
PHYSICAL REVIEW B 108, 195133 (2023)

Exact quantum many-body scars in higher-spin kinetically constrained models
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We discover a variety of exact quantum many-body scars in higher-spin kinetically constrained models through
the recently developed DMRG-S algorithm [Zhang et al., Phys. Rev. Lett. 131, 020402 (2023)]. Specifically, for
the higher-spin PXP model on arbitrary bipartite lattices of any spatial dimension, we find exact many-body
scars that are equidistantly spaced in the energy spectrum and exhibit similar structures to the ground state of
the Affleck-Kennedy-Lieb-Tasaki model. For the one-dimensional Fermi-Hubbard model with a tilted potential
in a certain parameter regime, whose effective model is equivalent to a kinetically constrained spin model with
four degrees of freedom on each site, we find several many-body scars at energy E = 0 and E = ±√

2 that can
be exactly represented as matrix product states with finite bond dimensions. Our results demonstrate that larger
local degrees of freedom in the kinetically constrained models provide a much broader space for the emergence
of quantum many-body scars and weak ergodicity breaking.
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I. INTRODUCTION

In isolated quantum many-body systems, long-time evolu-
tion governed by nonintegrable Hamiltonians typically causes
local observables to approach their thermal expectation val-
ues. This kind of quantum thermalization dynamics can
be illustrated by the eigenstate thermalization hypothesis
(ETH) [1–4]: The subsystem reduced density matrices of typ-
ical excited eigenstates are close to the Gibbs ensembles at the
temperature set by the eigenenergy. Known strong violation of
the ETH paradigm includes the integrable [5] and many-body
localized [6,7] systems, in which either exact or approxi-
mate extensive conserved quantities prevent thermalization in
the systems. Recently, experiments in Rydberg-atom quan-
tum simulators demonstrated unexpected long-time coherent
revival dynamics from certain special initial states [8,9].
This type of weak ergodicity breaking has been attributed
to a small fraction of nonthermal excited eigenstates im-
mersed in a sea of thermal ones, dubbed quantum many-body
scars [10–13].

Quantum many-body scarred eigenstates with exact analyt-
ical expressions have been found and constructed in various
models [14–38]. In a previous work [39], by leveraging the
subvolume-law entanglement entropy of many-body scars,
we proposed the DMRG-S algorithm to systematically ob-
tain accurate matrix product state (MPS) representations for
scars in generic Hamiltonians without a priori knowledge.
Here, we present a variety of exact quantum many-body scars
found by DMRG-S in higher-spin kinetically constrained
models. Previous works (Refs. [40,41]) numerically showed
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that these models host scarred eigenstates (without exact ana-
lytical expressions) and exhibit revival dynamics from special
initial states, yet they overlooked the existence of these exact
scars. The larger Hilbert space dimension and eigensubspace
degeneracy [32,42,43] of higher-spin models pose notori-
ous numerical challenges for finding highly excited scarred
eigenstates through exact diagonalization, which are exactly
overcome by our DMRG-S algorithm. Our results demon-
strate that the larger local degrees of freedom in kinetically
constrained models [44] can provide a much broader space
for the emergence of quantum many-body scars and inducing
weak ergodicity breaking in these models.

In Sec. II for the higher-spin PXP models [39,40] on ar-
bitrary bipartite lattices of any spatial dimension, we find
exact many-body scars that are equidistantly spaced in the
energy spectrum (i.e., forming a tower of scarred eigenstates),
which exhibit simple structures similar to the ground state
of the Affleck-Kennedy-Lieb-Tasaki (AKLT) model [45]. We
further write down related Hamiltonians on arbitrary lattices
that host these AKLT-like scars with area-law entanglement.
In Sec. III, we reexamine the one-dimensional (1D) Fermi-
Hubbard model with a tilted potential in the parameter regime
U = � � J and the filling factor ν = 1 [41], whose effective
model is equivalent to a kinetically constrained spin model
with four degrees of freedom on each site. We find several
many-body scars at energy E = 0 and E = ±√

2 that have ex-
act MPS representations with finite bond dimensions (similar
to those found in the 1D spin-1/2 PXP model [19]). Af-
ter being projected into the corresponding symmetry sectors,
these scarred eigenstates possess logarithmic entanglement
entropy scaling. We provide concluding remarks and out-
looks in Sec. IV. More details about the DMRG-S algorithm
and property analyses of the scars are presented in the
Appendixes.
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II. EXACT MANY-BODY SCAR TOWERS
IN HIGHER-SPIN PXP MODELS

In this section, we consider the following spin-s PXP
Hamiltonian on a generic bipartite graph G = (V, E ), where V
is the set of all the vertices (divided into two sets A and B), and
E is the set of all the edges (only including interconnections
between A and B):

HPXP =
∑
i∈V

Sx
i

⎛
⎝ ∏

(i, j)∈E

Pj

⎞
⎠. (1)

The spin-s on each site i contains 2s + 1 bases
{|s, mz=−s〉 , |s, mz= − s+1〉 , . . . , |s, mz=s−1〉 , |s, mz=s〉}.
|s, mz〉 denotes the eigenstate with the total spin equal
to s and the z-direction polarization equal to mz.
Pi = |s, mz = −s〉i 〈s, mz = −s|. Sx is the x-direction angular
momentum operator of spin-s. 〈s, mz ± 1| Sx |s, mz〉 =√

(s ± mz + 1)(s ∓ mz )/2.
In particular, the spin-1/2 PXP Hamiltonians on 1D [10]

and 2D [24] lattices were proposed to describe the Rydberg
atom arrays in the nearest-neighbor blockade regime [8,9,46]
(i.e., neighboring atoms cannot both be in the Rydberg excited
states). Previous works generalized the PXP Hamiltonians
to higher spins [40,47–49], which could possibly be real-
ized through multiple Rydberg excited states of atoms [50].
These works numerically found towers of scarred eigenstates
(without exact analytical expressions) and revealed their cor-
responding oscillating dynamics from special initial states.
In addition, in our previous work [39] through the DMRG-S
algorithm, we found one exact many-body scar with a bond-
dimension-2 MPS representation in the E = 0 nullspace of
the 1D PXP models of integer spin-s. Here, we further show
that general spin-s PXP Hamiltonians on any bipartite graph
of any spatial dimension host exact many-body scars forming
an equally spaced tower in the energy spectrum.

