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Analytic density of states of a tight-binding model for a two-dimensional Chern insulator
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We present analytic expressions for the density of states and its consistent derivation for the two-dimensional
Qi-Wu-Zhang (QWZ) Hamiltonian—a generic model for the Chern topological insulators of class A. This
density of states is expressed in terms of elliptical integrals. We discuss and plot special cases of the dispersion
relations and the corresponding densities of states. Spectral moments are also presented. The exact formulas
ought to be useful in determining physical properties of the noninteracting Chern insulators and within the
dynamical mean-field theory for interacting fermions with the QWZ Hamiltonian in the noninteracting limit.
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I. INTRODUCTION

A topological insulator (TI) is a common name for the
novel class of systems with nontrivial topological properties
[1,2]. Historically, the first example of TI was a two-
dimensional electron gas in a strong magnetic field where the
integer quantum Hall effect was observed [3]. After predicting
and later discovering other examples of TIs [4] the subject
becomes a main stream of condensed matter physics [5], of
cold atoms in optical lattices [6], of photonics [7], and even of
electric engineering [8].

One possible path to investigate TIs is to study tight-
binding models defined on particular lattices. Among various
interesting examples are either the Su-Schrieffer-Heeger
model [9] and the Rice-Mele model [10] in one dimension or
the Haldane model [11] and the Qi-Wu-Zhang (QWZ) model
in two dimensions [12]. The latter one is defined on a square
lattice and the corresponding two-dimensional Brillouin zone,
whereas the former one is formulated on a hexagonal lattice.

In particular, the QWZ model is a well-known two-band
system in studying physics of fermions such as bulk and
edge properties, different topological states, thermodynamics,
transport, and many others [13]. This model is also used as
a noninteracting part of the many-body Hamiltonian where
the two-particle interaction is included. Its further generaliza-
tion to arbitrary dimensions and even to the limit of infinite
dimension proved that topological insulators are possible in
interacting systems as well [14].

In spite of such a broad interest in the QWZ model its
density of state (DOS) is not yet determined analytically.
Although the DOS by itself is not sufficient to provide topo-
logical classification of a system, it is a basic and very
important quantity necessary to investigate thermodynamics,
thermodynamic phases, response of the system on different
probes, and many other quantities. However, its derivative, cf.
Streda formula [15], can serve as a topological indicator.

To fill in this gap, in this article we derive analytical for-
mulas of the DOS in terms of special functions known as
complete elliptic integrals, for which mathematical proper-
ties are defined and tabulated [16]. We discuss details of the

derivation and basic properties of the DOS when the relevant
model parameter, a mass term controlling the topology, is var-
ied. Our results are exact, analytic, and free of any numerical
inaccuracy. They allow for a complete and comprehensive
understanding of the physics (thermodynamics, dc transport,
cf. STM current, or spectral properties) of the QWZ model,
which up to now was mostly investigated from the point of
view of topological properties. Since the QWZ model plays
so important a role in the field, the necessity of its holistic
understanding cannot be overestimated.

The DOS, denoted here by ρ(�), counts the number of
states in a vicinity of a particular value of energy �, i.e.,
dN = ρ(�)d�. It can be obtained from the single-particle
Green’s function (resolvent). Analytic derivation of the DOS,
even for two-dimensional (2D) systems, is typically a chal-
lenge and thus there are very few known analytical results.
One of the first examples was obtained in 1953 by Hobson and
Nierenberg [17]. It is an analytical expression for the DOS of
graphene with the nearest-neighbor hopping and represented
by the complete elliptical integrals. The consequent derivation
of this result is presented in [18]. The DOSs for some other 2D
latices are also obtained analytically [19]. In particular, it can
be done for square, triangular, honeycomb, Kagome, and Lieb
lattices. In this paper the DOS is analytically derived for the
QWZ two-band Hamiltonian modeling a Chern insulator on
the square lattice. In contrast to earlier examples, our analytic
DOS depends explicitly on a mass parameter, which allows
one to change the topology of the system. In fact, we derived
a whole family of DOS in exact, analytic forms for this two-
band QWZ system in two dimensions. For three-dimensional
tight-binding models the densities of states in analytic forms
were determined for a simple cubic lattice, a body center
lattice, and for a face centered lattice [20–22].

Knowledge of the DOS in analytic form is invaluable in
further investigation of physical properties of the tight-binding
model. Such analytic form allows for a precise determi-
nation of van Hove singularity positions and their types
inside the DOS. And, as a result, it helps to achieve high
accuracy when integrals involving the DOS are performed
numerically.
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In certain numerical applications analytic forms of the
DOS improve numerical efficiency of programs. For example,
in the dynamical mean-field theory (DMFT) the semielliptic
DOS, given analytically, allows one to determine the Hilbert
transform exactly and this simplifies the self-consistency
equations [23]. Also, the study of fermions in the infinite di-
mensional limit within the DMFT used the analytic Gaussian
form of the DOS on a hypercubic lattice [23] to investigate
metal-insulator and antiferromagnetic transitions, and the an-
alytic expression of the DOS for a face-centered lattice in the
same dimension limit [24] to investigate itinerant ferromag-
netism. Following the latter, the hand tailored analytic DOS
with a free parameter controlling its asymmetry was used
within DMFT to study detailed conditions for occurring the
itinerant ferromagnetism inside a single band Hubbard model
[25]. A recent study of an extended Falicov-Kimball model
also used different DOS provided in simple analytic forms
[26]. Since analytic forms of the DOS are so important, some
DOS for selected lattices were included explicitly in terms of
elliptic integrals inside the Python library devoted to Green’s
functions in tight-binding models [27].

