2. Similarly, we have T [e]

x =
X1, T [m]

z = Z1, T [m]
x = X2. Therefore T [e]

y = T [e]†
x T [e]†

z = X1Z2

and T [m]
y = T [m]†

x T [m]†
z = X2Z1. These local operators give

us the measurement scheme: on x bonds the checks are
X1,iX1, j and X2,iX2, j , on z bonds the checks are Z1,iZ1, j and
Z2,iZ2, j , and on y bonds the checks are X1,iZ2,iX1, jZ2, j and
X2,iZ1,iX2, jZ1, j . Here i, j are the labels of the two sites on a
bond. Following the usual HFC schedule, one sees that two
plaquette stabilizers shown in Fig. 10 are generated after a full
cycle. These two plaquette operators commute with all check
operators and are persistent stabilizers of all round. Therefore
in each round the bond checks and the persistent stabilizers
together give a finite dimensional code space corresponding to
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FIG. 10. Persistent stabilizers in the D2
Z2

, a1 ↔ a2 GHFC.

a topological order ground space. It is straightforward to con-
struct logical operators following the prescription in Fig. 9,
and see that the code space of each round is equivalent to
the ground space of two copies of Z2 toric code. Tracking
the evolution of logical operators through a full cycle, one
sees that the e1, m1-string operators are transformed into e2,

m2-string operators and vice versa.

3. Unitarization and chiral Floquet index

Just as for the spin-1/2 version, the measurement schedule
of these generalized HFC models satisfies all the requirements
of a fully-paired twist defects with no-long-loops in transi-
tions between ICSs. Hence, by the general results above, we
can lift this measurement-only FC into a unitary loop. In fact,
we may directly follow the constructions of Sec. II B, replac-
ing the spin-1/2 Pauli algebra by the generalized operators
T a

x,y,z. Just as for the qubit HFC, this results in a “radical”
chiral FET [17] exhibiting chiral translation of ϕ twist defects
around a spatial boundary.10 The corresponding chiral Floquet
index was analyzed in [17], and takes value χ (U ) = dϕQ. We
note that while the chiral Floquet index has only been rigor-
ously defined for trivial or Z2 topological orders, we expect
that it can be generalized to arbitrary topological orders and
anyon models. For the present models, with order-two twist
defects (which have dσ that are square-root of an integer), we
may sidestep this difficulty by considering U 2, which is an
invertible CF order, with index ν(U 2) = ν(U )2 = d2

ϕQ
2.

This result supports the conjecture [17] that a Floquet MBL
system realizing a bulk topological order automorphism will
have edge chiral index whose irrational part is given by the
quantum dimension of the corresponding defect. Similar to
what we showed for HFC, this nontrivial radical CF index
then put constraints on the possible boundary dynamics of the
generalized HFC, namely, a gapped boundary is only possible
with doubled periodicity.

10A subtlety is that σ is a twist defect of the auxiliary parton
construction topological order TO0, which generally not equal to
the induced topological order TO and twist defect ϕ of the resulting
FET. However, it turns out that dϕ = dφ . To see this note that, for σ :
σ × σ = ∑

a aσ (a), which has |TO0|/Inv(σ ) distinct terms, there-
fore dσ = √|TO0|/Inv(σ ). For ϕ,F1(a) ↔ F2(a), therefore ϕ ×
ϕ = ∑

a F1(a)F2(a), which also has |TO0|/Inv(σ ) different terms
[recall F (a) = 1 for any a ∈ Inv(σ )].

VI. DISCUSSION

The defect network constructions introduced in this
paper provide a direct connection between Floquet codes and
Floquet-enriched topological orders. These results establish a
throughline connecting topological indices for Floquet phases
and practical issues for designing quantum error correcting
codes.

Our results suggest a number of avenues for further
exploration:

While we have mainly focused on 2d models with Abelian
topological order based on generalizations of the Kitaev
honeycomb model, it may be interesting to extend these
constructions to non-Abelian systems capable of universal
topological computation, or to 3d [28,37–39] where the theory
of twist defects, topological order, and fracton orders are less
well characterized.

From a practical quantum error correction perspective, it
would be desirable to develop simplified lattice models for
general twist-defect networks, and to design possible physi-
cal realizations of generalized Floquet codes in qubit arrays,
AMO quantum simulators, or correlated electron materials.
A second challenge is to understand the resulting code prop-
erties, such as the universality class and scaling properties
of their error-correcting threshold phase transitions, and the
practical error-correction thresholds for realistic implementa-
tions and decoders. Some progress [40,41] has been made in
these directions already.