We begin by considering the spin-s PXP Hamiltonians on
the 1D spin chain with the periodic boundary condition, which
has been shown to be chaotic and nonintegrable by level
statistics calculations [40],

HPXP =
L∑

i=1

Pi−1Sx
i Pi+1, (2)

where L is the number of spin-s’s (we consider the case of
even L). We show that the following states are exact quantum
many-body scarred eigenstates, with the pictorial illustration
shown in Fig. 1(a),

|�〉 = |�odd〉 ⊗
( ⊗

i∈even

|s, mz
i = −s〉i

)
, (3)

|�odd〉 =
( ∏

i∈odd

�s
i

)(⊗
i∈odd

|s − 1, mx
i 〉i

⊗
i∈odd

|χ〉i,i+2

)
. (4)

|s, mx
i 〉i denotes the state on the site i with the total spin equal

to s and the x-direction polarization equal to mx
i . |χ〉i, j =

(|↑↓〉 − |↓↑〉)i, j/
√

2 denotes the spin singlet state (dimer)
formed by two spin-1/2’s on the sites i, j. �s

i projects the
two spin-1/2’s and one spin-(s − 1) on the site i to a total
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FIG. 1. A schematic illustration for the exact quantum many-
body scars in the higher-spin PXP models on generic bipartite
lattices. The black circles denote the spin-1/2’s split out to form
singlets (black lines). The dark blue circles denote the freely rotating
smaller spins. In (a)–(c) we only display the structure of states on one
sublattice (marked by light blue). The state on the other sublattice
(marked by red) is the direct product of states projected by the {Pi}
operators. (a) The AKLT-like scar states on the one-dimensional
spin chain. (b) The AKLT-like scar states on the two-dimensional
honeycomb lattice with the Lieb-lattice-like structure (i.e., the other
set of vertices are located on the edges of the honeycomb lattice).
(c) Possible dimer covering configurations for scar states on the
two-dimensional square lattice. We take the 3 × 3 periodic boundary
sublattice as an example. (d) On irregular bipartite graphs, the mini-
mum dimer-covering configurations on one sublattice are determined
by the connection relationship with the other sublattice.

spin-s. We can exchange the role of even and odd sites to
obtain another set of exact scars.

To prove that all the |�〉’s are eigenstates of the Hamilto-
nian Eq. (2), we observe that(∑

i∈odd

Pi−1Sx
i Pi+1

)
|�〉 =

(∑
i∈odd

Sx
i

)
|�〉 =

(∑
i∈odd

mx
i

)
|�〉 ,

(5)

since the projector (
∏

i∈odd �s
i ) preserves the total x-direction

angular momentum before and after the projection.
We also have the relations

PiPi+2 |�odd〉 = 0 ∀ odd i. (6)

Notice that PiPi+2 projects the two spin-s’s on the sites i, i + 2
onto a total spin-2s with mz = −2s. However, since we have
already split two spin-1/2’s from the two spin-s’s to form
a singlet state |χ〉i,i+2, PiPi+2 simply annihilates |�odd〉. The
constructions of these exact scars retain the same spirit as the
ground state of the AKLT model, despite the fact that here we
further add a freely rotating spin-(s − 1) on each site.

Combining Eqs. (5) and (6), we prove that |�〉 is the
eigenstate of the 1D spin-s PXP Hamiltonian with eigenen-
ergy E = ∑

i∈odd mx
i , where mx

i can take values {−(s −
1),−(s − 2), . . . , s − 2, s − 1}. The bipartite entanglement
entropy of |�〉 (or |�odd〉) equals ln 2 given by the singlet
states. All these |�〉’s can be exactly represented as MPSs
with bond dimensions χ = 2, which are feasible to be pre-
pared on near-term quantum devices [51–56]. We provide
the MPS expressions for the |�〉 states of the 1D spin-1

195133-2



EXACT QUANTUM MANY-BODY SCARS IN HIGHER-SPIN … PHYSICAL REVIEW B 108, 195133 (2023)

and spin-3/2 PXP model in Appendix B. We then deduce
that these (2s − 1)L AKLT-like states with area-law entan-
glement form an equidistantly spaced many-body scar tower
in the energy spectrum. A natural consequence reflecting on
the quench dynamics is that if we start the PXP Hamilto-
nian evolution from some experimentally preparable initial
states like (

∏
i∈odd �s

i )(
⊗

i∈odd |s − 1, mz
i 〉i

⊗
i∈odd |χ〉i,i+2) ⊗

(
⊗

i∈even |s, mz = −s〉i ) [all the freely rotating spin-(s − 1)’s
take eigenstates of the z-direction angular momentum], we
will obtain perfect periodic oscillations.