Our presentation is organized as follows. In Sec. II we
define the QWZ model and discuss the dispersion relations,
in Sec. III we introduce the DOS and present its analytic
derivation for the QWZ Hamiltonian, Sec. IV is devoted to
the discussion of the DOS in different parameter regimes, in
Sec. V we show some additional features in the DOS, the
spectral moments are discussed in Sec. VI, and we close our
presentation with Sec. VII, where we offer our conclusions
and outlooks. In Appendix A we provide mathematical def-
initions of the elliptic integrals and in Appendix B we give
selected details on calculating the spectral moments.

II. QWZ MODEL HAMILTONIAN IN TWO DIMENSIONS

A generic form of the two-band Hamiltonian for a 2D
noninteracting system in the momentum space can be written
as

Ĥ =
∑

k

Ĥk =
∑

k

h(k) · σ̂, (1)

where k = (kx, ky) (−π/aL < kx, ky � π/aL) is a 2D wave
vector in the first Brillouin zone corresponding to the 2D
square lattice with the lattice constant aL, h(k) is a vector
with three components being given functions of k, and σ̂ is
the vector with components represented by the three Pauli
matrices σ̂x, σ̂y, and σ̂z.

The Hamiltonian (1) describes a two level system, corre-
sponding to either the two orbitals or the spin 1/2 degrees of
freedom. The vector h(k) is interpreted as a Zeeman-like mag-
netic field with some (perhaps nontrivial) dependence on the
wave vector k. This model breaks the time reversal symmetry
and belongs to the class A in the tenfold way classification
scheme [28]. The Hamiltonian (1) can be easily diagonalized,
giving a two band energy spectrum ε±(k) = ±h(k), where
h(k) = |h(k)| is the length of the vector h(k).

In the following we consider a particular parametrization
where the length of h(k) is given by h(k)2 = m2 + 2t2 +
2t2 cos(kxaL ) cos(kyaL ) + 2mt[cos(kxaL ) + cos(kyaL )]. Itcor-
responds to the following representation of the vector

FIG. 1. Dispersion relations ε±(k) of the QWZ model at m = 0.
The gap is closed at X = (±π, 0) and Y = (0,±π ) points.

h(k):

hx(k) = t sin(kxaL ),

hy(k) = t sin(kyaL ),

hz(k) = m + t cos(kxaL ) + t cos(kyaL ), (2)

where t is the hopping amplitude. In the momentum space
this vector h(k) has a Skyrmion configuration for 0 < |m|/t <

2 [13]. In other words, the system is a topological insulator
with the finite Chern number ±1 and conducting surface states
at half filling. Hamiltonian (1) can be interpreted as a tight-
binding model of a magnetic semiconductor with the Rashba-
type spin-orbit interaction and a uniform magnetization along
the z axis [13]. In the following we take t = 1, which sets the
energy unit. We also use aL = 1 for the length unit.

For m = 0, 0.5, 1, 2, and 2.5, the corresponding eigen-
values (energy bands) of the Hamiltonian (1) are plotted in
Figs. 1–5, respectively. We see that at m = 0 (Fig. 1) and
m ± 2 (Fig. 4) the band gap is closed at �, X (Y ), and M
special points in the square Brillouin zone, respectively, and
characteristic Dirac cone(s) is (are) formed. For m �= 0, ±2
the bands are separated by the gap as seen in Figs. 2, 3, and
5.

III. ANALYTIC DERIVATION OF DOS

A. DOS and its symmetry

The band resolved DOS per lattice site for the lower
ε−(k) = −h(k) [upper ε+(k) = +h(k)] band is defined as
usual,

ρ±(�) = 1

NL

∑
k

δ(� − ε±(k)), (3)

where δ(x) is the Dirac distribution function and NL is the
number of lattice sites. Due to the symmetry of the Dirac
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FIG. 2. Dispersion relations ε±(k) of the QWZ model at (a) m = 0.5 and (b) m = −0.5.

function one can easily show that

ρ+(�) = ρ−(−�). (4)

The total DOS per lattice site is defined as a sum of them, i.e.,

ρ(�) = ρ+(�) + ρ−(�). (5)

Since the lower and upper bands do not overlap [29] the band
resolved DOS can be directly extracted from the total DOS,
i.e.,

ρ±(�) = θ (±�)ρ(�), (6)

where θ (x) is a step function. Therefore, in the following we
focus on deriving a formula for the total DOS.

B. Retarded Green’s function and total DOS

Equivalently, the total DOS per lattice site is determined
as a trace in band indices (±) of the imaginary part of the
retarded Green’s function

ρ(�) = − 1

π
Im[TrG(�)]. (7)

The diagonal matrix elements of the Green’s function G(�)
are

G±(�) = 1

NL

∑
k

1

� − ε±(k) + ı0+ , (8)

and for a while the small imaginary part ı0+ will not be
written explicitly. Summation over k can be replaced by
the continuous integral in the first Brillouin zone

∑
k →

FIG. 3. Dispersion relations ε±(k) of the QWZ model at (a) m = 1 and (b) m = −1.
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FIG. 4. Dispersion relations ε±(k) of the QWZ model at (a) m = 2 and (b) m = −2. For m = 2 the gap is closed at M = (±π,±π ) and
(±π,∓π ) points and for m = −2 it is closed at � = (0, 0) point.

