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Layer number dependent spin Hall effects in transition metal monocarbides M2C (M = V, Nb, Ta)

Xi Zuo ,1 Yulin Feng,1 Na Liu,1 Bing Huang ,2,3 Meifeng Liu,1 Desheng Liu,4,* and Bin Cui 4,†

1College of Physics and Electronic Science, Hubei Key Laboratory of Photoelectric Conversion Materials and Devices,
Hubei Normal University, Huangshi 435002, China

2Beijing Computational Science Research Center, Beijing 100193, China
3Beijing Normal University, Beijing 100875, China

4School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan 250100, China

(Received 16 October 2022; revised 6 September 2023; accepted 11 October 2023; published 15 November 2023)

The recent discovery of strong spin Hall effects (SHEs) in two-dimensional layered topological semimetals
has attracted intensive attention due to their exotic electronic properties and potential applications in spintronic
devices. In this paper, we systematically study the topological properties and intrinsic SHEs of layered transition
metal carbides M2C (M = V, Nb, Ta). The results show that d bands crossing near the Fermi level (EF ) induce
multiple nodal lines (NLs) and nodal points (NPs) in bulk and few-layered M2C, respectively. The inclusion of
spin-orbit coupling breaks the degeneracy of NLs and NPs, contributing to large spin Hall conductivity (SHC)
up to ∼1100 and ∼ 200 (h̄/e)(� cm)−1 for bulk and monolayer Ta2C, respectively. Remarkably, we find that the
magnitude of SHC exhibits a significant enhancement by increasing the layer thickness. For eight-layer Ta2C, the
maximum value of SHC can reach up to ∼ 600 (h̄/e)(� cm)−1, comparable to many reported three-dimensional
topological materials. Analysis of spin Berry curvature reveals that the large SHC originates from layer number
dependent nodal-point structure near the EF , around where the repeated crossover between the valence and
conduction bands creates large numbers of NPs in the �-K and �-M routes. Our findings not only provide a
platform for experimental research of low-dimensional SHE, but also suggest an effective way of realizing giant
SHE by controlling layer thickness.
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I. INTRODUCTION

The Spin Hall effect (SHE), a relativistic phenomenon in
which electrical currents can generate transverse spin currents
in the absence of magnetic field, has become an important
topic in recent years [1–11]. Two key factors, intrinsic spin
Hall conductivity (SHC) and spin Hall angle (SHA), influence
the performance of SHE-based devices. The intrinsic SHC
can be accurately calculated by integrating the spin Berry
curvature (SBC) of the occupied bands in the Brillouin zone
(BZ) [12]. The SHA of a SHE system is the ratio of the SHC
to the charge conductivity (GC ), which represents the charge
to spin interconversion efficiency at room temperature [13].
Therefore, exploring SHE systems with large SHC and SHA
is one of the main goals in this field.

With the rapid development of topological matters, strong
SHE is observed in topological systems such as topological
insulators (TIs) and topological semimetals (TSMs) [14–16].
Due to their spin momentum locked surface states, TIs are
considered to be ideal systems for generating pure spin cur-
rents. However, various experiments show that the SHA of
the Bi2Se3 family can vary from 0.01 to 425 due to the bulk
doping problem induced by the hybridization between surface
and bulk states [14,17,18]. Recently, increasing attention has
been focused on the intrinsic SHE in TSMs. For example,
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nodal-point semimetals HfCuGeAs [9], ZrSiTe [19], and TaAs
[20] have been predicted to host large intrinsic SHC exceeding
500 (h̄/e)(� cm)−1 due to large SBC around the spin-orbit
coupling (SOC) induced small-gapped Dirac or Weyl nodal
points. On the other hand, large intrinsic SHEs have also been
reported in nodal-line semimetals. Different from nodal-point
semimetals, the gapped nodal lines can induce many band
anticrossing points distributed with large and continuous SBC
in the entire BZ, contributing to a remarkable SHC [21]. It
is predicted that nodal-line TSMs (NLSMs) such as W3Ta
[22], Ta3Bi [23], and InBi [24] exhibit giant SHC exceeding
1000 (h̄/e)(� cm)−1 at the Fermi level (EF ). To realize large
intrinsic SHC and SHA as well as to design ideal devices for
spin-charge current conversion, it is important to explore new
TSMs and study the interplay between the SHC and the band
topology.