One potential way of enhancing the quantum storage ca-
pacity of FCs would be to introduce defects into the TO state
encoded in each of the ICSs. In the case of the HFC and its
ZN generalizations this has been worked out explicitly [42].
Here the measurement cycle produces a sequence of ICSs
equivalent to toric code with lattice dislocations. It would be
interesting to understand a prescription for introducing defects
into ICSs of the general class of FCs discussed in this work. It
seems somewhat natural that the defect network constructions
we have considered should be well suited to this task.

Note added. Recently, we learned about two forthcoming
related works connecting Floquet codes and the chiral Floquet
unitary index [43,44].

ACKNOWLEDGMENTS

We thank David Aasen, Arpit Dua, Tyler Ellison, Nat
Tantivasadakarn, and Dominic Williamson for insightful dis-
cussions. This work was supported by DOE DE-SC0022102
(J.S. and A.C.P.), and in part by the Alfred P. Sloan Foun-
dation through a Sloan Research Fellowship (A.C.P.). This
work was partly performed at KITP supported by the National
Science Foundation under Grant No. NSF PHY-1748958.

APPENDIX A: CHIRAL UNITARY INDEX

In this Appendix, we briefly summarize the chiral unitary
index for fermionic systems, such as the gauged fermion
system relevant to the unitary lift of the honeycomb Flo-
quet code (HFC) model. For details, we refer the reader to
[18]. In this Appendix, we consider freezing the Z2 gauge
fields and working with a fermion system in the fixed-gauge
background. Fermionic systems are formally described by a
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Z2-graded tensor product Hilbert space, where the Z2 grading
simply associates each state, |i〉 with a Z2 number |i| = ±1
that indicates whether there are an even- or odd-fermion
parity. Furthermore, the graded tensor product of differ-
ent fermionic subsystems is then defined as11 |i〉 ⊗g | j〉 =
(−1)|i|·| j|| j〉 ⊗g |i〉.

The index applies to 2d dynamics generated by a local
Hamiltonian evolution U (t ) = T e−iHt induces a locality-
preserving unitary evolution, such that the time evolution for
one Floquet period can be factorized into bulk and edge com-
ponents,

U = U (t = 1) = Ubulk ⊗g Uedge. (A1)

Crucially, while U is generated by a local 2d Hamiltonian,
in topologically nontrivial cases, Uedge will not be generated
by any edge-local Hamiltonian. That is, while Uedge is locality
preserving, i.e., it maps (quasi)local operators to other nearby
(quasi)local operators, it need not be locally generated. The
chiral index ν(U ) = ν(Uedge) measures the amount of quan-
tum information transported along the edge by Uedge. This
index obeys the multiplicative composition rules

ν(U ⊗g V ) = ν(U )ν(V ) = ν(UV ). (A2)

ν(U ) = 1 signifies a topologically trivial unitary, and is
satisfied iff Uedge is locally generated, i.e., iff Uedge =
T e−i

∫ 1
0 H1d (t )dt = 1 for some 1d-local H1d (t ).

While the total fermion parity of U is necessarily even,
Ubulk/edge could individually have even or odd-fermion parity.
If Uedge always has even-fermion parity, then ν(Uedge) ∈ Q
takes rational values. On the other hand, ν(Uedge) takes an
irrational value,

√
2Q, iff Uedge has opposite fermion parity

for periodic vs antiperiodic boundary conditions (equivalently
if Uedge changes fermion parity in response to inserting a Z2

fermion parity flux) [45].
Absent additional symmetries, ν represents a complete

classification of 2d unitary loops and MBL dynamics of non-
fractionalized fermion systems or Z2 topological orders with
emergent fermions [17,18].

In this Appendix we focus only on 1d locality preserving
unitaries U , such as Uedge defined above, and for convenience
we drop the “edge” subscript in subsequent expressions.