L2

(2π )2

∫
BZ dkxdky, where L is the length of the system and L2 =

NLa2
L, with aL = 1. Then the trace of the Green’s function has

the form

TrG(�) = �

2π2

∫ π

−π

∫ π

−π

dkxdky

�2 − h(k)2
. (9)

Integrations with respect to kx and ky are symmetric.
We first perform the integration of the function [�2 −
h(kx, ky)2]−1 with respect to kx. It is convenient to denote

a = �2 − (m2 + 2 + 2m cos ky),

b = −2(m + cos ky), (10)

and then to use the identity (2.558.4) in [30]∫
dkx

a + b cos kx
= 2π√

a2 − b2
arctan

[
a − b√
a2 − b2

tan

(
kx

2

)]
,

(11)

where a2 − b2 > 0. For the case a2 − b2 � 0 the result of the
integration (11) can be formally rewritten as∫ π

−π

dkx

�2 − h2
= −2π ı√

b2 − a2
csgn

[
ı(b − a)√

b2 − a2

]
, (12)

where it is taken into account that arctan(± tan π/2) = ±π/2.
The complex signum function, abbreviated as csgn, is equal to
the sign (function sgn) of the real part of the argument and
the sign of the imaginary part if the real part is zero. We

FIG. 5. Dispersion relations ε±(k) of the QWZ model at (a) m = 2.5 and (b) m = −2.5.
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analytically continue this result by taking � → � + ı0+,
where we add an infinitesimally small imaginary part as it
is required in the retarded Green’s function. Then a = (� +
ı0+)2 + · · · gets a small imaginary part 2ı�0+ defining the
value of csgn. Taking the limit of infinitisimal 0+ we arrive at
the following expression for the trace of the Green’s function:

TrG(�) = 2�

π

∫ π

0
dky

{ sgna√
a2−b2 for a2 > b2,

ı
sgn�√
b2−a2 for a2 � b2,

(13)

where we used the fact that the integrand is an even function
of ky. Here the values a and b are the functions of the variables
ky and � and the parameter m as determined by Eqs. (10).

The DOS is proportional to the imaginary part of TrG(�);
therefore, it is nonzero only in the region of � where

a2 − b2 � 0. (14)

Outside the region (14) TrG is real and the DOS is equal to
zero, i.e., ρ(�) = 0.

The next step in evaluation of Eq. (13) is to perform
integration over ky. It is convenient to replace y = cos ky

and dky = −dy(1 − y2)−1/2. The boundaries of the in-
tegration are −1 � y � 1, where changing the order of
the integration boundaries results in an additional minus sign.
The integration over y is performed differently depending
on the value of the parameter m. Therefore, in what follows
we are considering three cases with |m| = 1, |m| > 1, and
|m| < 1 separately.

1. Case |m| = 1

Calculations are simpler in the special case of |m| = 1.
The function in the denominator of the integral (13) can be
written explicitly as a2 − b2 = (�2 − 1)(�2 − 5 − 4my). It
is linear in y and changes the sign only once at the point
y = y0sgnm, where y0 = (�2 − 5)/4. Solving the condition
(14) with respect to � and using the fact that |y| � 1, we
obtain that the DOS is nonzero only for 1 � |�| � 3.

The condition (14) considered with respect to y determines
the boundaries of integration in Eq. (13). For m = 1 it is
satisfied for y0 � y � 1. Then the imaginary part of Eq. (13)
in terms of variable y gives the DOS in the implicit form

ρ(�) = |�|
π2

√
�2 − 1

∫ 1

y0

dy√
(1 − y2)(y − y0)

, (15)

where the definition (7) is used. The similar expression
will appear for m = −1: the boundaries of integration
are −1 � y � −y0 and denominator in the integrand is√

(1 − y2)(−y − y0). The corresponding DOS can be trans-
formed into the result Eq. (15) by replacing the integration
variable y → −y. So Eq. (15) is valid for both cases m = ±1.

The integral over y can be calculated in terms of the com-
plete elliptical integral of the first kind K (x) using the identity
(3.131.5) from [30],

∫ u3

u2

dy√
(u3 − y)(y − u2)(y − u1)

= 2√
u3 − u1

K

⎡
⎣
√

(u3 − u2)

(u3 − u1)

⎤
⎦,

(16)

where u3 > u2 > u1. In Eq. (15) these parameters are u1 =
−1, u2 = y0, u3 = 1 and the result of integration is equal to√

2K[
√

(1 − y0)/2]. Then the DOS for |m| = 1 is

ρ|m|=1(�) =
⎧⎨
⎩

√
2

π2
|�|√
�2−1

K
[√

9−�2

8

]
, if 1 � �2 � 9,

0, otherwise.

(17)

For convenience, in Appendix A we provide the definitions of
the elliptic integrals.