Recently, the two-dimensional (2D) transition metal
dichalcogenides (TMDs) family has been reported to exhibit
large SHE due to their tunable SOC, GC , and band topology
[25–27]. For example, the Weyl semimetals MoTe2 and WTe2

are reported to have a large SHA of 0.32 [28] and 0.17 [29],
respectively. Spin-orbit torque in few-layered Dirac semimetal
PtTe2 [30] reveals that the SHC exhibits a monotonical incre-
ment with a maximum value of about 1000 (h̄/e)(� cm)−1 as
the layer thickness increases from 3 to 20 nm. Correspond-
ingly, first-principles calculations on bilayer PtSe2 [31] and
trilayer MoTe2 [28] reveal that its intrinsic SHC is about 27
and 200 (h̄/e)(� cm)−1 at the EF , respectively. This raises
the question of whether we can find large intrinsic SHC in
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layered 2D materials comparable to familiar heavy metals or
there-dimensional (3D) topological materials. On the other
hand, the influence of layer thickness on the SHE in 2D
materials still calls for further theoretical investigation.

In this paper, we systematically investigate electronic
structures and intrinsic SHE in 2D layered transition metal
carbides M2C (M = V, Nb, Ta, known as MXenes), which
exhibit a fascinating combination of properties such as
controllable minimum layer thickness, large electric con-
ductivities, and rich electronic structures, and can be easily
synthesized in the laboratory [32–37]. Both bulk and mono-
layer M2C exhibit large SHC owing to strong SOC and
contributions of multiple nodal lines or nodal points in the
band structures. Taking Ta2C as an example, we observe a sig-
nificant enhancement of SHC by varying the thickness from
one layer (1L) to eight layers (8L), which originates from the
layer number dependent nodal-point structures near the EF .
The rest of this article is organized as follows. In Sec. III A,
we first give the description of crystal structures for bulk and
monolayer M2C. In Sec. III B, we then report the band struc-
tures, SHC, and SHA for bulk M2C. In Sec. III C, we study
the SHE of few-layered M2C by varying the layer number
from 1L up to 8L. To understand the origin of layer number
dependent SHC, we also give the electronic band structures,
nodal-point structures, and k-resolved SBC at EF . Finally, the
conclusion drawn from this work is summarized in Sec. IV.

II. THEORY AND COMPUTATIONAL DETAILS

First-principles calculations are carried out by using the
density-functional theory (DFT) as implemented in the QUAN-
TUM ESPRESSO package [38]. Projector-augmented wave
(PAW) [39] and the generalized gradient approximation
(GGA) with the Perdew-Burke-Ernzerhof (PBE) functional
[40] are used to describe the potential of core electrons
and the exchange-correlation interaction between the va-
lence electrons, respectively. The valence configurations of
V, Nb, Ta, and C atoms are 3s24s23p63d3, 4s25s24p64d3,
5s26s25p65d34 f 14, and 2s22p2, respectively. To explore the
SHC and the SHA, the tight-binding Hamiltonians are con-
structed with the maximally localized Wannier functions
[41,42] for the outermost s and d orbitals of V, Nb, and Ta
atoms and the outermost p orbitals of C atoms generated
by the first-principles calculations. The Wannier-fitted band
structures are shown in Figs. S1 and S2 in the Supplemental
Material (SM) [43].

Based on the tight-binding model constructed with WAN-
NIER90, the nodal lines and points are calculated using the
WANNIERTOOLS software package [44]. To get the accurate
nodal lines in the whole Brillouin zone (BZ), we first sym-
metrize the tight-binding Hamiltonian according to the crystal
symmetries and then find all the nodal points in the BZ.

