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We investigate classes of interacting systems that allow for a mapping to disordered noninteracting systems. As
we show, such a mapping is possible for interacting systems with a suppressed density of states at the chemical
potential, leading to suppressed screening, and systems near BCS-type instabilities. The mapping can also be
applied qualitatively to other classes of systems that are approximately dual to each other. The established duality
suggests a new approach to analytical and numerical studies of many-body and disorder-driven phenomena
in a variety of systems and allows to predict, e.g., new phase transitions dual to the previously known ones.
Using the established duality, we predict new disorder-driven transitions in nodal-line semimetals and systems
with long-range hopping dual to, respectively, the BCS and BEC-vacuum transitions in interacting systems
and new interaction-driven transitions dual to previously known non-Anderson disorder-driven transitions. The
established principle can also be used to classify and describe phase transitions in dissipative systems described
by non-Hermitian Hamiltonians.
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I. INTRODUCTION

Describing many-body interacting systems is one of the
greatest challenges in physics. Often, existing analytical
approaches are insufficient to accurately describe many-
body effects, such as high-temperature superconductivity,
interaction-driven metal-insulator transition, and magnetic
instabilities.

Simulating such systems numerically is also a formidable
task, especially in the case of fermionic (quasi-)particles,
which display the notorious sign problem [1–3] leading to
a rapid growth of the computation time with the number of
particles. By contrast, single-particle problems, even in the
presence of quenched disorder, may be comparatively eas-
ily simulated, e.g., by diagonalizing the Hamiltonian of the
system.

Disorder-averaged observables in single-particle models,
however, are described by interacting field theories in the su-
persymmetric [4], Keldysh [5], or replica [6] representations.
Such theories have the same form as the field theories of inter-
acting disorder-free systems but have additional structures in,
respectively, boson-fermion, Keldysh, or replica subspaces. It
is natural to expect, therefore, that a certain class of many-
body systems may be mapped to single-particle disordered
models.

Such a duality would allow one to predict new many-body
(disorder-driven) phenomena, e.g., phase transitions, dual
to previously known disorder-driven (many-body) effects. It
would also allow for numerical simulations of many-body
effects in the systems that have single-particle duals using the
methods of disordered systems. The purpose of this paper is
to explore such a duality between interacting and disordered
noninteracting systems, identify classes of systems that allow
for the duality, and reveal novel critical phenomena resulting
from the duality.

We demonstrate that such a duality indeed exists for
broad classes of interacting and disordered systems and
interaction- and disorder-driven phenomena. Such phenomena
include, but are not limited to, ultraviolet (UV) effects [7,8],
i.e., transport effects and phase transitions that come from
quasiparticle scattering through states far from the chemi-
cal potential (in a momentum band exceeding the inverse
mean free path �−1). Such phenomena include (I) effects
in nodal semimetals and systems in sufficiently high di-
mensions (unconventional quantum corrections to transport
[9], non-Anderson disorder-driven transitions [7], unconven-
tional superconductive instabilities [10,11], etc.) and (II)
BCS-type interaction-driven instabilities with a single inter-
action channel. The duality transformation that we derive
can also be applied to other systems to reveal new phenom-
ena that are not exactly dual but similar to the previously
known ones.

The duality transformation we develop in this paper maps
a d-dimensional interacting disorder-free system to a d + 1-
dimensional noninteracting system with quenched disorder
and an additional (pseudospin) degree of freedom equivalent
to a spin-1/2. The mapping is accurate if the screening of the
interactions can be neglected, as is the case for systems I and
II mentioned above.

The existence of such a duality mapping for nodal
semimetals is consistent with the well-known [2] absence of
the numerical sign problem in systems with particle-hole sym-
metry. Indeed, nodal semimetals with symmetric valence and
conduction bands and chemical potentials close to the band-
touching point (see Fig. 1) have (approximate) particle-hole
symmetry.

The mapping we derive suggests, in particular, that in-
teracting electronic systems with a vanishing DoS at the
Fermi level exhibit interaction-driven phase transitions in the
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FIG. 1. The band structure of a nodal semimetal. For the
power-law dispersion ∝ pα , the density of states ρ(ε) ∝ |ε| d

α −1 is
suppressed in high dimensions d > α, which leads to a suppressed
screening of the interactions.

universality classes of the non-Anderson disorder-driven
phase transitions [7,12–17] that have been established, at the
perturbative level, to take place in noninteracting semimetals
in high spacial dimensions, exemplified by three-dimensional
(3D) Weyl semimetals. Using the duality demonstrated in this
paper, we find a new non-Anderson disorder-driven phase
transition dual to the previously known “vacuum-BEC” tran-
sition [18–20]. Furthermore, we predict new disorder-driven
transitions dual to the interaction-driven BCS-type transitions
(e.g., superconductive and excitonic instabilities). Such tran-
sitions lead, for example, to the critical scaling of the density
of states in disordered nodal-line semimetals [8]. The duality
can be extended further to the case of non-Hermitian Hamil-
tonians and phase transitions.

The paper is organized as follows. We summarize the
duality mapping and classes of dual systems in Sec. II. In
Sec. III A, we provide a heuristic argument for the mapping,
followed by a rigorous derivation of the duality to all orders
in perturbation theory in Sec. III B. Section IV is devoted to
three examples of dual phenomena between disordered and
interacting systems, showing how, e.g., new phase transitions
can be predicted using the established duality. We conclude in
Sec. V.

II. SUMMARY OF THE MAPPING

We consider d-dimensional interacting systems described
by Hamiltonians of the form

Ĥ =
∫

�̂†(r)ξp̂�̂(r)dd r

− 1

2

∫
�̂†(r)�̂†(r′)U (r − r′)�̂(r′)�̂(r)dd rdd r′, (1)

where �̂ (†) are the particle operators, ξp̂ is the single-particle
dispersion, p̂ = −i∂r is the momentum operator (hereinafter
h̄ = 1), and the potential U (r − r′) describes the interactions.
The particles may be bosonic or fermionic. While we con-
sider, for simplicity, spinless particles, the mapping described
in this paper can be generalized to account for an arbitrary
spin structure of the dispersion and the interaction.

We assume that the screening is either suppressed or has
no qualitative effects on the observables and phenomena of
interest, i.e., does not change the universality class of a phase
transition. This is often the case for phenomena dominated by
the ultraviolet energy and momentum scales.