2. Case |m| > 1

To calculate the DOS for all other values of the parameter
m we need first to analyze the function in the denominator of
Eq. (13). For |m| �= 1 we can write a2 − b2 = 4(m2 − 1)(y −
y1)(y − y2). Here the left and right zeros of the function are
denoted as y1 = min(ỹ1, ỹ2) and y2 = max(ỹ1, ỹ2), respec-
tively, where

ỹ1 = �2 − 1 − (m + 1)2

2(m + 1)
,

ỹ2 = �2 − 1 − (m − 1)2

2(m − 1)
. (18)

So we have to set y1 = ỹ1, y2 = ỹ2 if the following condition
is met:

�2 + m2 − 2

m2 − 1
> 0, (19)

and set y1 = ỹ2, y2 = ỹ1 otherwise.
Let us consider the case |m| > 1; then factor m2 − 1 is pos-

itive. Rewriting Eq. (13) in terms of variable y and substituting
it in Eq. (7), we obtain the nonzero DOS in the implicit form

ρ(�) = |�|
π2

√
m2 − 1

∫
dy√

(1 − y2)(y1 − y)(y − y2)
. (20)

Here the boundaries of integration are determined by Eq. (14),
which reads y1 � y � y2, implying |y| � 1. There are two
cases in which these conditions can be satisfied by the inte-
gration variable y:

|y1| � 1, |y2| > 1,

|y1| > 1, |y2| � 1. (21)

The first one leads to the integration region y1 � y � 1 and
the second one to −1 � y � y1. To perform integration we
use the identity (3.147.5) in [30], namely∫ u3

u2

dy√
(u4 − y)(u3 − y)(y − u2)(y − u1)

= 2√
(u4 − u2)(u3 − u1)

K

⎡
⎣

√
(u3 − u2)(u4 − u1)

(u4 − u2)(u3 − u1)

⎤
⎦,

(22)

where u4 > u3 > u2 > u1. The first line of Eq. (21) corre-
sponds to u1 = −1, u2 = y1, u3 = 1, and u4 = y2 and the
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second line corresponds to u1 = y1, u2 = −1, u3 = y2, and
u4 = 1. The results of the integration in both cases are
identical:

ρ(�) =
√

2

π2

|�|√
m2 − 1

1√
y2 − y1

K

⎡
⎣

√
(1 − y1)(1 + y2)

2(y2 − y1)

⎤
⎦.

(23)

The last step of this evaluation is to express the obtained
formula in terms of m and �. As follows from Eq. (19) for
all �2 > 2 − m2 we can set y1 = ỹ1, y2 = ỹ2, where ỹ1, ỹ2 are
given by Eq. (18). Then the solution of the inequalities (21) is
given by the condition (|m| − 2)2 < �2 < (|m| + 2)2. After
making sure that 2 − m2 < (|m| − 2)2 we substitute the same
y1, y2 into Eq. (23) to obtain

ρI(�) =
√

2

π2

|�|√
�2 + m2 − 2

× K

⎡
⎣

√
[�2 − (m − 2)2][(m + 2)2 − �2]

8(�2 + m2 − 2)

⎤
⎦, (24)

where we denote this result by ρI(�).
The final expression for the DOS for the case |m| > 1 can

be presented as

ρ|m|>1(�) =
{

ρI(�), if (|m| − 2)2 � �2 � (|m| + 2)2,

0, otherwise.
(25)

Note that this expression reduces to the case m2 = 1. In this
case |m| = 1 Eq. (25) coincides exactly with Eq. (17).

3. Case |m| < 1

We repeat all the reasoning of the previous subsection for
the case |m| < 1. In this case the factor |m| − 1 is negative and
the nonzero DOS obtained from Eqs. (13) and (7) in terms of
the variable y is of the form

ρ(�) = |�|
π2

√
1 − m2

∫
dy√

(1 − y2)(y − y1)(y − y2)
, (26)

where |y| � 1 by the definition. The boundaries of the inte-
gration are determined by Eq. (14), which gives y � y1 or
y � y2. There are three different possibilities for y to satisfy
these conditions:

|y1| � 1, |y2| > 1,

|y1| > 1, |y2| � 1,

|y1| < 1, |y2| < 1. (27)

We are considering each of them.
To perform integration in Eq. (26) we use the identities

(3.147.3) and (3.147.7) in [30], respectively, that for the case
of complete elliptical integrals have the same right-hand side,

namely∫ u2

u1

dy√
(u4 − y)(u3 − y)(u2 − y)(y − u1)

(28a)

=
∫ u4

u3

dy√
(u4 − y)(y − u3)(y − u2)(y − u1)

= 2√
(u4 − u2)(u3 − u1)

K

⎡
⎣

√
(u4 − u3)(u2 − u1)

(u4 − u2)(u3 − u1)

⎤
⎦,

(28b)

where u4 > u3 > u2 > u1.
The first line of Eq. (27) gives the boundaries of integration

as −1 � y � y1 in the integral (26). The integration can be
performed by using Eq. (28a) with u1 = −1, u2 = y1, u3 = 1,
and u4 = y2. The second line of Eq. (27) gives the boundaries
of integration as y2 � y � 1 in the integral (26). The inte-
gration can be performed by using Eq. (28b) with u1 = y1,
u2 = −1, u3 = y2, and u4 = 1. The results in these two cases
are identical:

ρ(�) =
√

2

π2

|�|√
1 − m2

1√
y2 − y1

K

⎡
⎣

√
(1 + y1)(y2 − 1)

2(y2 − y1)

⎤
⎦.