Based on the Wannier-interpolation approach, we calculate
SHC in the clean limit using the Kubo formula [13]:

σ k
i j = −e2

h̄

1

V Nk

∑
n

∑
k

fnk�
k
n,i j (k), (1)

�k
n,i j (k) = h̄

∑
m �=n

−2Im
[〈nk| ĵk

i |mk〉〈mk|v̂ j |nk〉]
(Enk − Emk )2 , (2)

Here, ĵk
i = 1

2 {ŝk, v̂i} is the spin current operator, with the
spin operator ŝk = h̄

2 σ̂k , the velocity operator v̂i = 1
h̄

∂H (k)
∂ki

, and
i, j, k = x, y, z. |nk〉 is the eigenvector of the Hamiltonian
H corresponding to eigenvalue Enk. fnk is the Fermi-Dirac
distribution for the nth band. V is the primitive cell volume,
and Nk is the number of k points sampling in the BZ. The unit
of σ k

i j is (h̄/e)(� cm)−1. �k
n,i j is referred to as the spin Berry

curvature (SBC) in units of Å. For bulk M2C, a 100×100×100
Wannier-interpolation k mesh with a 4×4×4 adaptive refine-
ment k mesh is used for the integral of the SHC. For SHC
calculations of few-layered M2C, the cell volume V in the
denominator of expression (1) corresponds to the primitive
cell used in the DFT calculations which includes the vacuum
thickness.

The SHA is defined as the ratio of the SHC over the GC ,
which characterizes the efficiency of converting the charge
current to spin current. The SHA is evaluated according to

θSH = 2e

h̄

σ z
xy

σxx
, (3)

where σxx is the longitudinal GC and σ z
xy is the transverse SHC.

The longitudinal σxx is calculated by using the Boltzmann
transport equations within the constant relaxation time
approximation as follows [45]:

[σ ]i j (μ, T ) = e2
∫ +∞

−∞

[
−∂ f (ε, μ, T )

∂ (ε)

]
�i j (ε), (4)

�i j (ε) = 1

V

∑
n,k

νi(n, k)ν j (n, k)τ (n, k)δ(ε − En,k ), (5)

where μ is the chemical potential, f (ε, μ, T ) is the
Fermi-Dirac distribution function f (ε, μ, T ) = 1

e(ε−μ)/kBT +1
,

�i j (ε) is the transport distribution function tensor, En,k is the
energy of the nth band at k, νi(n, k) is the ith component of
the band velocity at (n, k), δ is the Dirac’s delta function, V
is the total volume of the system, and τn,k is the relaxation
time depending on band and wave vector, which describes the
collision term in the Boltzmann equation. In the calculation,
we assume that the lifetime τn,k is independent of both n and
k and choose the value τ = τn,k by fitting the experimental
electric conductivities at a given temperature. For monolayer
M2C (M = V, Nb, Ta), due to lack of experimental GC values,
we directly obtain the electron relaxation times by evaluating
the electron-phonon coupling using the EPW code [46]
(see calculation details in Fig. S3 in the SM [43]).

III. RESULTS

A. Crystal structure

As shown in Fig. 1(a), the bulk M2C (M = V, Nb, Ta)
crystallizes in a trigonal crystal structure with the space group
P3̄m1 (164). The C atom is located at the corner sites of the
unit cell, while two M atoms are located at equivalent sites
with the Wyckoff position of 2d (1/3, 2/3, 1/4). Each C atom
is bonded to six equivalent M atoms to form an edge-sharing
octahedral, and each M atom is bonded in a distorted T-shaped
geometry to three equivalent C atoms. The optimized lattice
parameters for bulk and monolayer M2C are summarized
in Table I; they agree well with previous experimental and
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FIG. 1. (a) Side and top views of crystal structures of bulk M2C (M = V, Nb, Ta). (b) Brillouin zone (BZ) of a primitive cell of M2C. (c)
Calculated phonon dispersions along high-symmetry lines for monolayer M2C (M = V, Nb, Ta).

theoretical values [47,48]. The BZ is shown in Fig. 1(b). The
phonon spectra of energetically stable crystal structures for
monolayer M2C (M = V, Nb, Ta) are calculated and shown in
Fig. 1(c). Obviously, the phonon spectra contain no imaginary
frequency, indicating that monolayer M2C (M = V, Nb, Ta)
are dynamically stable [36]. For few-layered Ta2C, we first
cleave the bulk phase and add at least 20 vacuum thicknesses
to avoid interactions between neighboring unit cells. The cor-
responding lattice parameters are shown in Table S1 in the
Supplemental Material (SM) [43].