For example, in nodal semimetals and gases with the
power-law dispersion ξp ∝ pα (possibly with an additional
structure in the spin/valley space) in high dimensions d >

α, the screening will be suppressed due to the suppressed
density of states, ρ(ε) ∝ |ε| d

α
−1, at the node or a band touch-

ing point (k = 0). α = 1 corresponds to graphene in the
dimension d = 2 and to 3D Weyl/Dirac semimetals in the
dimension d = 3. The case α = 2 describes semiconductors
and parabolic semimetals. Dispersions with a continuously
tunable parameter α may be realized in systems of trapped
ultracold particles [21–24] and superconductive films [25].
Furthermore, d-dimensional systems with long-range hopping
∝1/rd−α , also realized with trapped ultracold particles, can
be mapped to systems with the power-law dispersion ξp ∝ pα

[26].
For some phenomena, such as BCS-type instabilities

(superconductive or exciton-condensation instabilities) or
leading-order correlators of electron densities, screening is not
important even in the presence of a large Fermi surface.

For the case of attractive interactions, on which we focus
in most of this paper, the behavior of observables in an in-
teracting disorder-free d-dimensional system described by the
Hamiltonian (1) can be mapped to the behavior of disorder-
averaged observables in a d + 1-dimensional noninteracting
semimetal with the Hamiltonian

ĥ = σ̂zξp̂ + σ̂y pd+1 + σ̂zu(ρ), (2)

where σ̂x, σ̂y, and σ̂z are the Pauli matrices corresponding
to a degree of freedom equivalent to a spin-1/2, hereinafter
referred to as pseudospin; p is the momentum of the parti-
cle along the first d dimensions; pd+1 is the component of
momentum along the d + 1-st dimension; u(ρ) is a random
potential in the d + 1-dimensional space whose correlator
−D(r, τ ; r′, τ ′) is given by the propagator of the interactions
in Eq. (1). For short-ranged interactions, the strength of both
the interactions and the random potential are described by one
coupling constant

g =
∫

U (r − r′)dd r′ =
∫

〈u(ρ)u(ρ′)〉disd
d+1ρ′. (3)

Along the d + 1-st dimension, the size of the system described
by the Hamiltonian (2) is given by �d+1 = 1/T , where T is the
temperature of the interacting system with the Hamiltonian
(1) and (anti-)periodic conditions are imposed for (fermionic)
bosonic particles. Some of the dual quantities in the disor-
dered and interacting models are listed in Table I.

The mapping can be similarly carried out for repulsive
interactions, with the Hamiltonian (2) replaced by

ĥrepulsive = σ̂zξp̂ + σ̂y pd+1 + σ̂yu(ρ). (4)

Each observable in the interacting model (1) corresponds
to a disorder-averaged quantity in the disordered noninter-
acting model (2). For example, the average density n̂(r) =
�̂†(r)�̂(r) of the interacting particles matches, as a func-
tion of the disorder/interaction strength (e.g., coupling g), the
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TABLE I. Correspondence between quantities in the interacting
disorder-free and noninteracting disordered systems.

Interacting model Disordered model

Coordinates (τ, r) (rd+1, r)
Temperature/size T 1/�d+1

Interaction potential/
disorder correlation U (r − r′) 〈u(rd+1, r)u(rd+1, r′)〉dis

Observables n̂ (density) ρs, Eq. (5)

disorder-averaged quantity,

ρs(ρ) = 1
4 Tr[σ̂zĜ

R(ρ, ρ, 0) + σ̂zĜ
A(ρ, ρ, 0], (5)

in the dual disordered noninteracting system, where Tr is
taken over the pseudospin degree of freedom and ĜR(ρ, ρ, E )
and ĜA(ρ, ρ, E ) are the matrices of the retarded and advanced
Green’s functions of the particles in the pseudospin space.
Similar correspondence can be established for other observ-
ables, such as currents and spin densities.

Types of dual systems

There are multiple types of disordered systems described
by the Hamiltonian (2) [Eq. (4)] and dual interacting systems.
They include several broad classes: (I) If ξp vanishes at a point
(p = 0), then the duality provides a mapping between an in-
teracting nodal-point semimetal and a disordered anisotropic
nodal semimetal in a higher dimension; (II) if ξp vanishes
along a line in momentum space, then a generic 2D interacting
metal is mapped to a 3D disordered nodal-line semimetal;
(III) at very high temperatures T in the interacting system, the
motion of the dual disordered system is strongly constrained
(quantized) along the d + 1-st dimension and is reduced to the
d-dimensional motion of a particle in a random potential with
the generic Hamiltonian ĥeff = ξp + u(ρ).

For all of these types of systems, the derived mapping re-
veals new critical phenomena dual to previously known ones,
as detailed below. For systems in groups I and II, the duality is
accurate under the conditions discussed in the introduction. In
Sec. IV, we review some of the phenomena revealed for such
systems by the duality mapping derived in this paper.

For systems in group III, the assumption about the
negligibility of interactions is, in general, not fulfilled. Nev-
ertheless, the mapping allows us to predict a high-temperature
interaction-driven transition in a system with the power-law
dispersion ξp ∝ pα associated by the duality mapping with
the non-Anderson disorder-driven transitions [7] for particles
with the same dispersion in the same dimension. We will
provide a detailed description of such interaction-driven tran-
sitions elsewhere [27].

III. DERIVATION OF THE DUALITY

A. Heuristic argument

The mapping can be understood intuitively from the
following heuristic argument. The partition function of a
d-dimensional system with the attractive-interaction term

FIG. 2. Elements of the diagrammatic technique for the interact-
ing disorder-free (left) and noninteracting disordered (right) models
in momentum space that illustrate perturbative equivalence between
the two classes of systems.

decoupled by the Hubbard-Stratonovich field φ(r, τ )

Z =
∫

Dψ̄DψDφ exp

[
−
∫

ψ̄ (∂τ + ξp + φ)ψ dd rdτ

−1

2

∫
φ(τ, r)U −1(r, r′)φ(τ, r′)dτdd rdd r′

]
(6)

resembles the partition function of a disordered d + 1-
dimensional system, where the Matsubara time τ is consid-
ered as an extra coordinate, with a non-Hermitian Hamiltonian
h̃ = ∂τ + ξp + φ and φ playing the role of the disorder
potential.