(29)

The third line of Eq. (27) splits integral (26) into the sum of
two integrals with boundaries −1 � y � y1 and y2 � y � 1.
The first one is performed by using Eq. (28a) and the second
one is performed by using Eq. (28b), where we put u1 = −1,
u2 = y1, u3 = y2, and u4 = 1 for both integrals. The results
of integrations are identical and summation is reduced to
multiplication by 2. The final expression reads

ρ(�) = 2
√

2

π2

|�|√
1 − m2

1√
(1 − y1)(1 + y2)

× K

⎡
⎣

√
(1 + y1)(1 − y2)

(1 − y1)(1 + y2)

⎤
⎦. (30)

As the last step we are expressing the formulas (29) and
(30) in terms of m and �. Equation (29) corresponds to the
first two lines of Eq. (27). As follows from Eq. (19) for all
�2 > 2 − m2 we can set y1 = ỹ2, y2 = ỹ1, where ỹ1, ỹ2 are
given by Eq. (18). Note that the first two lines of Eq. (27)
are equivalent to Eq. (21) and are symmetrical with respect
to permutation of y1 and y2. So we can repeat the same rea-
soning as for the case |m| > 1. The solution of this condition
with respect to �2 gives the same region (|m| − 2)2 < �2 <

(|m| + 2)2 and substitution of y1 and y2 into Eq. (29) results
in the same DOS ρI(�), given by Eq. (25).

To evaluate Eq. (30) corresponding to the third line of
Eq. (27) we notice that this line is symmetric with respect to
permutation of y1 and y2. Rewriting it in terms of �2 we obtain
the region m2 > �2 > (|m| − 2)2 in which Eq. (30) is valid.
This region is split into two parts by Eq. (19). In particular,
for 2 − m2 > �2 > (|m| − 2)2 we set y1 = ỹ2, y2 = ỹ1, and
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substitute them to Eq. (30) to obtain

ρII(�) = 8

π2

|�|
|�2 + m2|

× K

⎡
⎣

√
[�2 − (m − 2)2][�2 − (m + 2)2]

(�2 − m2)2

⎤
⎦,

(31)

where we denote this result by ρII(�). In the region m2 >

�2 > 2 − m2 we set y1 = ỹ1, y2 = ỹ2, and substitution to
Eq. (30) gives

ρIII(�) = 8

π2

|�|√
[�2 − (m − 2)2][�2 − (m + 2)2]

× K

⎡
⎣

√
(�2 − m2)2

[�2 − (m − 2)2][�2 − (m + 2)2]

⎤
⎦,

(32)

where we denote this result by ρIII(�). The final expression
for the DOS for the case |m| < 1 can be presented as

ρ|m|<1(�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρI(�), if (|m| − 2)2 < �2 � (|m| + 2)2,

ρII(�), if 2 − m2 � �2 � (|m| − 2)2,

ρIII(�), if m2 � �2 < 2 − m2,

0, otherwise.
(33)

Note that the DOS for all values of parameter m does not
depend on the sign of m and therefore is symmetric with
respect to m and −m in contrast to the dispersion relations.

IV. SUMMARY OF ANALYTICAL RESULTS AND PLOTS
OF TOTAL DOS

In this section we present plots of the total DOS for dif-
ferent m, corresponding to the dispersion relations shown
in Sec. II and we provide consistent analyzes of them. The
plots are given in Figs. 6–10, which appear in the same order
as the dispersion relations in Figs. 1–5. In these DOS plots
the ranges of the vertical axis are different but all DOS are
normalized to two, corresponding to two bands. We see that
the shapes of the DOS for the QWZ model are much richer
and have more additional features as compared, for example,
to the hexagonal lattice with nearest neighbor hopping. Apart
from the symmetry m and −m, mentioned above, the total
DOS is symmetric with respect to � and −�. It is clearly
visible in analytic formulas of the DOS, Eqs. (17), (25), and
(33), where � is only present as either �2 or |�|.

The typical shape of the DOS for 0 < |m| < 1 is shown
in Fig. 7. We can see that each nonvanishing part of the plot
has three sections and in each of the sections the function is
described by ρI, ρII, or ρIII; cf. Eq. (33). Specifically, in the
plot in Fig. 7 for |m| = 0.5, these sections are separated by
the points |�| = √

1.75 ≈ 1.32 and |�| = 1.5. At the ener-
gies ±√

2 − m2, separating two nearby sections, the DOS has
infinite peaks.

ρ(Ω)

Ω
|m|=0

FIG. 6. Total density of states of the QWZ model at m = 0.

Another characteristic feature of the system with 0 <

|m| < 1 is the opening of the band gap of the width 2|m|.
It can be seen in the corresponding dispersion relations, cf.
Fig. 2, and in the plots of DOS, where ρ(�) = 0 in the
range −|m| < � < |m|. At the half filling such a system is
a topological insulator [12,13].

ρ(Ω)

Ω
|m|=0.5

FIG. 7. Total density of states of the QWZ model at m = ±0.5.

195131-7



VERA UZUNOVA AND KRZYSZTOF BYCZUK PHYSICAL REVIEW B 108, 195131 (2023)

ρ(Ω)

Ω
|m|=1

FIG. 8. Total density of states of the QWZ model at m = ±1.