We can directly generalize the above constructions to the
PXP Hamiltonians on any bipartite graph of any spatial di-
mension, as shown in Figs. 1(b)–1(d). In particular, we first
consider a special kind of bipartite lattices similar to the Lieb
lattice [57]: Imagine that the vertices of the sublattice A con-
stitute a graph GA = (VA, EA). The vertices of the sublattice B
are put on the midpoints of all the edges in EA. For example,
Fig. 1(b) shows the honeycomb lattice formed by vertices in
the sublattice A (marked by light blue), and the vertices of
the sublattice B (marked by red, omitted in this subfigure)
are located on all the edges of the honeycomb lattice. For
PXP Hamiltonians on this type of bipartite graphs, we could
construct the exact many-body scars by fixing all the spin-s’s
on the sublattice B to be |s, mz = −s〉. The constraints for the
states on the sublattice A then become

PiPj |�A〉 = 0, ∀ (i, j) ∈ EA. (7)

We thus need to put one singlet |χ〉i, j on all the edges in EA

to fulfill these requirements. Finally, we obtain the AKLT-like
dimer covering structure for the spin-s’s on the sublattice A,
as illustrated in Fig. 1(b).

Inspired by the derivations above, we can further ignore the
sublattice B and write down the following spin-s “XPP”-type
Hamiltonian on a generic graph G = (V, E ):

HXPP =
∑
i∈V

Sx
i +

∑
(i, j)∈E

Vi, jPiPj, (8)

where Vi, j = PiPjV ′
i, j , and V ′

i, j is a generic two-spin Hermitian
operator acting on the sites i, j (we can also replace Vi, j with
generic two-spin Hermitian operators Vi′, j′ acting on other
neighboring sites i′, j′). One can straightforwardly follow the
proofs above to deduce that the XPP Hamiltonian hosts the
following AKLT-like quantum many-body scars:

|�〉 =
(∏

i∈V

�s
i

)⎛
⎝⊗

i∈V

|s − zi/2, mx
i 〉i

⊗
(i, j)∈E

|χ〉i, j

⎞
⎠, (9)

where zi is the coordinate number of the site i (how many
edges connect to the vertex i). Other eigenstates of the XPP
Hamiltonian which are not annihilated by all the PiPj op-
erators will be affected by the random operators Vi, j and
get thermalized. Note that while the XPP Hamiltonian looks
similar to the toy model proposed in Ref. [17], it differs
from that model intrinsically because the XPP Hamiltonian
is beyond the Shiraishi-Mori embedding formalism [14] by
[
∑

i Sx
i , PiPj] = 0. Another utility of the XPP Hamiltonian is

that, by the random operators Vi, j , it addresses the potential
caveat on whether the higher-spin PXP models on generic bi-
partite graphs are indeed chaotic and nonintegrable. Previous

level statistics calculations for small s in 1D [40] and 2D [24]
have given affirmative answers. However, conducting similar
calculations for larger s and generic graphs is numerically
challenging due to the even larger Hilbert space dimension.

Now we consider the PXP Hamiltonians on more generic
higher-dimensional bipartite lattices, where the constraints
for the states on the sublattice A are not always two-body
like Eq. (7). As an example for the 2D square lattice, if we
fix all the spin-s’s on the sublattice B to be |s, mz = −s〉,
the constraints for the states on the sublattice A become
(
∏

i∈� Pi ) |�A〉 = 0, where i ∈ � denotes the four vertices
in one square plaquette of the sublattice A. Hence, we need
to put one dimer on each plaquette, possibly on one of the
four edges or one of the two diagonals, to fulfill the con-
straints. One illustrative dimer-covering configuration for the
scar states is displayed in Fig. 1(c), where we take the 3 × 3
periodic boundary sublattice as an example. To construct as
many scarred eigenstates as possible, we should put as few
dimers on the sublattice as possible. Moreover, the scarred
eigenstates with more than one dimer on certain plaquettes can
be obtained through appropriate superposition of the scarred
eigenstates with only one dimer on each plaquette (further
splitting out spin-1/2’s from the freely rotating spins to form
singlets). Note that the dimers put on the edges of plaquettes
can be shared by two neighboring plaquettes.

For PXP models on irregular bipartite graphs as shown
in Fig. 1(d), we provide several basic rules for constructing
the minimum dimer-covering configurations on the sublat-
tice A (marked by light blue): When fixing all the spin-s’s
on the sublattice B (marked by red) to be |s, mz = −s〉 and
all the freely rotating smaller spins (dark blue circles) to point
to the x-direction, the PXP Hamiltonian reduces to the con-
straints imposed on the spin-s’s of the sublattice A. We start to
form the singlet states |χ〉i, j induced by the B vertices with the
fewest edges. For instance, vertex 8 and vertex 10 in Fig. 1(d)
lead to the dimers |χ〉3,4 and |χ〉9,11. Next we check whether
the constraints induced by other B vertices have already been
satisfied, e.g., the constraints induced by the vertices 1,6,7.
We exclude the redundant B vertices and iterate to the next B
vertices with the fewest edges. Note that if there exist some
dangling B vertices (only connecting to one A vertex), a dimer
should be created inside that A vertex.