The procedure of “Hermitization” [28–33] can be applied
then to associate the non-Hermitian operator h̃ = ∂τ + ξk + φ

with its “Hermitized” version ĥherm = σ̂x pτ + σ̂yξk + σ̂yφ in
the doubled Hilbert space, where pτ = −i∂τ . The “Hermi-
tized” Hamiltonian matches, up to a rotation of the pseudospin
basis, the Hamiltonian (2). The properties of this Hamilto-
nian are similar to those of h̃ and allow for obtaining related
observables.

Another distinction of the action (6) from that of a disor-
dered system is that it uses Grassmann (real) fields ψ̄ and ψ

for fermionic (bosonic) particles not including the fermion-
boson, replica or Keldysh subspaces inherently present in
field theories of disordered systems. As a result, it allows, in
general, for “loop” contributions to observables that account
for, e.g., the screening of the interactions and that are absent in
disordered field theories [4,34,35]. Under the assumptions we
make in this paper, however, such contributions are negligible.

B. Perturbative derivation

The summarized duality can be rigorously verified to all
orders of the perturbation theory under the made approxima-
tions, with the corresponding elements of the diagrammatic
technique shown in Fig. 2.

For example, perturbative contributions to the average den-
sity of particles n̂ in the interacting system described by
Hamiltonian (1) are shown in Figs. 3(a)–3(c). The diagrams
in Fig. 3(a) include, apart from the interaction propagators
(wiggly lines), only one loop of particle propagators (solid
lines). Contributions with additional loops of propagators,
exemplified by Figs. 3(b) and 3(c), can be neglected. Some of
those neglected contributions [Fig. 3(b)] describe the screen-
ing of the interactions. The others contain a loop connected
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FIG. 3. Diagrams for observables in dual interacting disorder-
free and noninteracting disordered systems. (a) Contributions to the
concentration of interacting particles. [(b) and (c)] Examples of ne-
glected contributions; diagrams (b) are neglected due to the screening
suppression; (c) is the Hartree contribution. (d) Corresponding con-
tributions to the disorder averaged quantity ρs, given by Eq. (5) in the
disordered noninteracting system.

to the rest of the diagram by a single interaction propagator
[Hartree-type contributions, shown in Fig. 3(c)] which may
be absorbed in the definition of the chemical potential and has
no qualitative effects.

Each of the remaining diagrams for the interaction system
[Fig. 3(a)] corresponds to a diagram for the dual disordered
system [Fig. 3(c)]. A diagram of the interaction system is
mapped to a diagram in the dual disordered system by re-
placing the interaction propagators with the disordered lines
(dashed lines). In what immediately follows, we demonstrate
that the values of the respective diagrams in the interacting
and disordered systems described by the Hamiltonians (1) and
(2) (4) match. Indeed, for point interactions, the value of a
diagram with N interaction propagators contributing to the
density of particles in the interacting system is given by

±gN T N+1

V N+1

∑
ω,p

1(
iω1 − ξp1

)2 1

iω2 − ξp2

. . .
1

iω2N − ξp2N

, (7)

where “+” and “−” signs correspond to bosonic and
fermionic particles, g is the coupling constant, T and V are
the temperature and volume of the system, respectively; the
sum is carried over any N + 1 independent frequencies and
momenta with the rest of the frequencies and momenta deter-
mined from the energy and momentum conservation laws in
the diagram. Each sum with respect to Matsubara frequencies
ω in Eq. (7) can be replaced with two summations with respect
to ω and −ω,

∑
ω . . . = 1

2

∑
ω . . . + 1

2

∑
−ω . . ., which gives

± gN T N+1

2V N+1

∑
σ=±1

∑
ω,p

1(
iω1σ − ξp1

)2 1

iω2σ − ξp2

. . .
1

iω2Nσ − ξp2N

. (8)

The value of the corresponding diagram in the dual
disordered noninteracting system contributing to the dual
disorder-averaged quantity ρs with N disordered lines is given

by

± gN

2V N+1�N+1
d+1

∑
p,k

Tr

[
1

ik1σ̂x − ξp112×2

1

ik1σ̂x − ξp112×2

. . .
1

ik2N σ̂x − ξp2N12×2

]
, (9)

as follows from the diagrammatic rules summarized in Fig. 2.
Here the “+” and “−” signs correspond to periodic and an-
tiperiodic boundary conditions along the d + 1-st dimension,
g is the coupling constant now describing the strength of
short-range correlated random potential, the dual disordered
system has a volume of V �d+1, the trace Tr[. . .] is taken over
the pseudospin degrees of freedom, and 12×2 is the 2 × 2
identity matrix in the pseudospin space.

The value (8) of the diagram for the interacting disorder-
free system matches the value (9) of the respective diagram
for the noninteracting disordered system. Indeed, since all
the propagators in the square bracket in Eq. (9) commute
with each other in the pseudospin space, one can replace the
operator σ̂x with its eigenvalues σx = ±1 in the denominators
(the same for all propagators). Since according to the duality
transformation (cf. Table I), the temperature T of the interact-
ing system matches the inverse length �d+1 and (fermionic)
bosonic particles correspond to (anti-)periodic boundary con-
ditions, expressions (9) and (8) match.

In Appendix A, we extend the arguments of this sec-
tion to generic finite-range interactions and correlations of the
random potential and provide explicit expressions for con-
tributions to observables in dual interacting and disordered
systems to first several orders of the perturbation theory.

IV. EXAMPLES

In this section, we provide several examples of dual phe-
nomena in disordered and interacting systems mentioned in
Sec. II.

A. Duality between a 2D metal and 3D nodal-line semimetal

The dispersion ξp is measured from the chemical poten-
tial and, in general, vanishes on a finite surface, ξp = 0, in
momentum space. For a 2D interacting metal, this surface
is a line, and the dual disordered Hamiltonian (2) describes
a 3D nodal-line semimetal, i.e., a semimetal with two bands
touching along a line in momentum space [36].

Although the density of states is not suppressed for a
2D metal, the duality can be applied if the screening of the
interactions has no qualitative effects, e.g., does not change
the universality class of a phase transition, such as at the
superconductive (BCS-type) instability. We predict, therefore,
that a 3D nodal-line semimetal exhibits a disorder-driven
transition dual to the BCS transition in a 2D semimetal. A
microscopic derivation of such a transition is presented in a
separate work [8].

B. Disorder-driven transition dual to the BCS-BEC transition

A broad class of interacting systems that satisfies the
assumptions used to derive the duality corresponds to the
dispersion ξp that vanishes at a point (p = 0) in momentum
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space, e.g., at the bottom of the dispersion in an interacting
gas or near the band touching point in a nodal-point semimetal
(for example, Dirac, Weyl or parabolic semimetal). For the
power-law dispersion, ξp ∝ pα , a d-dimensional interacting
system is mapped to an anisotropic disordered nodal-point
semimetal with the dispersion ξpσ̂z + pd+1σ̂y.