The gap is closed for m = 0 as seen in Fig. 6, when the
DOS has a pseudogap at � = 0 (DOS vanishes at a single
point). It corresponds to formation of the Dirac cones at X =
(±π, 0) and Y = (0,±π ) points in the Brillouin zone, which
is easy to see in the plots of the dispersion relations; cf. Fig. 1.
At the half filling such a system is a semimetal.

ρ(Ω)

Ω
|m|=2

FIG. 9. Total density of states of the QWZ model at m = ±2.

ρ(Ω)

Ω
|m|=2.5

FIG. 10. Total density of states of the QWZ model at m = ±2.5.

The special case |m| = 1, given by Eq. (17), is shown in
Fig. 8 and the corresponding dispersion relations are in Fig. 3.
Flat parts in the dispersion relations, i.e., lines along which
the gradient of the dispersion ∇kε±(k) = 0, give rise to the
appearance of sharp peaks in the DOS. Despite the fact that
these flat parts are different for m = 1 and m = −1, the shape
of the DOS is the same. In this |m| = 1 case the system is a
topological insulator at the half filling [12,13].

The typical shape of the DOS for |m| > 1 (without
|m| = 2) is shown in Fig. 10. The nonzero part of the
DOS function is described by the single elliptic integral; cf.
Eq. (25). It has two symmetrical infinite peaks at energies
±|m|. The system has the band gap of the width 2||m| − 2| in
the dispersion relation, shown in Fig. 5. In the plot of the DOS
the gap corresponds to ρ(�) = 0 in the range −||m| − 2| <

� < ||m| − 2|. At the half filling the system with |m| < 2 is a
topological insulator and the system with |m| > 2 is a trivial
insulator [12,13].

For |m| = 2 the band gap closes and a pseudogap appears
as it is shown in the plot of the DOS in Fig. 9. Formation of the
Dirac cones can be seen at the corresponding dispersion rela-
tions in Fig. 4. For m = 2 the gap is closed at M = (±π,±π )
and (±π,∓π ) points in the Brillouin zone and for m = −2 it
is closed at � = (0, 0) point. At the half filling such a system
is a semimetal.

Having the exact, analytic expressions for the DOS in
terms of the elliptic integrals we can prove rigorously that the
singularities, present for all m values, are of the logarithmic
divergence type, very similarly as in the case of the square lat-
tice. It comes from the exact properties of the elliptic integrals
[16]. In numerical approaches to the DOS such a conclusion
would be hard to achieve rigorously since the DOS would
typically depend on an artificial broadening parameter or an
arbitrary truncation of an infinite set of recursive equations.
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ρ(Ω)

Ω

|m|=1.15
ΩRΩL

FIG. 11. Total density of states of the QWZ model at m = ±1.15.

V. SUBTLE FEATURES SEEN IN TOTAL DOS

In this section, we discuss additional subtle features and
general trends that can be observed for the DOS of the con-
sidered QWZ model.

A. Additional finite peaks

As discussed earlier, the total DOS is symmetric with re-
spect to m and −m as well as it is symmetric with respect to
� and −�. It has two infinite peaks located at ±�∞, where
the elliptical integral K (1) = ∞, i.e.,

�∞ =
{√

2 − m2, if |m| < 1,

|m|, if |m| � 1.
(34)

We find that, for the values of |m| slightly larger than 1, two
additional finite peaks appear at the edges of a band gap given
by ±�L; for example, it is shown in Fig. 11 for the case of
|m| = 1.15. At larger |m| these peaks disappear.

B. Widths of the band gap and the bands

Let 
 be the width of the band gap. Its value for arbitrary
m (in units with t = 1) is given by the simple expression


 = 2

{|m|, if |m| < 1,

||m| − 2|, if |m| � 1.
(35)

Edges of the band gap are located at energies ±�L, where
�L = 
/2.

On the other hand, the upper and lower bounds of the
energy spectrum [the dispersion relations ε±(k)] are at ±�R,

ρ(ΩL)

m/t

m/t

Δ/t

Top TrivTopTriv

Top Triv

FIG. 12. Value of the DOS at the edges of a band gap, i.e., at
� = �L , vs the parameter m. The inset shows a dependence of the
gap width vs m. The topological and trivial insulators are indicated
in the figures.

where �R = |m| + 2. The width of each of the two bands
ε±(k) is defined as W = �R − �L, since �R > �L. Its value
is explicitly given by

W = 2

⎧⎪⎪⎨
⎪⎪⎩

1, if |m| < 1,

|m|, if 1 � |m| � 2,

2, if |m| > 2.

(36)

The dependence of the gap width 
 as a function of m is
shown in the inset of Fig. 12. It is seen that when 
 < 2 the
gap of the same width is opened for the six different values of
the parameter m; at half filling four of these m will correspond
to topological insulators and the other two m will correspond
to the trivial insulators.