Several remarks are in order. First, we mention that the
existence of these AKLT-like scars in the PXP models requires
that the spin-s should be larger than certain values depending
on the connectivity of the underlying graphs. Specifically, s
should be equal to or larger than half of the coordinate number
zi/2 of any vertex. For example, for the PXP Hamiltonian on
the 1D spin chain, s should be equal to or larger than 1. For
the 2D honeycomb lattice with the Lieb-lattice-like structure,
s should be equal to or larger than 3/2. It demonstrates that
larger local degrees of freedom provide a much broader space
for the emergence of quantum many-body scars. Second, we
notice that the AKLT-like scars with the same eigenenergy are
not orthogonal to each other due to the projections by the {�s

i }
operators. However, for a fixed dimer covering configuration
{|χ〉i, j}, different |�〉 taking different {mx

i } values are linear
independent, because the projections by {�s

i } are on-site and
the underlying freely rotating spins have gone through all
the eigenstates of the x-direction angular momentum (also
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numerically verified). Third, these AKLT-like scars will still
appear if we globally rotate the Sx operators in the PXP
Hamiltonian, i.e., R†SxR, R = exp(−iθ n̂ · Ŝ), n̂ = (nx, ny, nz ),
and Ŝ = (Sx, Sy, Sz ). We only require the freely rotating
spins to take the eigenstates of the corresponding n̂-direction
angular momentum operators. Finally, the singlet (dimer)
-covering structures of the above scarred eigenstates are rem-
iniscent of the constructions of product-state scars in other
kinetically constrained models [24,30,31], yet here we focus
on the higher-spin cases, and these AKLT-like scars possess
nonzero entanglement entropy.

III. EXACT MANY-BODY SCARS IN THE 1D TILTED
FERMI-HUBBARD MODEL

In this section, we consider the following 1D Fermi-
Hubbard model with a tilted potential, which has been
experimentally realized by ultracold atoms in the optical lat-
tice [58]. The model exhibits scarred revival dynamics in
the parameter regime U ≈ � � J with the electronic filling
factor ν = 1 [41]:

H =
∑

j,σ=↑,↓
(−Jc†

j,σ c j+1,σ + H.c.

+ � jn j,σ ) + U
∑

j

n j,↑n j,↓. (10)

The above Hamiltonian conserves the number of spin-up and
spin-down fermions. We consider in particular the case of L/2
spin-up fermions and L/2 spin-down fermions hopping on the
1D lattice with L sites. When U ≈ � � J , the Hilbert space
fragments into several dynamically disconnected subspaces
labeled by the sum of the number of doublons (U terms, |�〉 j)
and the dipole moment (� terms, jn j). Below we consider the
case of J = 1 and U = �.

In each fragmented sector, the hopping terms can be treated
perturbatively by the Schrieffer-Wolff transformation [59]. To
the leading order, the allowed hopping Hamiltonian becomes

Heff = −
∑

j,σ=↑,↓
[c†

j,σ c j+1,σ n j,σ̄ (1 − n j+1,σ̄ ) + H.c.], (11)

where n j,σ = c†
j,σ c j,σ , and σ̄ denotes the opposite spin of σ .

The effective Hamiltonian simply reads that the left (right)
hopping is only allowed if the hopping creates (breaks) a
doublon (see Fig. 2 for a pictorial illustration), as required by
the conservation of U + � terms.

To apply the DMRG-S algorithm to find exact scars, we
carry out the Jordan-Wigner transformation to rewrite the ef-
fective Hamiltonian Eq. (11) on the spin bases. Note that since
we are dealing with spinful fermions, we need to conduct
the following Jordan-Wigner transformation for two sets of
fermions [41]:

c j,↑ =
∏
i< j

(
Sz

i,↑Sz
i,↓

)
S−

j,↑,

c j,↓ =
∏
i< j

(
Sz

i,↑Sz
i,↓

)( − Sz
j,↑

)
S−

j,↓,

n j,σ = c†
j,σ c j,σ = 1 + Sz

j,σ

2
:= Pj,σ . (12)

FIG. 2. An illustration of the constrained hopping in the 1D tilted
Fermi-Hubbard model in the parameter regime U ≈ � � J . The left
(right) hopping of spinful fermions is only allowed if the hopping
creates (breaks) a doublon.

Here we use the excited states in spin bases to represent the
occupied states in fermion bases. Sα (α = x, y, z) are spin-
1/2 angular momentum operators, and S± = Sx ± iSy are the
raising and lowering operators. The effective Hamiltonian
then becomes a kinetically constrained spin model with four
degrees of freedom on each site (the vacuum state |0〉, the
spin-up state |↑〉, the spin-down state |↓〉, and the doubly
occupied state |�〉):

Heff =
∑

j

[S+
j,↑S−

j+1,↑Pj,↓(1 − Pj+1,↓) + H.c.]

−
∑

j

[S+
j,↓S−

j+1,↓Pj,↑(1 − Pj+1,↑) + H.c.], (13)

which only allows the spin exchanges |↓↑〉 j, j+1 ↔ |�, 0〉 j, j+1
and |↑↓〉 j, j+1 ↔ |�, 0〉 j, j+1.

Reference [41] numerically showed that the above effective
Hamiltonian hosts towers of quantum many-body scars (not
providing exact analytical expressions) which are responsible
for the revival dynamics from special initial states. We employ
the DMRG-S method to search across the whole spectrum,
and we discover the following scarred eigenstates at the en-
ergy E = 0 and E = ±√

2 with exact MPS representations:

∣∣
α,β

〉 =
∑
{μi}

vαBμ1Cμ2 · · · BμL−1CμL vT
β |μ1μ2 · · · μL〉, (14)

where α, β ∈ {+,−}, v+ = (1, 1), v− = (1,−1), and each μi

could take the four possible bases {0,↑,↓,�},

B[0] =
(

0 0 0 0
0 0 0 0

)
, C[0] = 1√

2

(
0 0 1 1
0 0 1 −1

)T

,

B[↑] =
(

0 −1 0 0
0 0 0 0

)
, C[↑] =

(√
2 0 0 0

0 0 0 0

)T

,

B[↓] =
(

0 0 0 0
1 0 0 0

)
, C[↓] =

(
0 0 0 0
0 −√

2 0 0

)T

,

B[�] = 1√
2

(
0 0 1 1
0 0 −1 1

)
, C[�] =

(
0 0 0 0
0 0 0 0

)T

.