Interacting nodal-point semimetals display a variety of in-
stabilities at low temperatures (see, for example, Refs. [11,37–
42]), such as superconductive, magnetic and charge-density-
wave phase transitions. By contrast, noninteracting disor-
dered systems are commonly believed to exhibit only one
phase transition: the Anderson localization-delocalization
transition. However, it has been demonstrated, at the per-
turbative level, that semimetals and semiconductors with
the power-law dispersion ∝pδ in high dimensions d̃ > 2δ

exhibit additional disorder-driven transitions (see Ref. [7]
for a review) in non-Anderson universality classes [43].
These non-Anderson disorder-driven transitions may have
diverse properties depending on the symmetries of the
disorder and of the band structure, and, under some ap-
proximations [43], display a critical behavior of the density
of states [16,17,44–57], in contrast with the Anderson
transitions.

The duality allows us to predict a new non-Anderson
disorder-driven transition, distinct from all the previously
studied transitions, in semimetals with the Hamiltonian (2)
in which the dispersion ξp vanishes at small momenta. This
transition is dual to the so-called vacuum-BEC transition [18]
in systems of interacting bosons with attractive interactions
[19,20,58].

For ξp ∝ pα and short-range interactions (disorder), the
instability for both interacting and disordered systems can be
demonstrated by the renormalization-group (RG) analysis of
the dimensionless coupling constant

γ = ζSd

2(2π )d
gKd−α, (10)

where Sd is the volume of a unit d-dimensional sphere; K
is the ultraviolet momentum cutoff, e.g., the characteristic
size of the band in momentum space; and ζ is a factor of
order unity that depends on the spin and valley structure of
the dispersion near the node or the band edge (ζ = 1 for
ξk = kα). On integrating out the highest momentum modes of
the particles in both systems (see Appendix B), the flow of the
dimensionless coupling is given by the (exact) RG equation

∂lγ = (α − d )γ + γ 2, (11)

which signals a phase transition (in systems with attractive
interactions, g > 0) in high dimensions d > α at the critical
coupling γc = d − α.

For interacting bosons, the corresponding transition oc-
curs between a phase with effectively noninteracting particles
(“vacuum”) and a phase of strongly coupled bosons that form
Bose-Einstein condensate (BEC) in dimension d . The dual
d + 1-dimensional disorder-driven phase transition, which we
predict here, occurs, respectively, between a phase with ef-
fectively vanishing disorder and a strongly disordered phase.
This disorder-driven transition manifests itself in the criti-
cal behavior of observables, such as the density of states
and transport coefficients in the system. In contrast with the

FIG. 4. Diagrams for correlations in the one-site Hubbard model
and a disordered wire. [(a) and (b)] Modifications to the number nσ

of the particles with spin σ but do not affect the correlations between
n↑ and n↓ mimicked by (c) to the first order in the interaction g.
(d) Correlations in the dual noninteracting disordered system.

previously studied non-Anderson disorder-driven transitions
[7] the instability predicted here is described exactly by the
RG Eq. (11), which allows for an exact determination of the
correlation-length critical exponent ν = 1/(d − α).

C. Electronic correlations in a quantum dot
and a 1D disordered wire

Above, we described classes of interacting and disordered
systems that are associated to each other by the derived duality
mapping. In what immediately follows, we demonstrate that
the mapping can generically be applied to correlators of ob-
servables, e.g., electron densities, if they are considered to the
leading order in interactions, in which they are not affected by
screening and the Hartree contributions. To illustrate this, we
consider a one-site Hubbard model (quantum dot) described
by the Hamiltonian

Ĥdot = ξ n̂↑ + ξ n̂↓ − gn̂↑n̂↓, (12)

where ξ is a constant and n↑ and n↓ are the numbers of
the electrons in the “spin-up” and “spin-down” states. This
quantum dot is dual to a system of a 1D particle in a random
potential u(x), with the Hamiltonian given by

ĥwire =
∑

i=↑,↓
�̂i(x)[ξ σ̂z − iσ̂y∂x + u(x)σ̂z]�̂i(x). (13)

In general, perturbative contributions with loops are not
negligible for electrons in a quantum dot described by the
Hamiltonian (12). For example, the Hartree contribution
to the number of electrons nσ with spin σ in Fig. 4(a)
matches the value of Fig. 4(b). These contributions, how-
ever, do not affect, to the first order in the coupling g,
the correlator

K = 〈n̂↑n̂↓〉 − 〈n̂↑〉〈n̂↓〉 = g

T

[
eξ/T

(1 + eξ/T )2

]2

+ O(g2) (14)

of the numbers n↑ and n↓ of fermions with different spins
computed in Appendix C. The value of the correlator (14)
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matches, to the leading order in g, the correlator

Kdis = 〈ρs↑ρs↓〉dis − 〈ρs↑〉dis〈ρs↓〉dis (15)

of the operators ρs given by Eq. (5). The value of the corre-
lator (15) is computed independently for a disordered wire in
Appendix C. The matching of the correlators (14) and (15) to
the leading order in g reflects the duality between interactions
and quenched disorder discussed in this paper.

V. CONCLUSION

In summary, we have demonstrated the equivalence of a
class of disorder-free interacting systems to noninteracting
disordered systems. The interacting systems that allow for this
mapping include dilute quantum gases of trapped ultracold
particles and nodal semimetals, in which the screening of the
interactions is suppressed due to the vanishing DoS near the
node. The mapping may also be applied to interacting systems
with large Fermi surfaces if the screening has no qualitative
effect on the observable quantities, e.g., does not change the
universality class of a phase transition.

Furthermore, the mapping allows us to predict new phe-
nomena, e.g., phase transitions, in disordered and interacting
systems dual to previously known phenomena. The duality
can also be applied to map interacting systems to non-
Hermitian disordered systems (by, e.g., applying the version
of the mapping to attractive interactions to systems with re-
pulsive interactions or by skipping the “Hermitization” step
in the described construction of the mapping). It can thus be
used to explore and describe phase transitions and other phe-
nomena in systems described by non-Hermitian Hamiltonians
[59–63], which we leave for future studies.