B. Electronic band structures and SHE in bulk M2C

Based on the optimized structures, the calculated band
structures in the absence of SOC for bulk Ta2C are shown
in Fig. 2(a), and those of other compounds are displayed in
Fig. S4 in the SM [43], respectively. The orbital character
analysis shows that the 5d orbitals of Ta dominate the bands
near the EF . Interestingly, several bands cross each other and
form the nodal points P1 and P2 and nodal line L1. Here,
we label the three bands that contribute to the nodal lines as

TABLE I. The optimized lattice parameters for bulk and mono-
layer M2C (M = V, Nb, Ta).

Bulk Monolayer

M2C a (Å) Ref. c (Å) Ref. a (Å) Ref.

V2C 2.892 2.904a 4.521 4.579a 2.886 2.883b

Nb2C 3.140 3.120c 4.984 4.957c 3.124 3.117b

Ta2C 3.122 3.103a 4.953 4.937a 3.080 3.084b

aX-ray diffraction experiment data [47].
bAb initio calculation [35].
cExperiment data [48].

EBk=1,2,3 sorted by energy values. To clearly distinguish these
bands, the top of the valence band, namely, EB2, has been
colored red. It is observed that the EB2 and EB3 bands are
degenerate along the �-A route, and induce the nodal line L1.
On the other hand, P1 is formed by the band crossing of EB1

and EB2 along K-�, while P2 is formed by the band crossing
of EB2 and EB3 along the L-H routes. The multiple band de-
generacies around EF imply the nodal-line structure in Ta2C.
To confirm our physical intuition, we perform a systematic

FIG. 2. (a) Band structure and projected density of states of bulk
Ta2C without SOC. P1, P2, and L1 represent the two nodal points
and nodal line in the band structure, respectively. The highest valence
band is shown in red. (b) Nodal lines in the first BZ. (c) Top view of
the nodal lines. The EF is set to zero in (a).
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TABLE II. The irreducible representations (Irreps) of the elec-
tronic bands of the little group at different high-symmetry points
in the first BZ of Ta2C without SOC. The Irreps corresponding to
the higher-energy bands are placed at the top of the table, which are
written in the BCS convention. The numbers in the parentheses indi-
cate the dimensions of the Irreps and the degree of degeneracy of the
bands at the corresponding high-symmetry points. The superscript
+/– means the parity.

M K � A L H

M−
2 (1) K3 (2) �+

3 (2) A+
3 (2) L−

2 (1) H1 (1)
M−

2 (1) K3 (2) �+
1 (1) A−

2 (1) L+
1 (1) H3 (2)

M+
1 (1) L−

2 (1)

nodal-line search in the first BZ. Here, we first identify all the
k points with zero energy gap between the EB2 and EB3 bands
and plot them with green lines in Figs. 2(b) and 2(c). A similar
treatment is used in the nodal-line search between the EB1

and EB2 bands, which is shown with blue lines. There are 11
nodal lines near the EF that can be classified into three classes:
class I, the closed nodal ring around the � point; class II, three
curved nodal lines and one straight nodal line crossing the �

point around the �-A route; and class III, six paraboliclike
nodal lines connecting the horizontal edges of the BZ. We also
show each class of nodal line in the first BZ in Fig. S5 in the
SM [43].

Here, based on symmetry analysis, we reveal the symmetry
protection mechanism of the nodal points and lines formed by
EB1-EB3. For bulk M2C (M = V, Nb, Ta), the generators of
the space group P3̄m1 (164) are C3z, inversion symmetry (P),
and twofold rotational symmetry C2(110). Meanwhile, we also
have time-reversal symmetry (T ) in this system. To figure out
the symmetry protection of nodal lines in this system with-
out SOC, we have calculated the irreducible representations
(Irreps) at different high-symmetry points, which are shown
in Table II. It is noted the results are written in the Bilbao
Crystallographic Server (BCS) convention.