(15)
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Below we rigorously prove that Heff |
±,±〉 = 0,
Heff |
+,−〉 = √

2|
+,−〉, and Heff |
−,+〉 = −√
2|
−,+〉. We

notice that these scarred eigenstates share similar structures
with the exact scars found in the 1D spin-1/2 PXP model [19],
which we further demonstrate in the proofs below.

Similar to the techniques used in Ref. [19], we group
the neighboring two sites [2b − 1, 2b] into a block b
(b = 1, 2, . . . , L/2). From Eq. (15) we find that the block
states with nonzero matrices A[2b−1,2b] of each block are
|↑,↓〉 , |�, 0〉 , |↓,↑〉:

A[↑,↓] =
√

2σ+, A[�,0] = σ z, A[↓,↑] =
√

2σ−, (16)

where σα (α = x, y, z) are standard 2 × 2 Pauli matrices,
σ± = (σ x ± iσ y)/2. The matrices of other block states are all
zero, A[m,n] = B[m]C[n] = 02×2, where [m, n] /∈ {[↑,↓], [�, 0],
[↓,↑]}.

We also represent the effective Hamiltonian Eq. (13) on the
block state bases, which includes the single-block terms

L/2∑
b=1

(|�, 0〉〈↓,↑| − |�, 0〉〈↑,↓| + H.c.)b, (17)

and the interaction terms between two blocks for the nonzero
block states

L/2∑
b=1

hb,b+1 =
L/2∑
b=1

[|↑,�〉b |0,↓〉b+1 〈↑,↓|b 〈↑,↓|b+1

− |↓,�〉b |0,↑〉b+1 〈↓,↑|b 〈↓,↑|b+1 + H.c.].
(18)

Since (A[↑,↓] )2 = (A[↓,↑] )2 = 0, we can derive that
hb,b+1 |
α,β〉 = 0, ∀ b. We then only consider the action of
single-block terms on |
α,β〉:

Heff|
α,β〉 =
L/2∑
b=1

∑
{di}

(
vαAd1 · · · F db · · · A

d L
2 vT

β

)∣∣d1 · · · d L
2

〉
,

(19)
where {di = [m, n]}L/2

i=1 denote the block state bases, and F db

are the transformed tensors by the single-block terms in
Eq. (17):

F [↑,↓] = −σ z, F [�,0] = −i
√

2σ y, F [↓,↑] = σ z. (20)

It is also straightforward to verify the following relations
for the bulk tensors:

F db = (σ xAdb − Adbσ x )/
√

2, (21)

and for the boundary vectors

v±F d1 = (±v±Ad1 − v±Ad1σ x )/
√

2, (22)

F
d L

2 vT
± = (σ xA

d L
2 vT

± ∓ A
d L

2 vT
±)/

√
2. (23)

By substituting Eqs. (21), (22), and (23) into Eq. (19) and
telescopically summing all the terms, we prove that

Heff|
α,α〉 = 0, Heff|
±,∓〉 = ±
√

2|
±,∓〉. (24)

As shown in Ref. [41], in the Hilbert subspace dynamically
connected to the scar states Eq. (14), the effective Hamilto-
nian Eq. (13) possesses three symmetries (Z1,Z2,S2), whose

concrete expressions are presented in Appendix C. Accord-
ing to the exact diagonalization of the effective Hamiltonian
Eq. (13), there exist multiple degenerate eigenstates at the
energy E = 0 and E = ±√

2, which allow one to construct
nonsymmetric exact scarred eigenstates Eq. (14). Similar to
Ref. [41], in the following we project the area-law entangled
scarred eigenstates Eq. (14) into definite symmetry sectors and
study their entanglement properties.

We have verified that |
±,∓〉 are eigenstates of Z1 and Z2,

Z1|
±,∓〉 = −|
±,∓〉,
Z2|
±,∓〉 = (−1)L/2+1|
±,∓〉. (25)

As for |
±,±〉, the action of Z1 and Z2 gives

Z1|
±,±〉 = |
±,±〉, Z2|
±,±〉 = (−1)L/2|
∓,∓〉. (26)

We can superpose the states |
+,+〉 and |
−,−〉 to construct
the simultaneous eigenstates of Z1 and Z2. We define

|�±〉 = 1√
2

(|
+,+〉 ± |
−,−〉), (27)

which satisfy

Z1 |�±〉 = |�±〉 , Z2 |�±〉 = ±(−1)L/2 |�±〉 . (28)

Moreover, we define the projectors PS to project the
above MPSs |
±,∓〉 and |�±〉 into the symmetry sector
S2 = S(S + 1) of the total angular momentum,

PS =
∏
j =S

[S2 − j( j + 1)], (29)

where j could takes values 0, 1, . . . , L/2. In Fig. 3, we nu-
merically calculate the entanglement entropy scaling of these
scarred eigenstates within corresponding symmetric sectors.
As specific examples, for the E = 0 scar |�±〉 with (Z1 =
+1,Z2 = ±1,S = 0), we find that the bipartite entangle-
ment entropy grows logarithmically with the system size
L [Fig. 3(a)]. For the E = √

2 scar |
+,−〉, we project it
into the symmetric sector (Z1 = −1,Z2 = −1,S = 1) (its
even components of S = 0, 2, 4, . . . vanish). Interestingly,
the entanglement entropy scaling best fits with Sent ∼ (ln L)2

[Fig. 3(b)]. These numerical results demonstrate that the
entanglement entropy of theses exact scars scales at most
logarithmically with the system size, after being projected into
each symmetry sector.