Using this mapping, we predict novel non-Anderson
disorder-driven transitions, such as the disorder-driven tran-
sition in nodal semimetals dual to the BEC-vacuum transition
known previously for interacting bosonic systems. We con-
firm the existence of such a transition by rigorous microscopic
calculations. Based on the established duality we also expect
a novel disorder-driven transition in 3D nodal-line semimetals
and new interaction-driven transitions in systems with power-
law dispersions.

Other questions that remain to be investigated are the role
of the nonperturbative (instantonic) effects on the predicted
phenomena as well as the possibility of spontaneously gener-
ated relevant operators that may change the criticality at the
phase transitions [64].
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APPENDIX A: DETAILS OF THE MAPPING TO ALL
ORDERS OF THE PERTURBATION THEORY

In this section, we provide detailed calculations of
the equivalent diagrams in disordered noninteracting and

interacting disorder-free systems. As an example of an ob-
servable quantity in the interacting system, we use the density
of particles, dual to the quantity ρs given by Eq. (5) in the
disordered system. The density of particles and the quantity
ρs are represented by sets of diagrams in Figs. 3(a) and 3(d).
Basic elements of the diagrammatic technique are shown in
Fig. 2. Here we do not assume a specific form of the in-
teraction potential, and the disorder correlation in the dual
system is determined by the form of the interaction potential.
We describe first a generic diagram for an interacting system
and demonstrate its equivalence to the corresponding diagram
for the noninteracting disordered system. Then we provide
explicit expressions for several lowest-order diagrams in both
systems.

The value of each diagram with N interaction propagators
contributing to the density of particles in the interacting sys-
tem is given by

(−1)N+F T N+1

V N+1

∑
ω,p

1(
iω1 − ξp1

)2 1

iω2 − ξp2

. . .
1

iω2N − ξp2N

D(�1, P1) . . . D(�N , PN ), (A1)

where F = 1 for fermionic particles and F = 0 for bosonic
particles, D(�i, Pi ) is the interaction propagator which de-
pends on the bosonic (fermionic) Matsubara frequency �i =
2πT ni [�i = πT (2ni + 1)], and momentum Pi and is the
Fourier-transform of the interaction propagator

D(r, τ ; r′, τ ′) = −〈Tτ φ̂(r, τ )φ̂(r′, τ ′)〉 (A2)

in the coordinate and Matsubara-time representation, where φ̂

are the bosonic fields corresponding to the interaction between
the particles. The summation

∑
ω,p . . . in Eq. (A1) may be

carried out over any N + 1 independent frequencies and mo-
menta, with the other frequency and momenta of the particle
and interaction propagators determined from the energy and
momentum conservation laws in the diagram. We assume the
convergence of the sum for each diagram.

Because the bosonic propagator D(�i, Pi ) is an even func-
tion of the Matsubara frequency �i, each summation with
respect to Matsubara frequencies ω in Eq. (A1) can be re-
placed with two summations with respect to ω and −ω,∑

ω . . . = 1
2

∑
ω . . . + 1

2

∑
−ω . . ., which gives

(−1)N+F T N+1

2V N+1

∑
I=0,1

∑
ω,p

1

[(−1)I iω1 − ξp1 ]2

1

(−1)I iω2 − ξp2

. . .
1

(−1)I iω2N − ξp2N

D(�1, P1) . . . D(�N , PN ). (A3)

Below we compare the expression (A3) for the N>th-order
diagram for an interacting disorder-free system to the value of
a similar diagram in the equivalent disordered noninteracting
system.

In what immediately follows, we assume that the equiva-
lent disordered system described by the Hamiltonian (2) has
the volume V �d+1 in the dimension d + 1, where �d+1 is its
length along one dimension and V is the cross section in the
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remaining d dimensions. The topologically equivalent N th
order diagram is given by

(−1)N+F

V N+1�N+1
d+1

∑
p,k

Tr

[
σ̂z

1

−k1σ̂y − ξp1 σ̂z

σ̂z

2

1

−k1σ̂y − ξp1 σ̂z
σ̂z

. . . σ̂z
1

−k2N σ̂y − ξp2N σ̂z

]
D̃(K1, P1) . . . D̃(KN , PN ), (A4)

where (pi, ki ) is a d + 1-dimensional momentum; i =
0, 1, . . . 2N − 1; Tr . . . is taken with respect to the pseudospin
degrees of freedom; (anti-)periodic boundary conditions have
to be chosen along the d + 1-st dimension for (fermionic)
bosonic particles in the interacting system; and −D̃(Ki, Pi )
is the “impurity line” [34], the Fourier-transform of the
correlator

−D̃(ρ − ρ′) = 〈u(ρ)u(ρ′)〉dis (A5)

of the random potential u(ρ). Here, in accordance with the
common convention, the impurity line (cf. Fig. 2) is defined
to be positive for a real random potential. Similarly to the
case of the diagram for the interacting system, the summation
in Eq. (A4) may be carried out over any N + 1 independent
momenta in the dimension d + 1, while the other momenta
of the particle and disorder propagators are determined from
the law of momentum conservation. In Eq. (A4), we took
into account that the the quantity ρs, to which the respective
diagram contributes, corresponds to the σ̂z/2 vertex and to the
particle propagator(− kiσ̂y − ξpi σ̂z

)−1 = 1
2 [GA(ki, pi, E = 0)

+ GR(ki, pi, E = 0)], (A6)

where GA and GR are the advanced and retarded Green’s
functions of a free particle.

Equation (A4) gives

(−1)N+F

2V N+1�N+1
d+1

∑
p,k

Tr

[
1

ik1σ̂x − ξp112×2

1

ik1σ̂x − ξp112×2

. . .
1

ik2N σ̂x − ξp2N12×2

]
D̃(K1, P1) . . . D̃(KN , PN ), (A7)

where 12×2 is the identity matrix in the pseudospin space.
Because the eigenvalues of the operator σ̂x are given by (−1)I

with I = 0, 1, Eq. (A7) can be rewritten as

(−1)N+F

2V N+1�N+1
d+1

∑
I=0,1

∑
p,k

[
1

i(−1)I k1 − ξp1

1

i(−1)I k1 − ξp1

. . .
1

i(−1)I k2N − ξp2N

]
D̃(K1, P1) . . . D̃(KN , PN ). (A8)

Equations (A3) and (A8) for the diagrams for, respectively,
the interacting disorder-free and noninteracting disordered
systems are identical to each other so long as �d+1 = 1/T and
the Matsubara frequencies ωi in Eq. (A3) match the values
of the momenta ki in Eq. (A8). The latter condition, with

ki = 2πT ni (ki = 2πT ni + πT ) and integer ni, is satisfied if
(anti-)periodic boundary conditions are imposed on the disor-
dered system in the case of a (fermionic) bosonic interacting
system.