For nodal line L1 along �-A, the high-symmetry line is
invariant under threefold rotation symmetry C3z and joint sym-
metry PT , which belongs to the C3v point group symmetry.
From Table II, the Irreps at � and A are �+

3 (2) and A+
3 (2),

respectively. By checking the compatibility relations along
�-A, we find the Irreps for an arbitrary point k0 on the �-A is
�3 (2). The dimension of this Irrep is 2 and the corresponding
matrix form of C3z is eiσz2π/3; here σz is the Pauli matrix. For
a Bloch state |φ±〉 with the eigenvalue e±i2π/3 of C3z at k0, we
have

C3zPT |φ±〉 = PT C3z|φ±〉 = e±i2π/3PT |φ±〉, (6)

where the commutation relation [C3z,PT ] = 0 is adopted.
Thus, the two states |φ±〉 and PT |φ±〉 must be degenerate at
k0, indicating that L1 is protected by C3z associated with PT
symmetry. For nodal point P1 along K-�, the little group of
an arbitrary point k1 is the C2 point group and the maintained
symmetries are PT and twofold rotational symmetry C2(110).
The little group Irreps at k1 are �1 (1) and �2 (1) with op-
posite eigenvalues of C2(110). Similar analysis reveals that P2

FIG. 3. Bulk Ta2C. (a) Relativistic band structure; (b) spin Hall
conductivities (SHC; σ z

xy, σ y
zx , σ x

yz, and σ x
xx) as a function of energy;

(c), (e), (g), (i) band-decomposed spin Berry curvatures (SBC, �n),
as well as (d), (f), (h), (j) total SBC along the high-symmetry lines in
the Brillouin zone. In (a), (b), the EF is at zero energy, and the unit
of SHC is 102 (h̄/e)(� cm)−1. In (c)–(j), the unit of SBC is Å2. Note
that in (a), (c), (e), (g), (i), the same color curves correspond to the
same bands.

along the L-H route is also protected by rotational symmetry
C2(010) associated with PT symmetry.

When SOC is considered and the SU(2) symmetry is bro-
ken, P1, P2, and L1 are fully gapped [see Fig. 3(a)]. Due to
the presence of PT symmetry, each band becomes doubly
degenerate. The SOC lifts the degeneracies of all nodal lines
in the band structures of Ta2C. The SOC-induced band gap is
about 24 and 360 meV at P1 and P2, and a maximum value
of 550 meV at the � point along the �-A route, which is
significantly larger than V2C (from 8 to 47 meV) and Nb2C
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TABLE III. Symmetry-imposed tensor forms of the SHC tensors
for bulk M2C with the space group of P3̄m1 (164). The layer group of
few-layered M2C is P3̄m1, which shares the same tensor form with
its bulk counterpart.

σx σy σz

Space group
P3̄m1

(
σ x

xx 0 0

0 σ x
yy σ x

yz

0 σ x
zy 0

)(
0 σ

y
xy σ

y
xz

σ
y
yx 0 0

σ
y
zx 0 0

)(
0 σ z

xy 0

σ z
yx 0 0

0 0 0

)

(from 11 to 142 meV) (see detailed band structures of M2C
systems in Fig. S4 in the SM [43]). This means that Ta has a
much stronger SOC than V and Nb. The phenomenon that the
nodal lines are fully gapped under SOC also occurs in crystal
systems AX2 (A = Ca, Sr, Ba; X = Si, Ge, Sn) and CaI2 with
the same space group P3̄m1 (164) [49,50].

Since strong SOC-induced band anticrossings around the
nodal lines can generate large local SBC, it is expected
that M2C systems have strong SHE [21,51]. To evaluate the
SHE in M2C, we first perform symmetry analysis to eval-
uate the allowed SHC components. As mentioned above,
M2C has a trigonal crystal structure with the space group
P3̄m1 (164). The corresponding Laue group is 3̄m, which
leads to the constraints σ x

xx = −σ x
yy = −σ

y
yx = −σ

y
xy, σ

y
zx =

−σ x
zy, σ

y
xz = −σ x

yz, and σ z
xy = −σ z

yx [52], while other tensor
elements are zero (see Table III). Thus, M2C has only four
nonzero independent elements, namely, the unconventional
component σ x

xx and conventional components σ x
yz, σ

y
zx, and

σ z
xy. The independent SHC components for M2C (M = V,

Nb, Ta) are shown in Table IV. At first glance, three conven-
tional SHC components are nearly isotropic for V2C, Nb2C,
and Ta2C, which are much larger than the unconventional
SHC component. Taking σ z