The chiral unitary index was first formulated by GNVW
[11] for bosonic systems and later generalized in [17,18] to
fermion systems. The original formulation of this index is in
terms of overlaps between operator algebras A, B of observ-
ables. In the fermion context, we can think of the operator
algebras A for a region A as the algebra generated polyno-
mials of the 2|A| Majorana modes in region A and products
thereof, where |A| denotes the number of sites in region A.
Then the overlap between two such algebras is defined as

〈A,B〉 = 2−|A∪B|

√√√√22|A|∑
a=1

22|B|∑
b=1

[trA∪Be†
aeb]|2 (A3)

11Formally speaking, there is a natural isomorphism on
Z2-graded tensor product space: F : V ⊗g W → W ⊗g V, |i〉 ⊗g

| j〉 �→ (−1)|i|| j|| j〉 ⊗g |i〉.

where ea,b denote an orthonormal basis of operators for A,B
respectively. This definition has the property that overlap
of A with itself satisfies 〈A,A〉 = 2|A|, whereas the over-
lap of commuting (in the Z2-graded sense) algebras A,B is
〈A,B〉 = 1.

The chiral unitary (also known as GNVW) index is then
defined as follows: Take regions A and B to be abutting (at,
say x = 0) but nonoverlapping intervals that are sufficiently
large such that operators near the interface cannot spread or
move outside of A ∪ B during one period. Then, in terms of the
associated observable algebras A,B the chiral unitary index

ν(U ) = 〈U †AU,B〉
〈U †BU,A〉 (A4)

keeps track of of the ratio of how many operators flow from
A → B versus the amount that flow from B → A under the
evolution of U (or equivalently in the Schrödinger picture of
the evolution, how many states of in region B flow into region
A under the evolution).

For the Majorana translation dynamics realized at the
edge of the unitary circuit version of the HFC code above
(see Fig. 2), it suffices to choose regions A and B of the
edge that only contain two Majorana modes each, such that
A = {c1, c2, c1c2} and B = {c3, c4, c3c4}. Then, under the
Majorana translation the only nontrivial overlap between from
the contribution to 〈A,B〉 from U †c2U = c3 (all other opera-
tors evolve purely within A or B, or move from B to outside of
A ∪ B). This gives ν(U ) = √

2.
The generalized HFC with general twist defects corre-

spond to similar unitary models in which the bulk defects
are swapped around short loops and the boundary defects get
translated along the edge, with the translation of the orienta-
tion depending on the convention for turning the generalized
HFC into a unitary loop. While there is not a rigorous theory
of QCAs for general anyonic degrees of freedom, a natural
generalization of the chiral Floquet index would then give
ν(U ) = dσQ, where dσ is the quantum dimension of the twist
defect.

APPENDIX B: MEASUREMENTS IN CONTINUUM
DEFECT NETWORK

Here we provide details on how to determine minimal set
of measurements required to produce general Floquet codes
discussed in Sec. V. Note that measuring braiding checks
for all anyons will definitely be sufficient for generating the
logical movements, in many cases it is not necessary and re-
duction of number of measurements is possible. For instance,
(1) when the braiding checks of ai are known, braiding checks
of any anyon that can be generated by ais is also known and
(2) when an anyon ab is invariant under σ , measuring the
braiding of one of them suffice to generate logical transform
for both a strings and b strings. The process is shown in
Fig. 11. Before we discuss the general scheme for measure-
ment reduction based on the above two rules, let us consider
two helpful examples. We will use DZN , the quantum double
of ZN , to denote the ZN toric code.
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FIG. 11. “Moving” logical operators across twist defects. ab is
a invariant anyon. One can use the measured b check to move an a
string by first fusing the a string with the b string outside the blue
plaquette to obtain an invariant anyon ab, and then deforming the ab
string into the blue plaquette and fuse it with the σ (b) string to obtain
a temporary σ (a) string.

1. DZN with e → mq, m → ep

In this case one only needs to measure braiding check of
e in every round. To see this, notice firstly the anyon emq is
invariant, therefore one can move an mq string using e checks
by rule (2). Since an m string is the pth power of an mq string,
(mq)p = 1, according to rule (1) m string is now also movable.
Since e, m generates the toric code, all anyon strings are now
movable.

2. (DZN )3 with (ei, mi ) → (ei+1, mi+1)

In this case one only needs to measure braiding of
e1, e2, m1, m2. The invariant anyons are e1e2e3 and m1m2m3,
therefore it is clear e3 strings can be moved using e1, e2

checks, and m3 checks can be moved using m1, m2 checks. No
further reduction of measurements can be performed, since
now no two anyons in the set {e1, e2, m1, m2} are related by
any of the two rules.

3. General scheme for measurement reduction

With the just discussed examples in hand we now give a
recipe for what braiding checks to measure in the general case.