In summary, we have established the correspondence, to
all orders of the perturbation theory, between observables
in a d-dimensional bosonic (fermionic) interacting disorder-
free system at temperature T and a dual d + 1-dimensional
noninteracting disordered system of length �d+1 = 1/T with
(anti-)periodic boundary conditions along the d + 1-st dimen-
sion. We focused on the observable quantities

〈n̂(r)〉 = 〈ρ̂s(ρ)〉dis, (A9)

where n̂ is the density of particles in the interacting system
and the operator ρs in the disordered system is defined by
Eq. (5). The established equivalence applies, however, to other
observables, such as currents and spin/valley degrees of free-
dom and their correlators. To further illustrate the discussed
duality, we consider below the zeroth and first order diagrams
contributing to 〈n̂(r)〉 and 〈ρ̂s(ρ)〉dis explicitly.

1. Zeroth order

The concentration of particles at the zeroth order is
given by

〈n̂(0)(r)〉 = T

V

∑
ω,p

′ (−1)F

iω − ξp
= 1

V

∑
p

1

exp
(
ξp/T

)∓ 1
,

(A10)

where
∑′ is our convention for the regularized sum over

Matsubara frequencies (which amounts to, e.g., infinitesimal
phase corrections to the frequencies [35] iω → iωe−iωδ), en-
suring that the sum of a Matsubara Green’s function over
frequencies gives the Bose (Fermi) distribution function for
bosonic (fermionic) frequencies.

For the disordered system, the zeroth-order contribution to
the dual observable is given by

〈
ρ (0)

s (ρ)
〉
dis = (−1)F

V �d+1

∑
p,k

′
Tr

[
σ̂z

2

1

−kσ̂y − ξpσ̂z

]

= (−1)F

V �d+1

∑
p,k

′ −ξp

k2 + ξ 2
p

= 1

V

∑
p

′ 1

exp(ξp�d+1) ± 1
, (A11)

where “+” and “–” correspond, respectively, to periodic and
antiperiodic boundary conditions along the d + 1-st dimen-
sion, resulting in the quantized values k = 2π�−1

d+1n and k =
π�−1

d+1(2n + 1) of the momentum k. Equations (A10) and
(A11) are precisely equivalent for �d+1 = 1/T , in accordance
with the duality transformation derived in this paper.
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FIG. 5. First-order diagrams for the density n̂ in interacting
disorder-free (a) and the operator ρs in noninteracting disordered
(b) systems.

2. First order

Figure 5(a) shows the first-order correction to 〈n̂〉. This
diagram contributes

(−1)F+1 T 2

V 2

∑
ω1,ω2,p1,p2

1

(iω1 − ξp1 )2

1

iω2 − ξp2

× D(ω1 − ω2, p1 − p2). (A12)

Again, because the bosonic propagator is even under the
inversion of Matsubara frequency, D(ω1 − ω2, p1 − p2) =
D(−ω1 + ω2, p1 − p2), the sum with respect to the fre-
quencies in Eq. (A12) is equivalent to two sums with
respect to ω1, ω2 and −ω1,−ω2,

∑
ω1,ω2

. . . = 1
2

∑
ω1,ω2

. . . +
1
2

∑
−ω1,−ω2

. . .. Therefore, Eq. (A12) becomes

(−1)F+1 T 2

2V 2

∑
ω1,ω2,p1,p2

[
1(

iω1 − ξp1

)2 1

iω2 − ξp2

+ 1(−iω1 − ξp1

)2 1

−iω2 − ξp2

]
D(ω1 − ω2, p1 − p2). (A13)

The corresponding diagram for the noninteracting disordered system is shown in Fig. 5(b) and is given by

(−1)F

V 2�2
d+1

∑
p1,p2,k1,k2

Tr

[
σ̂z

1

−k1σ̂y − ξp1 σ̂z

σ̂z

2

1

−k1σ̂y − ξp1 σ̂z
σ̂z

1

−k2σ̂y − ξp2 σ̂z

]
[−D̃(k1 − k2, p1 − p2)]

= (−1)F+1

2V 2�2
d+1

∑
p1,p2,k1,k2

Tr

[
1

ik1σ̂x − ξp112×2

1

ik1σ̂x − ξp112×2

1

ik2σ̂x − ξp212×2

]
D̃(k1 − k2, p1 − p2). (A14)

Taking the trace with respect to the eigenvalues of σ̂x gives

(−1)F+1

2V 2�2
d+1

∑
p1,p2,k1,k2

(
1

ik1 − ξp1

1

ik1 − ξp1

1

ik2 − ξp2

+ 1

−ik1 − ξp1

1

−ik1 − ξp1

1

−ik2 − ξp2

)
D̃(k1 − k2, p1 − p2). (A15)

Since the values of ωi and ki match, due to the choice of the
boundary conditions, and �d+1 = 1/T , Eqs. (A13) and (A15)
are identical.

APPENDIX B: RENORMALIZATION-GROUP APPROACH
TO INTERACTING GASES AND HIGH-DIMENSIONAL

SEMIMETALS

In this section, we describe the renormalization of inter-
actions in gases of particles with the power-law dispersion
ξk ∝ kα and the renormalization of disorder in the dual
class of systems, i.e., semimetals with the dispersion ξkσ̂z +
kd+1σ̂y. We demonstrate that these renormalizations are de-
scribed by the same RG flow equation (11), which illustrates
that these systems exhibit interaction-driven (disorder-driven)
phase transitions in the same universality class.

The RG procedure for the interacting system involves
repeatedly integrating out shells of largest momenta and fre-
quencies,

Ke−l 
 |k| 
 K, (B1a)

|ξKe−l | 
 ω 
 |ξK |, (B1b)

and renormalizing the properties of the systems perturbatively
in the coupling constant g. The details of the cutoff procedure
are not important in the one-loop approximation for the di-
mension d near the critical dimension dc = α. The diagrams

for the one-loop renormalization of the interaction propagator
are shown in Figs. 6(a)–6(e). When evaluating them, it is suf-
ficient to set all external incoming and outgoing frequencies
and momenta to zero and sum/integrate only with respect to
intermediate frequencies and momenta. The main contribution
comes from Fig. 6(c):

[6c] = g2T
∑

iω

∫
k

1

iω − ξ̂k
⊗ 1

−iω − ξ̂−k
, (B2)

where the frequency summation and integration with respect
to the momentum k are carried out over the intervals (B1a)–
(B1b);

∫
k . . . = ∫ dd k

(2π )d . . .; the dispersion ξk ∝ kα has the
power dependence on the momentum k but may also have
additional structure in the valley or spin space; ⊗ is the prod-
uct of the spin/valley subspaces corresponding to the top and
bottom propagators in Fig. 6(c).