xy as an example, the magnitude
of SHC values increases rapidly from top to bottom, which
is in accordance with the variation of SOC strength from
V to Ta. The SHC at EF reaches −1082 (h̄/e)(� cm)−1 for
Ta2C, which is comparable to recently reported nodal-line
systems, such as InBi ∼ 1100 (h̄/e)(� cm)−1 [24], HfH2 ∼
1100 (h̄/e)(� cm)−1 [53], and 5d transition metal β−W ∼
1255 (h̄/e)(� cm)−1 [54]. We also show energy-dependent
SHC (σ z

xy) of Ta2C in Fig. 3(b) (see SHC components for other
M2C compounds in Fig. S6 in the SM [43]). Interestingly, for
a wide range of EF shifting from EF −0.32 eV to EF + 0.07
eV, the magnitude of the σ z

xy component for Ta2C can still stay
larger than 103 (h̄/e)(� cm)−1.

In order to determine the SHA, we have calculated the lon-
gitudinal GC using the Boltzmann transport equations within

TABLE IV. Intrinsic SHC and SHA for independent tensor el-
ements for bulk M2C (M = V, Nb, and Ta). The unit of SHC is
(h̄/e)(� cm)−1.

σ x
xx σ x

yz σ y
zx σ z

xy |�x
xx|(%)|�x

yz|(%)|�y
zx|(%)|�z

xy|(%)

V2C −1 −372 −401 −349 0.01 2.81 2.75 2.63
Nb2C −6 −566 −588 −564 0.03 2.78 2.63 2.77
Ta2C −19−1090−1165−1082 0.15 8.72 6.54 8.66

the constant relaxation time approximation. According to the
experimental resistivity values of 40 μ� cm of Ta2C [55], we
obtain the corresponding room-temperature relaxation time as
25.3 fs. In addition, we assume that the relaxation times for
V2C and Nb2C are equal to that of Ta2C (see GC in Table S2
in SM [43]). The results in Table IV show that the maximum
intrinsic SHA of Ta2C can reach 8.66%, which is comparable
to that of Pt (6.8%) [56].

To figure out the origin of large SHC in M2C, we calculate
the band-decomposed SBC and k-resolved SBC at EF for
Ta2C in Fig. 3, respectively; the SBC analysis of Nb2C and
V2C are shown in Fig. S7 in the SM [43]. It is noted that
the total SBC at k in Figs. 3(d), 3(f), 3(h), and 3(j) is the
summation of SBC on all occupied bands at k.

As can be seen from Figs. 2(a) and 3(a), the nodal lines
and points including P1, P2, and L1 are fully gapped under
the inclusion of SOC. According to previous reports in the
literature, if a Dirac point opens a small hybridization gap
with the inclusion of SOC at some k point, then the SBC
appears as a pair of peaks with opposite signs on upper and
lower bands in the vicinity of this k point [19,20]. If both
bands are occupied, the opposite sign of SBC at this k point
will cancel out. However, when only one band is occupied,
e.g., the EF falls within the gap, then only one peak of SBC
would contribute to the SHC. The phenomenon can be seen in
Figs. 3(d), 3(f), and 3(h) for gapped Dirac point P2 along the
L-H route.

Apart from Dirac point induced SBC peaks, there also exist
other peaks along �-M, K-�, �-A, A-L, and H-A in Fig. 3(d)
for the �z

xy(k) component. The SBC peaks along K-� and �-A
originate from the gapped nodal point and lines corresponding
to P1 and L1. On the other hand, the SBC peaks along A-L and
H-A originate from the gapped nodal point at high-symmetry
point A (see detailed analysis in Figs. S8 and S9 in SM [43]).
In addition, From Eq. (1) and previously reported systems
such as ZrXY (X=Si, Ge; Y=S, Se, Te) [19], the SBC peak
can also occur at other k points apart from the gapped nodal
points. By comparing Figs. 3(c) and 3(d) with Fig. 3(a), the
strong local SBC peaks along �-M originate from the dashed
elliptic area in Fig. 3(a) where there is a tiny energy gap
(∼35 meV) between the EB1 and EB2 bands. In addition, we
also give the contour plots of the �z

xy(k) component in three
planes, kz = 0, kz = 0.5, and ky = 0, in Fig. S10 in the SM
[43], which clearly show that the SBC is mainly contributed
by the gapped nodal lines belonging to classes I and III, and
three curved nodal lines of class II. Therefore, the giant SHC
found in bulk M2C (M = V, Nb, Ta) is mainly contributed by
the symmetry-protected nodal lines.