To discuss further we chose the case with the width 
 = 1,
which is possible for |m| = 0.5, 1.5, and 2.5. The DOSs for
|m| = 1.5 and 2.5 are shown in Fig. 13, whereas the DOS
for |m| = 0.5 is in Fig. 7. Interestingly, it can be seen that
the DOS at the edges of the band gap, i.e., ρ(� = ±�L ),
for the topological insulator (|m| = 0.5 and 1.5) is larger than
the one for the trivial case |m| = 2.5. Such a behavior can be
explained by the fact that the topological phase with |m| < 2
is associated with the overlap of the bands and the so-called
band inversion phenomenon. If the off-diagonal terms hx(k)
and hy(k) were neglected the bands only overlap, resulting
in enhancement of the DOS in the overlapping regime of
energies. We note, however, that enhancing the DOS due to
this mechanism is not a sufficient condition to indicate the
system as topologically nontrivial. On the other hand, a band
inversion is a necessary condition for that, at least in a broad
class of tight-binding models. The DOS at the edges of the
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ρ(Ω)

Ω
|m|=1.5 |m|=2.5

FIG. 13. Comparison of the two DOS of the QWZ model, which
are characterized by the same gap. Total density of states at m =
±1.5 (black dashed line) at half filling corresponds to the topological
insulator. Total density of states at m = ±2.5 (green solid line) at half
filling corresponds to the trivial insulator. Enhancement of the DOS
for the topological case is seen.

band gap can be obtained analytically using the properties of
the elliptical integrals K (0) = π/2, namely

ρ(�L ) = 1

2π

{
2|m|/√1 − m2, if |m| < 1,

||m| − 2|/(|m| − 1), if |m| � 1.
(37)

The dependence of ρ(�L ) as a function of m is shown
in Fig. 12. For |m| > 2 it is a finite smooth func-
tion. When |m| < 2 the function is singular and diverges
at m = ±1.

VI. SPECTRAL MOMENTS OF TOTAL DOS

In this section we present results on the spectral moments
of the total DOS. The general formula for the spectral moment
of the order n reads

Mn =
∫

�nρ(�)d�. (38)

Integrals of the form (38) can be calculated analytically on
the base of our analytic results from Sec. III. Some of the
calculations are shown in Appendix B to demonstrate details
of the integration technique.

The moment of the zero order represents normalization
integral M0 = 2. All moments of the odd orders are zero
because the DOS is an even function of �.

The moments of the even orders n are found as the polyno-
mials in the parameter m of the same orders:

M2 = 2(m2 + 2),

M4 = 2(m4 + 8m2 + 5),

M6 = 2(m6 + 18m4 + 51m2 + 14),

M8 = 2(m8 + 32m6 + 210m4 + 284m2 + 42). (39)

This sequence can be continued if needed. Note that all
moments have a factor of 2, which corresponds to two
symmetrical bands.

VII. CONCLUSIONS AND OUTLOOKS

In this paper we derived the analytic formulas of the DOS
of the QWZ Hamiltonian, a generic model for Chern topolog-
ical insulators in two dimensions. The results are expressed in
terms of the complete elliptic integrals. Analytic expressions
for the DOS are rare in general. Our results extend the class of
tight-binding models where the exact, analytic DOS is known.

We discussed in details the plots of the DOS and compared
them with the dispersion relations for the same value of the
parameter m. Some additional finite peaks in the DOS were
identified. We provided explicit formulas for the gap width
and for the width of the bands in the QWZ model. We also
found that for the same gap width the topological system
has larger DOS at the gap edge as compared with the triv-
ial case. Apparently, in the topological case a more spectral
weight is redistributed close to the band gap. It is due to the
bands overlap and the inversion band phenomenon. Finally,
we obtained expressions of the spectral moments of the QWZ
model. They are polynomials of the parameter m, controlling
the topology, and are of the same orders as the orders of the
corresponding moments. On the base of the analytic results
we can identify exactly the position of van Hove singularities
and their logarithmic type.

The analytic DOS will be useful in determining ther-
modynamics (specific heat, compressibility, or magnetic
susceptibility) or linear response (dc conductivity) of the
QWZ Chern topological insulator. It will also simplify the
dynamical mean-field theory study of the QWZ model when
a local Hubbard type of the interaction is added to the Hamil-
tonian; cf. [31–33]. A final remark, as mathematicians say:
“although a donut and a cup are topologically equivalent, one
cannot drink a coffee from a donut. The shape, i.e., the geome-
try, matters.” Similarly, all QWZ model’s physical properties,
not only topological ones, are important to be known in gen-
eral. We also hope that by using similar methods other DOS
can be obtained in analytic form, for example, for the Haldane
model of topological insulator on a hexagonal lattice.
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APPENDIX A: COMPLETE ELLIPTIC INTEGRALS OF
THE FIRST AND SECOND KIND

Expressions for complete elliptic integrals, which we are
using, are the following:

K (q) =
∫ π/2

0

dβ√
1 − q2 sin2 β

, (A1)

E (q) =
∫ π/2

0
dβ

√
1 − q2 sin2 β, (A2)

where q is the modulus of the elliptic integral and q′ is the
complementary modulus, i.e., q′2 = 1 − q2. The elliptic in-
tegrals can also be expressed as sums or series of rational
functions [30]. The above definitions are traditionally used by
mathematicians. Note that in Python libraries q2 is substituted
as an argument of K .

APPENDIX B: CALCULATION OF SPECTRAL
MOMENTS IN DETAILS

Here we show how to calculate some of the integrals (38).
Though the spectral moment of any order can be easily calcu-
lated numerically, the analytical derivation is of special value
and methodological interest.