We consider the case of large ultraviolet momentum cutoffs
K and Ke−l , corresponding to the kinetic energies signifi-
cantly exceeding the temperature T . This allows us to replace
the summation with respect to frequencies in Eq. (B2) by
integration, T

∑
iω . . . → ∫

dω
2π

. . .. For a scalar dispersion

ξk = |k|α, (B3)

which has no valley and spin structure, the renormalized in-
teraction propagator also has a trivial structure (∝ 1 ⊗ 1) in
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FIG. 6. Diagrams for the renormalization of the coupling constants in an interacting disorder-free [(a)–(e)] and noninteracting disordered
[(a′)–(d ′)] systems.

the spin/valley space, and the value of Fig. 6(c) is given by

[6c] = g2Sd Kd−α

2(2π )d

1 − e−(d−α)l

d − α
. (B4)

All the other contributions shown in Fig. 6 may be estimated
as

[6a] ∼ [6b] ∼ [6d] ∼ [6e] ∼ g2Sd Kd−α

2(2π )d
(B5)

and are suppressed for the dimensions d close to the critical
dimension dc = α. This leads to the RG flow equation for the
coupling g given by

∂l g = Sd Kd−α

2(2π )d
g2. (B6)

Introducing the dimensionless coupling constant

γ = Sd

2(2π )d
gKd−α (B7)

gives the one-loop RG flow equation

∂lγ = (α − d )γ + γ 2. (B8)

It is possible to show that the RG flow equation (B8) is
exact, i.e., applies beyond the one-loop approximation. It has
been noticed in Ref. [18] that the renormalized contact inter-
action between quadratically dispersive bosonic particles is
given by the ladder diagrams shown in Fig. 7 and is, therefore,
corresponding to the solution of the RG equation (B8). This
result can be straightforwardly generalized to the case of the
power-law dispersion ξk = kα considered here. The RG flow
is terminated at the value of the ultraviolet cutoff K equal
to the inverse size L−1 or a characteristic momentum scale
corresponding to the renormalized kinetic energy on the order
of the temperature T or the chemical potential μ.

The diagrams for the renormalization in the dual disor-
dered noninteracting system, described by the Hamiltonian
(2), are shown in Figs. 6(a′)–6(d′). They are topologically
equivalent to Figs. 6(a)–6(d) and do not include a diagram
with a closed loop of particle propagators. In the diagram-
matic technique for the disordered systems [34], contributions
with loops are absent by construction. Although such loops
are present for the interacting systems we consider, their con-
tribution is suppressed due to the suppressed density of states
at the chemical potential assumed in this paper.

The main contribution to the renormalization of the cou-
pling g in the disordered system comes from Fig. 6(c′). While
the other contributions to the renormalization are suppressed,
it is convenient to evaluate together Figs. 6(c′) and 6(d′):

6c′ + 6d ′ = g2
∫

p

∫
pd+1

σ̂z

(
1

ξpσ̂z + pd+1σ̂y
+ 1

ξ−pσ̂z − pd+1σ̂y

)
σ̂z ⊗ σ̂z

1

ξpσ̂z + pd+1σ̂y
σ̂z

= g2
∫

p

∫
pd+1

2ξpσ̂z

ξ 2
p + p2

d+1

⊗ σ̂z
(
ξpσ̂z + pd+1σ̂y

)
σ̂z

ξ 2
p + p2

d+1

= g2
∫

p

∫
pd+1

2ξ 2
p[

ξ 2
p + p2

d+1

]2 σ̂z ⊗ σ̂z ≈ g2Sd Kd−α

2(2π )d

1 − e−(d−α)l

d − α
.

(B9)

Similarly to the case of interacting systems, it is possible to
demonstrate that the contributions of the other diagrams to
the renormalization of the coupling g are suppressed, and the

flow of the coupling is again described by Eq. (B8). Identical
RG flows for the coupling in the cases of interacting disorder-
free and noninteracting disordered systems illustrate the
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FIG. 7. Ladder diagrams for the renormalization of the interac-
tion between bosonic particles in vacuum.

equivalence between the two classes of systems discussed in
this paper.

Both of these classes of systems display transitions at the
critical value of the dimensionless coupling γc = d − α be-
tween the phases with irrelevant interactions (disorder), for
subcritical coupling, and relevant interactions (disorder), for
supercritical interactions (disorder). For the example of the
disordered-driven transition considered here, the universality
classes of the dual transitions match exactly, owing to the
absence of screening of the interactions in the vacuum phase
of the interacting system at zero temperature and chemical po-
tential. If the interacting system has a small chemical potential
μ or temperature T , then the mapping becomes approximate.
At small values of Kir = [min(|μ|, T )]

1
α 
 K0, however, the

mapping will still be accurate, as is clear from comparing
the value of the loop diagram [6e] ∼ g2 Sd

(2απ )d Kd−α
ir to the

contribution of the diagram [6c].
We emphasize that the phenomenology of the novel

disorder-driven transition predicted here is similar to the

phenomenology of the non-Anderson disorder-driven tran-
sitions [7] studied previously for systems with isotropic
dispersions ξk ∝ kδ in dimensions d̃ > 2δ: renormalized dis-
order in such systems vanishes for subcritical values of the
disorder strength and is finite otherwise. The RG equations for
the flow of the dimensionless disorder strength for such sys-
tems are given by

∂�γ = (2δ − d̃ )γ + γ 2 + O(γ 3) (B10)

and in one loop are also given by the diagrams shown in
Figs. 6(a′)–6(d′). We emphasize that for generic symmetries
of quenched disorder all of these four diagrams may give
contributions of the same order of magnitude to the renormal-
ization and the higher-loop contributions and in general are
non-negligible (see, e.g., Ref. [50]).