Finally, if U = �, the effective Hamiltonian Eq. (11)
additionally acquires a term (U − �)

∑
j n j,↑n j,↓, which is

reminiscent of the external magnetic field term added to the
PXP Hamiltonian [60]. We have numerically verified that the
above MPSs are no longer eigenstates of the new Hamiltonian.
We leave the investigations of their stability [31] and change
of entanglement [60] to future studies.

IV. CONCLUSIONS AND OUTLOOKS

In summary, by utilizing our recently developed DMRG-
S algorithm, we searched numerically and discovered several
exact quantum many-body scars that were overlooked in two
previously studied models. Our results open up a promising
avenue towards finding exact scarred eigenstates in kinetically
constrained models with larger local degrees of freedom.
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(a)

(b)

FIG. 3. Bipartite entanglement entropy Sent scaling of the exact
scars in the 1D tilted Fermi-Hubbard model, after being projected
into the corresponding symmetry sectors. (a) Sent of PS=0 |�±〉 both
grow logarithmically with the system size (L = 12, 16, . . . , 64).
(b) Sent of PS=1 |
+,−〉 is instead proportional to (ln L)2 (L =
12, 16, . . . , 64). The inset displays data in the linear scale.

Inspired by all the exact scars found in the current pa-
per and Ref. [39], one important open question is whether
certain many-body scars always exist, or what are the
conditions for their existence (possibly with simple exact an-
alytical expressions) in other kinetically constrained models
with larger local degrees of freedom [48,49,61], especially
within their exponentially large degenerate eigensubspaces at
E = 0 [32,42,43]. For spin-1/2 systems, when assuming the
particle-hole symmetry and translation symmetry for two-
local Hamiltonians, the question has been answered in the
affirmative in Ref. [32]. However, when extending to higher-
spin models, more investigations are needed for future studies.

In addition, the exact many-body scars we found can be
represented as tensor network states with small bond di-
mensions, thus they can feasibly be prepared on near-term
quantum simulators [51–56]. Similar to the ground state of the
AKLT model, the exact scar-tower states in the higher-spin

PXP models possess entanglement spectrum degeneracy,
which indicates the topological nature of the scarred mani-
fold [20,34]. Moreover, these AKLT-like scars exist on generic
bipartite lattices of any spatial dimension, which could pos-
sibly be utilized to yield high-dimensional time-crystalline
behaviors under periodic driving [9,62–65] (circumventing
the possible instability of many-body localization in higher
dimensions [66–71]).
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APPENDIX A: THE DMRG-S ALGORITHM
AND NUMERICAL DETAILS

In Ref. [39] we developed the DMRG-S algorithm to accu-
rately extract scarred eigenstates by modifying and improving
the shift-invert technique [72–74]. The intuition for this algo-
rithm is that repeatedly applying the inverse operator (H −
ξ )−2 to an initial state |ψ0〉 eventually yields an eigenstate of
H with energy ξ . In practice, we represent |ψ0〉 as an MPS and
consider the sequence of states |ψt 〉 = N−1A−1

t |ψt−1〉, where
At = (H − ξt )2, and N is a normalization factor. We require
the bond dimension of the state |ψt 〉 as χ � χmax, which
effectively serves as a filter for states with low entanglement
entropy. In the iteration step t , we circumvent the difficulty
of calculating the inverse operator A−1

t by variationally op-
timizing |ψt 〉 such that 〈ψt |At |ψt 〉 = N−1 〈ψt |ψt−1〉, where
At can be expressed as a matrix product operator. In the MPS
formalism, we implement the optimization by locally solving
the linear equation

A[i,i+1]
t,eff ψ

[i,i+1]
t = ψ̃

[i,i+1]
t−1 , (A1)

where A[i,i+1]
t,eff is the local “effective Hamiltonian” for At ,

ψ
[i,i+1]
t is the local tensor of |ψt 〉 to be updated, and ψ̃

[i,i+1]
t−1 is

the environment tensor of the overlap 〈ψt |ψt−1〉.
We perform the local optimization on each pair of sites

[i, i + 1] and sweep back and forth. During the iterations,
we monitor the energy variance σ 2

H = 〈H2〉 − 〈H〉2 of |ψt 〉.
We initially set ξ0 within the target energy window [E −
�E , E + �E ]. After a few iterations, if σ 2

H reaches a rela-
tively small value (less than 10−3), we then begin to update
ξt = 〈ψt |H |ψt 〉 during each iteration. Eventually, we expect
|ψt 〉 to converge to a scarred eigenstate with the target energy.