We start with the simple case of |m| = 1. We express q2 =
9 − �2/8 and q′2 = (�2 − 1)/8. For all values of �2 from the
region where ρ(�) is nonzero the modulus is 0 � q � 1. In
these terms the integral, normalizing the DOS, takes the form

M0

2
= 4

π2

∫ 1

0
K (q)dq′. (B1)

Using the identity (6.141.2) in [30],

∫ 1

0
K (q′)dq = π2

4
(B2)

gives the correct value of normalization.
The second moment takes the form

M2

2
= 4

π2

∫ 1

0
(9 − 8q2)K (q)dq′. (B3)

It can be rewritten as M2/2 = M0/2 + 32J/π2, where

J = −
∫ 1

0
q′K (q)q dq. (B4)

Here we used q′dq′ = −q dq. The integral J can be de-
termined by parts using the following substitution dv =
K (q)q dq and u = q′. It allows us to use the indefinite integral
(5.112.3) in [30], namely

v =
∫

K (q)q dq = E (q) − q′2K (q), (B5)

where E (q) is the elliptic integral of the second kind.
Integration by parts gives J = ∫ 1

0 E (q)dq′ − J , where

E (0) = K (0) = π/2 and E (1) = 1 are used. Using the iden-
tity (6.148.2) in [30]

∫ 1

0
E (q′)dq = π2

8
(B6)

we finally obtain J = π2/16 and M2 = 6.
The moment of the order n is expressed as a combination

of integrals of the product of an elliptic function and an even
power of the modulus,

Mn =
n/2∑
i=0

Ci

∫ 1

0
q2iK (q)dq′. (B7)

Here Ci are real numbers; compare with Eq. (B3). So the same
procedure with integration by parts can be used to obtain a
moment of arbitrary order.

For |m| > 1 the DOS have the infinite peaks at ±�∞. The
integral over � in Eq. (38) is split into two: from �L to �∞
and from �∞ to �R. In these regions the complementary mod-
ulus q′ take values from 1 to 0 and from 0 to 1, respectively.
Denoting x = �2 we can present the moment of the order n in
the form

Mn =
√

2

π2

∫ 1

0
dq′K (q)

[
xn/2

2√
x2 + m2 − 2

(
dx2

dq′

)

− xn/2
1√

x1 + m2 − 2

(
dx1

dq′

)]
. (B8)

The substitution x = x1,2(q) is not a single-valued function:
x1,2 = m2 + 4q′2 ∓ 4q′√m2 − q2, where the sign “+” corre-
sponds to the first region and “−” to the second one. The
expression in the square brackets is transformed algebraically
to a polynomial function

∑n/2
i=0 Ci(m2)q2i, so for n = 0 it is

equal to 4
√

2 and for n = 2 it equal to 4
√

2(m2 + 8q′2). Then
moments are of the form (B7), where coefficients Ci = Ci(m2)
are the functions of m2. The result of calculations leads to
expressions (39).

For the case |m| < 1 two regions of integration need to
be considered separately: |m| � � � 2 − |m| and 2 − |m| �
� � 2 + |m|. In each of these regions the substitution x =
x(q) is not single valued, so each integral splits into two ones,
similar to the case with |m| > 1.

In the first region we obtain the following: for
|m| � � �

√
2 − m2 the substitution is x1 = m2 − 4q(q −√

1 − m2q′2)/q′2. The limits of integration are x1(q′ = 1) =
m2 and limq′→0 x1 = 2 − m2. For

√
2 − m2 � � � 2 − |m|

the substitution is x2 = m2 + 4(1 −
√

q2 + m2q′2)/q′2 with
the limits of integration being x2(q′ = 1) = (2 − |m|)2 and
limq′→0 x2 = 2 − m2.

In the second region we have x3,4 = m2 +
4q′2 ∓ 4q′√m2 − q2 valid for 2 − |m| � � � �M

and �M � � � 2 + |m|, respectively. Here �M is
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defined by the conditions dq/d� = 0 and q2 =
[�2 − (m − 2)2][(m + 2)2 − �2]/(�2 + m2 − 2)/8. It can
be proven that q(�M ) = |m|.

Thus the formula for Mn takes the form

Mn = 8

π2

∫ 1

0
dq′K (q)

[
xn/2

2

x2 + m2

(
dx2

dq′

)

− xn/2
1√

[x1 − (m − 2)2][x1 − (m + 2)2]

(
dx1

dq′

)]

+
√

2

π2

∫ |m|

0
dq K (q)

[
xn/2

3√
x3 + m2 − 2

(
dx3

dq

)

− xn/2
4√

x4 + m2 − 2

(
dx4

dq

)]
. (B9)

It should be noted that these integrals are difficult to calculate
analytically. For example, for M0 the substitution x = x(q) in

Eq. (B9) results in

(M0 − 1)
π2

8

=
∫ |m|

0
dq K (q)

q√
m2 − q2

+
∫ 1

0
dq

K (q)

q′2

×
[

q√
m2 + q2(1 − m2)

− q√
[(1 − m)2 + m2q2]

]
,

(B10)

where we used the identity (6.144) in [30]:∫ 1

0
K (q)

1

1 + q
dq = π2

8
. (B11)

Knowing the fact that M0 = 2, the expression (B10) turns into
an interesting relation between integrals containing K (q).

In order to determine these integrals, the integrands can be
expanded into an infinite series in q2 followed by term-by-
term integration. But the easiest way to prove Eq. (39) for the
case |m| < 1 is the numerical integration.
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