C. Electronic band structures and SHE in few-layered M2C

The intimate relationship between SHC and nodal-line
structure in bulk M2C implies that strong SHE can also exist
in monolayer or few-layered M2C. We first study the SHE
of monolayer (1L) M2C. The symmetry analysis shows that
the layer group of few-layered M2C is P3̄m1 with the same
tensor constraints and independent SHC components as its
bulk counterparts. Table V shows the calculated SHC com-
ponents for monolayer M2C. At first glance, the dominant
SHC component is σ z

xy for these compounds (see the SBC
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TABLE V. Intrinsic SHC and SHA for independent tensor ele-
ments for monolayer M2C (M = V, Nb, and Ta). The unit of SHC is
(h̄/e)(� cm)−1.

σ x
xx σ x

yz σ y
zx σ z

xy |�x
xx|(%) |�x

yz|(%) |�z
xy|(%)

V2C-1L 0 3 3 −25 0 0.05 0.42
Nb2C-1L 0 6 6 −46 0 0.04 0.35
Ta2C-1L 4 15 14 −187 0.05 0.19 2.38

analysis of all SHC components for Ta2C in Figs. S11 and
S12 in the SM [43]). The SHC (σ z

xy) increases gradually as
SOC strength becomes larger from V2C to Nb2C and Ta2C.
The maximum SHC of Ta2C reaches −191 (h̄/e)(� cm)−1

at EF . In order to determine the SHA for monolayer M2C,
we directly obtain the electron relaxation time and GC by
evaluating the electron-phonon coupling effects (see GC and
calculation details in Table S3 and Fig. S3 in the SM [43]).
The electron relaxation time at EF is 22.2 fs for Ta2C. Due
to similar electron structures and phonon spectra, we assume
that the relaxation times for V2C and Nb2C are equal to that of
Ta2C. The results in Table V show that the maximum intrinsic
SHA can reach 2.38% for Ta2C.

V2C, Nb2C, and Ta2C share similar geometries and band
structures; therefore, we take Ta2C as an example to study
the layer dependence of independent SHC components by
enhancing the thickness from monolayer (1L) up to eight
layers (8L). The magnitude of SHC components at EF ver-
sus the number of layers is shown in Fig. 4 and listed
in Table S4 in the SM [43]. Meanwhile, we also give the
energy dependence of independent SHC components of few-
layered Ta2C in Fig. S13 in the SM [43]. At first glance,
the absolute value of the σ z

xy component shows a monoton-
ically increasing trend as the layer number goes from 1L
to 8L, while the σ x

xx component maintains a small value
less than 20 (h̄/e)(� cm)−1. The maximum value of the σ z

xy

component is −608 (h̄/e)(� cm)−1, which is larger than 2D
systems such as 2L PtSe2 (∼ 27 (h̄/e)(� cm)−1 at EF [31]),
3L MoTe2 (∼ 200 (h̄/e)(� cm)−1 at EF [28]), and 1L SnTe
(∼ 245 (h̄/e)(� cm)−1 at EF + 1.09 eV [57]). Interestingly,

FIG. 4. Layer-dependent SHC components σ x
xx , σ x

yz, σ y
zx , and σ z

xy

for 1L-8L Ta2C.

the magnitude of the σ x
yz and σ

y
zx components drops down to

−460 (h̄/e)(� cm)−1 at 3L and shows an even-odd oscillation
for 4L–8L Ta2C.

To figure out the origin of layer-dependent SHC observed
in few-layered Ta2C, we take the σ z

xy component as an exam-
ple to discuss the relationship between the k-resolved SBC
and electronic structures for odd-layered Ta2C in Fig. 5 (see
descriptions of even-layered Ta2C in Figs. S14–S17 in the SM
[43]). We note that the magnitude of colors in Figs. 5(m)–5(p)
represents the logarithm of the SBC component �z

xy(k) [13]:

Magnitude of color bar

=
⎧⎨
⎩

sgn
(
�z

xy

)
log10

∣∣�z
xy(k)

∣∣ ∣∣�z
xy(k)

∣∣ > 10 Å

�z
xy (k)
10

∣∣�z
xy(k)

∣∣ � 10 Å
.