To extract multiple scarred eigenstates within a degenerate
eigensubspace, we adopt the following numerical trick: Sup-
pose we have found the MPS representation of a scar |ψ1〉
with the energy E1. We can shift the energy of |ψ1〉 by adding
one term to the Hamiltonian

H → H + Eshift |ψ1〉 〈ψ1| , (A2)

where Eshift denotes the shifted energy of |ψ1〉. We then apply
the DMRG-S algorithm to the new Hamiltonian to extract
other scars within the eigensubspace of E1.
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For extracting the exact scars in the 1D tilted Fermi-
Hubbard model with the filling factor ν = 1, we focus on the
subspace dynamically connected to the state |↓ ↑↑↓,↓↑↑↓
, . . . 〉 and its spin-inverted state |↑ ↓↓↑,↑↓↓↑, . . . 〉 [41].
According to the kinetically constrained hopping in Eq. (13),
we find that configurations like [�,↓] j, j+1, [�,↑] j, j+1, [�,�
] j, j+1, [0, 0] j, j+1, [↓, 0] j, j+1, [↑, 0] j, j+1 are forbidden to ap-
pear in this subspace. Hence, at the end of each DMRG-S
iteration we project out all the configurations above, analo-
gous to projecting out the [↑,↑] j, j+1 configurations in the
1D spin-1/2 PXP model [39]. We further introduce a large
Zeeman-field term Bz

∑
j (n j,↑ − n j,↓) to the effective Hamil-

tonian Eq. (13), which, along with excluding the forbidden
configuration, is sufficient to maintain the particle conserva-
tion of the L/2 spin-up fermions and L/2 spin-down fermions.

APPENDIX B: MPS REPRESENTATIONS OF THE EXACT
SCARS IN THE 1D SPIN-1 AND SPIN-3/2 PXP MODEL

For the 1D spin-1 PXP model, when fixing the states on all
the even sites to be |s = 1, mz = −1〉, the spin-1’s on the odd
sites split out two spin-1/2’s to form dimers with spin-1/2’s
on the neighboring odd sites (there are no freely rotating spins
here). That exactly corresponds the ground state of the spin-
1 AKLT model, which can be represented as the following
χ = 2 MPS:

|�odd〉 =
∑
{μi}

Tr[Aμ1 Aμ2 · · · AμL ] |μ1μ2 · · ·μL〉 , (B1)

A[1] =
√

2σ+, A[0] = −σ z, A[−1] = −
√

2σ−. (B2)

|�odd〉 ⊗ (
⊗

i∈even |s = 1, mz = −1〉i ) then becomes an E = 0
scarred eigenstate of the 1D spin-1 PXP model.

For the AKLT-like scars in larger spin-s PXP models, we
could obtain their MPS representations based on the spin-1
case. We take the 1D spin-3/2 PXP model as an example,
while the cases for larger spins and generic graphs could
be obtained with similar techniques. The only difference
compared to the spin-1 case is that there remains a freely
rotating spin-1/2 on each odd site. To construct an eigenstate
of the PXP Hamiltonian, we require these freely rotating
spin-1/2’s to take |s = 1

2 , mx = ± 1
2 〉 = (|s = 1

2 , mz = 1
2 〉 ±

|s = 1
2 , mz = − 1

2 〉)/
√

2. Then we multiply the spin-1 matri-
ces Eq. (B2) with the ±√

1/2 in |s = 1
2 , mx = ± 1

2 〉 and the
Clebsch-Gordan coefficients for the angular momentum cou-
pling 3/2 = 1/2 ⊕ 1,

�s=3/2

=
∣∣∣∣3

2
,

3

2

〉 〈
1, 1;

1

2
,

1

2

∣∣∣∣ +
∣∣∣∣3

2
,

1

2

〉 (
1√
3

〈
1, 1;

1

2
,−1

2

∣∣∣∣
+

√
2

3

〈
1, 0;

1

2
,

1

2

∣∣∣∣
)

+
∣∣∣∣3

2
,−1

2

〉(√
2

3

〈
1, 0;

1

2
,−1

2

∣∣∣∣
+ 1√

3

〈
1,−1;

1

2
,

1

2

∣∣∣∣
)

+
∣∣∣∣3

2
,−3

2

〉 〈
1,−1;

1

2
,−1

2

∣∣∣∣ ,
(B3)

where the numbers in the kets and bras are abbreviations
of the states |s, mz〉. We obtain the following the MPS

representations:

|�odd〉 =
∑
{μi}

Tr[Aμ1 (Bμ1 )Aμ2 (Bμ2 ) · · · AμL (BμL )]

× |μ1μ2 · · · μL〉 , (B4)

where each tensor on the site i could take the A or B tensor
below, corresponding to the freely rotating spin-1/2 taking
|s = 1

2 , mx = 1
2 〉

i
or |s = 1

2 , mx = − 1
2 〉

i
,

A[ 3
2 ] =

(
0

√
3

0 0

)
, B[ 3

2 ] =
(

0
√

3
0 0

)
,

A[ 1
2 ] =

(−1 1
0 1

)
, B[ 1

2 ] =
(−1 −1

0 1

)
,

A[− 1
2 ] =

(−1 0
−1 1

)
, B[− 1

2 ] =
(

1 0
−1 −1

)
,

A[− 3
2 ] =

(
0 0
−√

3 0

)
, B[− 3

2 ] =
(

0 0√
3 0

)
.

(B5)

We mention that these matrices are related to those found
in the DMRG-S calculations by appropriate MPS gauge trans-
formations [75,76]. In the following, we prove that |�odd〉 ⊗
(
⊗

i∈even |s = 3
2 , mz = − 3

2 〉
i
) is a scarred eigenstate of a 1D

spin-3/2 PXP model with energy E = L/2 − NB, where NB is
the number of B tensors appearing in |�odd〉.