Let {a1, · · · , aN } be the collection of generators of the
Abelian topological order of interests and start by con-
sidering the trajectory of a1 under the permutation σ :
a1, σ (a1), · · · , σ k1−1(a1), where k1 is the smallest num-
ber such that σ k1 (a1) = a1, i.e., the order of a1 un-
der σ . The fusion of all anyons on the trajectory,
a1σ (a1)σ 2(a1) · · · σ k1−1(a1), is invariant under σ , therefore
the braiding check of one of them can be thrown out according
to rule (2). Let us choose to measure the first k1 − 1 anyons.
Now according to rule (1), any anyon string that is in the
group generated by the anyons on the trajectory of a1, denoted
as A(a1), is now movable. In the next step one searches
for any generator ai2 that is still immovable, i.e., ai2 that is
not in A(a1). One performs the measurements for all anyons
on the trajectory of ai2 except σ k2−1(ai2 ), as we did for a1.
Then any anyon string that is in the group generated by the
trajectories of ai1 , ai2 is now known. One can then look for
any generator whose braiding is still unknown and repeat this
process until we cover all the generators. At the termination
of our search we will have used Q < N generators aj and
performed

∑Q
j=1(k j − 1) braiding check measurements.

APPENDIX C: ANALYSIS OF THE GENERALIZED HFC
CODE SPACE

In this section we provide proof that all local degrees of
freedom are frozen by the measurements and certain instan-
taneous code space will emerge after any measurement round
� 3 in the parton realization of the generalized HFC models.

First, the persistent stabilizers P[a] on a plaquette mutu-
ally commute and form a representation of TOσ

0 . The joint
eigenvalues of P[a]: {p[a]} can be viewed as a map from TOσ

0
to U (1)(since P[a]s are unitary, their eigenvalues are phase
factors), and P[a] being an representation means p[a] is an
element of the Pontryagin dual of TOσ

0 , T̂Oσ
0 . It is possible

for a joint eigenspace of P[a]s to be degenerate. In our case,
P[a]s are plaquette operators therefore their joint eigenspace
must be degenerate. We prove that the degeneracy associated
with different joint eigenvalues {p[a]}, {p′

[a]} must be the same.
On a plaquette the operator P[a] takes the form

T a
1,zT

σ (a)
2,y T a

3,xT σ (a)
4,z T a

5,yT σ (a)
6,x . (C1)

For any on-site operator T a
i,α , its joint eigenvalues ψ ([a]) as a

function of [a] may be thought of as a map from TOσ
0 to U (1).

Moreover, since T a
i,α form a representation of the group TOσ

0 ,
its eigenvalues ψ ([a]) is an element of Hom(TOσ

0 ,U (1)) =
T̂Oσ

0 , the Pontryagain dual of TOσ
0 . In fact, the joint eigenval-

ues of T a
i,α can be any element of T̂Oσ

0 .

Lemma C.1. Let ψ ∈ T̂Oσ
0 , there is an eigenstate of T a

x
with eigenvalues ψ (a). The same is true for T a

z , T a
y .

Proof. Let |ψ〉 = ∑
g∈T̂Oσ

0
c(g)|g〉 be an eigenstate of T a

x

with eigenvalue ψ , T a
x |ψ〉 = ψ ([a])|ψ〉, we then have

T a
x |ψ〉 =

∑
g∈T̂Oσ

0

c([g])|[ag]〉 =
∑

g∈T̂Oσ
0

c([a−1g])|[g]〉, (C2)

which gives c([a−1g]) = ψ ([a])c([g]). Define an unitary Vφ

for any φ ∈ T̂Oσ
0 as Vφ|[g]〉 := φ([g])|[g]〉, then It is clear that

Vφ|ψ〉 will have joint eigenvalue φψ of T a
x ,

T a
x Vφ|ψ〉 =

∑
[g]∈T̂Oσ

0

c([g])φ([g])|[ag]〉 (C3)

=
∑

[g]∈T̂Oσ
0

c([a−1g])φ([a−1g])|[g]〉 (C4)

=
∑

[g]∈T̂Oσ
0

ψ ([a])c([g])φ([a−1])φ([g])|[g]〉 (C5)

= ψ (a)φ([a])
∑

[g]∈T̂Oσ
0

c([g])φ([g])|[g]〉 (C6)

= ψφ(a)Vφ|ψ〉. (C7)

Therefore by acting with Vφ we can generate eigenstates of T a
x

with any eigenvalues in T̂Oσ
0 . For T a

z , its action on the basis is
given by

T a
z |g〉 = eiθa,gσ (g) |g〉, (C8)

therefore it is diagonal in the basis with joint eigenvalues
ψg([a]) = eiθa,gσ (g) . ψg 
= ψg′ for any [g] 
= [g′], since if ψg

were equal to ψg′ , then we would have θa,gσ (g) = θa,g′σ (g′ ) for
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any anyon a, leading to g = g′ up to invariant anyons, i.e.,
[g] = [g′]. Therefore ψg s enumerate all |T̂Oσ

0 | = |TOσ
0 | = D

eigenvalues of T a
z . �

The six local operators making up P[a] commute with
each other, say they are diagonalized simultaneously with
eigenvalues ψi, then P[a] has joint eigenvalues

∏6
i=1 ψi.