For band structures without SOC [see Figs. 5(a)–5(d)], we
first observe an obvious band crossing between the valence
(marked with red lines) and conduction bands along the K-�
route. As the thickness increases from 1L to 7L Ta2C, the two
bands repeatedly cross each other and induce larger numbers
of nodal points, which is protected by C2(110) associated with
PT symmetry (see symmetry analysis in Fig. S18 in the
SM [43]). The distribution of nodal points is also given in
Figs. 5(e)–5(h). Upon turning on SOC, all the nodal points are
fully gapped, resulting in continuous SOC gaps along the �-K
route. The coexistence of nodal lines and SOC-induced band
gaps aligned near the EF induce large SBC in this system.
From Figs. 5(m)–5(p), the magnitude of �z

xy becomes larger
and denser in the central region of the BZ and the distribution
of �z

xy extends out along the �-K and �-M directions, which
is in accordance with the variation of distribution of nodal
points in the first BZ. In addition, apart from the �-K and
�-M directions, we also find that the distributions of �z

xy in
Figs. 5(o) and 5(p) extend to the edges of the BZ in other di-
rections. This is because there exist other nodal points induced
by band crossing of other pairs of bands near EF . Therefore,
the layer-dependent nodal-point structures play an important
role in determining the increasing trend of the �z

xy component.
Apart from the �z

xy component, we also give �
y
zx, �x

yz, and �x
xx

components for odd- and even-layered Ta2C in Figs. S14–S17
in the SM [43]. As the layer thickness increases in odd num-
bers, the increasing trend of the �

y
zx and �x

yz components in
the first BZ is similar to that of the �z

xy component. However,
the appearance of SBC regions with opposite sign for adjacent
even-layered Ta2C induces the decline of net SBC at EF and
even-odd oscillation for σ x

yz and σ
y
zx SHC components.

IV. DISCUSSION AND CONCLUSIONS

We take M2C (M = V, Nb, and Ta) as a representative
in the above presentation. As shown in Fig. S19 in the SM
[43], the essential band crossings between the bands near
the EF are also shared by other members of the MXenes. In
most materials, like Zr2C, Hf2C, Nb2N, and Ta2N, the band
crossing points are below or above the EF , while in other
materials such as Zr2N and Hf2N, the band crossing points
are just at the EF ; these are expected to give rise to strong
SHC.
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FIG. 5. (a)–(d) Band structures for 1L, 3L, 5L, and 7L Ta2C without SOC, respectively. (e)–(h) Corresponding nodal-point structures in
the first BZ. (i)–(l) Band structures for 1L, 3L, 5L, and 7L monolayer Ta2C with SOC, respectively. (m)–(p) Corresponding σ z

xy component of
SBC in first BZ. Note that the high-symmetry points are denoted as blue dots in (e)–(h) and (m)–(p).

Apart from controlling SHE by layer thickness, we also
study the stacking-dependent SHE in bilayer layer Ta2C with
AA and AB stacking modes (see Fig. S20 in the SM [43]).
The results show that the magnitude of the SHC components
σ x

yz, σ
y
zx, and σ z

xy at EF increases obviously by changing AA to
AB stacking configurations.

In summary, we have predicted large intrinsic SHE in lay-
ered transition metal carbides M2C (M = V, Nb, and Ta). Due
to strong SOC and contributions of multiple nodal lines in the
band structure, the SHC and SHA of bulk Ta2C can reach up to
∼ 1100 (h̄/e)(� cm)−1 and ∼ 8.66%, respectively. For few-
layered Ta2C, the σ z

xy component of SHC exhibits a monotonic
increase as the number of layers increases, while σ x

yz and σ
y
zx

components show an even-odd oscillation for 3L–8L. The
maximum value of SHC is –608 (h̄/e)(� cm)−1 for 8L Ta2C,

which is larger than many 2D systems reported so far and
comparable to many 3D topological systems. Therefore, one
can effectively tune the SHC by controlling the layer thickness
in layered 2D materials. Our results not only elucidate the
interplay between layer-dependent SHC and band topology,
but also provide theoretical guidance for developing next-
generation spintronic devices.
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