The disorder-driven transitions considered in this paper,
equivalent to the interaction-driven BEC-vacuum transitions
in interacting systems, are an extension of the previously
studied non-Anderson disorder-driven transitions to the case
of systems with an anisotropic dispersion ∝ σ̂zξp + σ̂y pd+1,
which is linear along one direction and has a power-law form
ξp ∝ pα along the other d dimensions. The lower-critical di-
mension for the non-Anderson disorder-driven transitions in
such systems is given by d̃ ≡ d + 1 = α + 1. The vanishing
of the high-order contributions in the RG flow (B8) is a con-
sequence of the disorder symmetry (∝ uσ̂z) in such systems.

APPENDIX C: DETAILS OF THE DUALITY BETWEEN QUANTUM DOT AND 1D WIRES

In this section, we provide the details of the duality mapping between the one-sight Hubbard model (quantum dot) described
by the Hamiltonian (12) and a disordered 1D wire described by the Hamiltonian (13). The Hamiltonian of the quantum dot can
be rewritten in the equivalent form

Ĥdot = ξ n̂↑ + ξ n̂↓ − gn̂↑n̂↓ =
(
ξ + g

2

)
n̂↑ +

(
ξ + g

2

)
n̂↓ − g

2
(n̂↑ + n̂↓)2, (C1)

where we have used that n̂2
↑,↓ ≡ n̂↑,↓. Observables in a system described by the Hamiltonian (C1) can be represented in the form

of a path integral over Grassmann variables

〈. . .〉 =
∫

D�̄D� . . . exp

⎧⎪⎨⎪⎩−
∫ β

0

∑
i=↑,↓

�̄i(τ )
[
∂τ + ξ + g

2

]
�i(τ ) dτ − g

2

∫ β

0

⎡⎣∑
i=↑,↓

�̄i(τ )�i(τ )

⎤⎦2

dτ

⎫⎪⎬⎪⎭, (C2)

where the preexponential . . . corresponds to the operator of the observable expressed in terms of the Grassmann fields �̄ and �.
Decoupling the quartic term by a bosonic field φ gives

〈. . .〉 =
∫

D�̄D�Dφ . . . exp

⎧⎨⎩−
∫ β

0

∑
i=↑,↓

�̄i(τ )
[
∂τ + ξ + g

2
+ φ(τ )

]
�i(τ ) dτ − 1

2g

∫ β

0
φ2(τ ) dτ

⎫⎬⎭. (C3)

The action describing the observable in Eq. (C3) corresponds to spin-1/2 fermions interacting with bosons whose propagator is
given by 〈φ(τ )φ(τ ′)〉 = gδ(τ − τ ′).

Applying the duality transformation developed in this paper, this model may be mapped to a 1D model with quenched
disorder, with the Matsubara time τ mapped to the coordinate x of the 1D model and with the bosonic field φ(τ ) mapped to a
random potential u(x). The Hamiltonian of this 1D model is given by

Ĥwire =
∑

i=↑,↓
�̂i(x)[ξ σ̂z − iσ̂y∂x + u(x)σ̂z]�̂i(x). (C4)

We emphasize that, strictly speaking, the quantum dot described by the Hamiltonian (C1) does not satisfy the assumptions
about the negligibility of screening and Hartree-type contributions, which correspond to diagrams with additional fermionic
loops and are neglected in this paper when deriving the equivalence between interacting disorder-free and noninteracting
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FIG. 8. Diagrams that contribute to the correlators K and Kdis in the one-site Hubbard model and a disordered wire described by the
Hamiltonians (C1) and (C4).

disordered systems. For example, in Fig. 8(a) describes the Hartree contribution to the average occupation number 〈n̂σ 〉 for
the electron state with spin σ and is equal to Fig. 8(b), which we take into account when demonstrating the equivalence, and is,
therefore, non-negligible.

However, observables in the quantum dot may still be mapped to observables in the disordered wire so long as they are
unaffected by the screening and Hartree contributions. To illustrate this, we consider the leading contribution to the correlator

K = 〈n̂↑n̂↓〉 − 〈n̂↑〉〈n̂↓〉 (C5)

of the occupation numbers with different spins in the quantum dot. In the equilibrium state at temperature T , the correlator is
given by

K =
∑

n↑,↓=0,1 n↑n↓e− n↑ξ+n↓ξ−gn↑n↓
T∑

n↑,↓=0,1 e− n↑ξ+n↓ξ−gn↑n↓
T

−
⎛⎝∑n↑,↓=0,1 n↑e− n↑ξ+n↓ξ−gn↑n↓

T∑
n↑,↓=0,1 e− n↑ξ+n↓ξ−gn↑n↓

T

⎞⎠2

(C6)

≈ g

T

[
eξ/T

(1 + eξ/T )2

]2

, (C7)

where we kept only the leading in g contribution. The correlator (C5) can also be found diagrammatically, as shown in Fig. 8.
The leading in the coupling g contribution is given by

K = [8c] + o(g2) = g

T

[
eξ/T

(1 + eξ/T )2

]2

+ o(g2). (C8)

Because this contribution does not contain fermionic loops mimicking the screening of the interactions or Hartree contribu-
tions, it allows for mapping to a similar correlator

Kdis = 〈ρs↑ρs↓〉dis − 〈ρs↑〉dis〈ρs↓〉dis. (C9)

in a disordered wire described by the Hamiltonian (C4). The diagrams for the correlator in the disordered system are shown in
Fig. 8, where the leading-order contribution is equal to

Kdis = [8d] + o(g2) = g

�3
d+1

∑
k1,k2

Tr

[
σ̂z

1

−k1σ̂y − ξ σ̂z

σ̂z

2

1

−k1σ̂y − ξ σ̂z

]
Tr

[
σ̂z

1

−k2σ̂y − ξ σ̂z

σ̂z

2

1

−k2σ̂y − ξ σ̂z

]
+ o(g2)

= g

�3
d+1

∑
k1,k2

−k2
1 + ξ 2(

k2
1 + ξ 2

)2 −k2
2 + ξ 2(

k2
2 + ξ 2

)2 = g�d+1

[
eξ�d+1

(1 + eξ�d+1 )2

]2

+ o(g2). (C10)
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Because the quantum dot described by the Hamiltonian (C1) is fermionic, the dual disordered wire described by the Hamiltonian
(C4) has antiperiodic boundary conditions. At �d+1 = 1/T , Eqs. (C8) and (C10) for observables in, respectively, the quantum
dot and the disordered wire are equivalent, which illustrates again the interactions-disorder duality shown in this paper.
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