Clearly the eigenvalues of P[a] enumerate all elements of T̂Oσ
0 .

Restricting to certain joint eigenspace of P[a] with eigenvalues
p[a] is equivalent to imposing

∏6
i=1 ψi = p, which can be

solved by expressing one of ψi in terms of the other five.
Therefore it is clear any joint eigenspace of the plaquette
stabilizers P[a] has dimension D5.

At a given round the checks on a bond T a
i T a

j also form
representation of TOσ

0 , similar argument shows restricting to
their joint eigenspace will reduce the Hilbert space dimension
by 1/D. Now we can count how many DOF are left by the
persistent stabilizers and checks: If we have p plaquettes there
will be 1/3 × 3p = p checks of a given type, therefore the
total number of local constraints is p + p = 2p, but we have
exactly 2p sites with each site having dimension D, thus local
dof are frozen by the checks and persistent stabilizers. Notice
we have global constraints on the local constraints: product of
all plaquette stabilizers is 1, and product of type-i plaquettes
and type-i checks is 1. Therefore a nontrivial finite dimen-
sional ICS will be generated by the measurements, which
corresponds to some topological order, TO.

APPENDIX D: GENERALIZED HONEYCOMB CODE:
EXAMPLES

In this Appendix we provide detailed study of several
examples of generalized lattice HFCs following the general
construction in Sec. V. We will make frequent use of the
generalized ZN Pauli operators, that act on N-level qudits with
on-site Hilbert space, CN = span{| j〉 : j = 0, 1, · · · , N − 1},

Z| j〉 = ei 2π j
N | j〉,

X | j〉 = | j + 1 modN〉,
Y = X †Z† = X N−1ZN−1. (D1)

1. TO0 = U (1)N × U (1)N , σ : a1 ↔ a2

TO0 is two layers of 1/N Laughlin states. Denote the
1/N Laughlin quasiparticles in the two layers as ε1, ε2.
Anyon ε1ε2 is invariant, the invariant subgroup is gener-
ated by it and is ZN . The quotient group is TO0/Inv(σ ) =
Z2

N/ZN = ZN . H is the group algebra over ZN ,C[ZN ] =
CN = span{|ε1〉, |ε2

1〉, · · · , |εN
1 = 1〉}.

The anyon braiding operators, given by the general recipe
(15), are

T ε1
z

∣∣εk
1

〉 = e
iθ

ε1 ,εk
1 εk

2

∣∣εk
1

〉 = e
2π ik

N
∣∣εk

1

〉
, (D2)

T ε1
x

∣∣εk
1

〉 = ∣∣εk+1
1

〉
, (D3)

from which we read off T ε1
z = Z and T ε1

x = X , T ε1
y = X †Z† =

Y . This is just the genon theory described in [36].

x-bond checks y-bond checks z-bond checks

XiXj YiYj ZiZ j

The TO generated by the measurement sequence has
anyons generated by F1(ε1),F2(ε1), which are self bosons
and mutual statistics θF1(ε1 ),F2(ε1 ) = θε1,ε1ε2 = θε1,ε1 = 2π

N ,
therefore we identify them as the e, m particles of a DZN . The
measurement induced automorphism is ϕ : F1(e1) ↔ F2(e1),
which is then identified as e ↔ m–we have reproduced the
HFC code of Haah and Hastings.

2. TO0 = DZN , σ : a → ā, N = 2n > 2

In this case en, mn are invariant, the invariant subgroup
is generated by them and is Z2 × Z2. The quotient group is
DZN /Inv(σ ) = (ZN × ZN )/(Z2 × Z2) = Zn × Zn. H is then
the group algebra over Zn × Zn, C[Zn × Zn] = Cn ⊗ Cn,
which has dimension D = n2.