Since A[− 3
2 ]A[− 3

2 ] = A[− 3
2 ]B[− 3

2 ] = B[− 3
2 ]A[− 3

2 ] = B[− 3
2 ]

B[− 3
2 ] = 0, we have PiPi+2 |�odd〉 = 0 ∀ odd i. To show that

(
∑

i∈odd Sx
i ) |�odd〉 = (L/2 − NB) |�odd〉, we notice that the

transformed A(B) tensors by the spin-3/2 Sx
i operator

Fμi
A(B) =

3
2∑

μ′
i=− 3

2

(
Sx

i

)μi

μ′
i
Aμ′

i (Bμ′
i ) (B6)

satisfy the condition

Fμi
A = (σ xAμi − Aμiσ x + Aμi )/2, (B7)

Fμi
B = (σ xBμi − Bμiσ x − Bμi )/2. (B8)

Hence, by telescopically summing the series as in Sec. III, we
obtain the desired eigenenergy E = L/2 − NB.

APPENDIX C: SYMMETRIES OF THE EXACT SCARS IN
THE 1D TILTED FERMI-HUBBARD MODEL

As shown by Ref. [41], in the Hilbert subspace dynam-
ically connected to the scar states Eq. (14), the effective
Hamiltonian Eq. (13) hosts three commuting symmetry oper-
ators (Z1,Z2,S2). The first one is the product of the doublon
parity operator and the spin inversion operator,

Z1 =
L∏

j=1

(−1)Pj,↓Pj,↑

(
S+

j,↑S−
j,↓ + S+

j,↓S−
j,↑ + 1 + Sz

j,↑Sz
j,↓

2

)
.

(C1)

The second symmetry is the joint action of the spatial inver-
sion operator and the particle-hole conjugation,

Z2 =
L/2∏
j=1

∏
σ=↑,↓

(
S+

j,σ S+
j̄,σ

+ S−
j,σ S−

j̄,σ
+

1 − Sz
j,σ Sz

j̄,σ

2

)
, (C2)
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where j̄ = L − j + 1 denotes the spatial inversion of the site
j. The third symmetry corresponds to the conservation of the
total angular momentum S2 [77], defined as

S2 =
⎛
⎝∑

j

Sx
j

⎞
⎠

2

+
⎛
⎝∑

j

Sy
j

⎞
⎠

2

+
⎛
⎝∑

j

Sz
j

⎞
⎠

2

,

Sα
j = 1

2

∑
β,γ=↓,↑

S+
j,β (σα )βγ S−

j,γ . (C3)

σα (α = x, y, z) are standard 2 × 2 Pauli matrices. The
eigenvalues of Z1 and Z2 operators take Z1(2) = ±1. The
eigenvalues of the total angular momentum S2 could take
{S(S + 1)}L/2

S=0.
The transformation of Z1 exchanges B[↑] (C[↑]) with B[↓]

(C[↓]), and multiplies B[�] (C[�]) with a −1 factor. That leads
to the transformation on the block representation,

Ã[↑,↓] = A[↓,↑], Ã[↓,↑] = A[↑,↓], Ã[�,0] = −A[�,0], (C4)

which is equivalent to the MPS gauge transformation of σ x.
Specifically,

v±Ãd1 · · · Ã
d L

2 vT
∓ = (v±σ x )(σ xÃd1σ x ) · · · (σ xÃ

d L
2 σ x )(σ xvT

∓)

= −v±Ad1 · · · A
d L

2 vT
∓. (C5)

Thus, Z1|
±,∓〉 = −|
±,∓〉. Similarly, Z1|
±,±〉 = |
±,±〉.
The transformation of Z2 is the joint action of the spatial

inversion I : j → L − j + 1 and the particle-hole conjuga-
tion C: 0 →�, �→ 0, ↓→↑ and ↑→↓, which transforms the
B and C matrices Eq. (15) as

B[0]
CI = (C[�] )T , B[�]

CI = (C[0] )T , B[↑]
CI = (C[↓] )T ,

B[↓]
CI = (C[↑] )T , C[0]

CI = (B[�] )T , C[�]
CI = (B[0] )T ,

C[↑]
CI = (B[↓] )T , C[↓]

CI = (B[↑] )T . (C6)

Therefore, the transformation of the block representation is
given by

A[↑,↓]
CI = (A[↑,↓] )T , A[↓,↑]

CI = (A[↓,↑] )T , A[�,0]
CI = (A[�,0])T .

(C7)

We can apply the MPS gauge transformation of iσ y,

v±Ad1
CI · · · A

d L
2

CIvT
±

= (v±iσ y)
(−iσ yAd1

CI iσ y
) · · · (−iσ yA

d L
2

CI iσ y
)
(−iσ yvT

±)

= (−1)L/2v∓Ad1 · · · A
d L

2 vT
∓, (C8)

to obtain Z2|
±,±〉 = (−1)L/2|
∓,∓〉. Similarly, Z2|
±,∓〉 =
(−1)L/2+1|
±,∓〉.
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for realizing quantum scars in the tilted 1d Fermi-Hubbard
model, Phys. Rev. Lett. 126, 210601 (2021).

[42] M. Schecter and T. Iadecola, Many-body spectral reflection
symmetry and protected infinite-temperature degeneracy, Phys.
Rev. B 98, 035139 (2018).

[43] W. Buijsman, Number of zero-energy eigenstates in the PXP
model, Phys. Rev. B 106, 045104 (2022).

[44] J. P. Garrahan, P. Sollich, and C. Toninelli, Kinetically con-
strained models, arXiv:1009.6113.

[45] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous re-
sults on valence-bond ground states in antiferromagnets, Phys.
Rev. Lett. 59, 799 (1987).

[46] G.-X. Su, H. Sun, A. Hudomal, J.-Y. Desaules, Z.-Y. Zhou, B.
Yang, J. C. Halimeh, Z.-S. Yuan, Z. Papić, and J.-W. Pan, Ob-
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