A basis for H is {|[ek], [ml ]〉|, k, l = 0, · · · , n − 1}, where
[ ] is the equivalent class modulo Inv(σ ), which satisfies
[en] = [mn] = [1]. The anyon braiding operators are given by
(15) as

T e
z |[ek], [ml ]〉 = eiθe,ek ml σ (ek ml ) |[ek], [ml ]〉 (D4)

= e
2π i2l

N |[ek], [ml ]〉 = e
2π il

n |[ek], [ml ]〉, (D5)

from which we read off T e
z = Z2. Similarly following the

recipe (15) we see T e
x = X1, T m

z = Z1, T m
x = X2. Then T e

y =
T e†

x T e†
z = X †

1 Z†
2 and T m

y = T m†
x T m†

z = X †
2 Z†

1 .

x-bond checks y-bond checks z-bond checks

X1,iX1, j, X †
1,iZ

†
2,iX

†
1, jZ

†
2, j, Z1,iZ1, j,

X2,iX2, j X †
2,iZ

†
1,iX

†
2, jZ

†
1, j Z2,iZ2, j

Anyons of TO are generated by Fi(e),Fi(m), which have
order n. Nontrivial statistics are: θF1(e),F2(m) = θe,mσ (m̄)=m2 =
2π 2

N = 2π
n , and θF1(m),F2(e) = θm,e2 = 2π

n , which corresponds
to statistics of two copies of Zn toric code if we la-
bel the anyons as e1 = F1(e), m1 = F2(m), e2 = F2(e), m2 =
F1(m). The measurement induced automorphism, F1(a) ↔
F2(a), is then ϕ : e1 ↔ e2, m1 ↔ m2.

3. TO0 = DZN , σ : a → ā, N = 2n − 1

The invariant subgroup is trivial. The on-site Hilbert space
dimension is D = |TO0| = N2.

H = C[ZN × ZN ] = CN ⊗ CN . A basis of H is |ek, ml〉,
the anyon braiding operators are

T e
z |ek, ml〉 = eiθe,e2k m2l |ek, ml〉 = e

2π i2l
N |ek, ml〉 (D6)

from which we read off T e
z = Z2

2 , similarly we get
T e

x = X1, T m
z = Z2

1 , T m
x = X2. T e

y = T e†
x T e†

z = X †
1 Z†2

2 , T m
y =

T m†
x T m†

z = X †
2 Z†2

1 .
In this case there are no invariant anyons. Statis-

tics of TO are θF1(e),F2(m) = θe,mσ (m̄)=m2 = 2π 2
N and
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x-bond checks y-bond checks z-bond checks

X1,iX1, j, X †
2,iZ

†2
1,iX

†
2, jZ

†2
1, j, Z1,iZ1, j,

X2,iX2, j X †
1,iZ

†2
2,iX

†
1, jZ

†2
2, j Z2,iZ2, j

θF1(m),F2(e) = θm,e2 = 2π 2
N , which give θF1(e),F2(m)M =

2π 2M
N ≡ 2π 1

N mod2π and similarly θF1(m),F2(e)M = 2π 1
N .

Therefore we can label e1 = F1(e), m1 = F2(m)M, m2 =
F1(m), e2 = F2(e)M , which form two copies of DZN . The
measurement induced automorphism is ϕ : e1 = F1(e) →
F2(e) = ((F2(e)M )2 = e2

2 and m1 = F2(m)M → F1(m)M =
mM

2 .

4. TO0 = DZN , σ : e → mp, m → eq, pq modN = 1

emp is invariant, emp → mp(eq)p = mpe. The invariant
subgroup is generated by emp and has order N . Therefore the
on-site Hilbert space dimension is D = N2/N = N .

H has a basis |e〉, |e2〉, · · · , |eN = 1〉. The anyon braiding
operators are

T e
z |ek〉 = eiθe,em−kp |ek〉 = e

2π i(−kp)
N |ek〉 (D7)

from which we can read off T e
z = Z−p, similarly T e

x = X ,
T e

y = T e†
x T e†

z = X †Z p.

x-bond checks y-bond checks z-bond checks

XiXj X †
i Z p

i X †
j Z p

j ZiZ j

TO is generated by anyons F1(e),F2(e) with statis-
tics θF1(e),F2(e) = θe,em−p = 2π

−p
N , which gives θF1(e),F2(e)−q =

2π 1
N , so we identify TO as DZN with F1(e) being e and

F2(e)−q being m. The measurement-induced automorphism
is ϕ : F1(e) → F2(e) = (F2(e)−q)−p, i.e., e → mp, similarly
m → eq.
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