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By utilizing time-dependent tensor-network algorithms in the infinite matrix-product-state representation, we
theoretically investigate the pump-probe spectroscopy of the one-dimensional extended Hubbard model at half
filling. Our focus lies on nonequilibrium optical conductivity and single-particle excitation spectra. In the spin-
density-wave (SDW) phase, we identify an in-gap state in the nonequilibrium optical conductivity due to the
formation of excitons (or doublon-holon pairs), generated by the pulse through nonlocal interactions. In the
strong-coupling regime, we discern additional multiple in-gap and out-of-gap states. In the charge-density-wave
(CDW) phase, we detect not only an in-gap state but also a finite Drude weight, which results from the dissolution
of charge order by photoexcitation. Analyzing time-dependent single-particle excitation spectra directly in the
thermodynamic limit confirms the origin of these new states in the SDW and CDW phases as the excitation of
newly emerged dispersions. We illustrate that the pump-probe spectroscopy simulations in the thermodynamic
limit furnish unambiguous spectral structures that allow for direct comparison with experimental results, and
the integration of nonequilibrium optical conductivity and time- and angle-resolved photoemission spectroscopy
provides comprehensive insights into nonequilibrium states.
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I. INTRODUCTION

Recent years have seen significant progress in studying
novel phenomena in materials driven out of equilibrium
by high-intensity laser irradiation [1,2]. Emergent phenom-
ena, such as photoinduced (photoenhanced) superconductivity
[3–13] and optical control of magnetic order [14–21] in
strongly correlated electron systems, have also started to
attract both experimental and theoretical attention. In this
context, pump-probe spectroscopy has been a crucial tool for
exploring nonequilibrium phenomena in these materials. This
technique involves exciting a system with a high-intensity
pump pulse, followed by examining the dynamical properties
of the nonequilibrium state through the linear response of a
low-intensity probe pulse.

Analyzing the nonequilibrium state of strongly correlated
systems within a one-dimensional (1D) model provides a
beneficial starting point since the theoretical treatment of a
1D system is simpler compared to two- or three-dimensional
systems. Despite being a special case, essential characteristics
of correlated systems can be elucidated from 1D systems.
Furthermore, the 1D Mott insulator, which manifests in actual
materials and has been thoroughly studied in the litera-
ture, is of particular interest. Ultrafast phenomena of 1D
Mott insulators, such as organic salt ET-F2TCNQ [22–26]
and halogen-bridged transition-metal compounds [27–29],
have been intensively explored in preceding experiments
because their optical response is significantly influenced by
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the formation of doublon-holon bound states due to nonlocal
interactions resulting from photoexcitation.

From a theoretical perspective, photoinduced nonequilib-
rium states in the model with nonlocal interaction have been
discussed in the literature [11,30–36]. Numerical simulations
of pump-probe spectroscopy have reported the emergence
of light-induced in-gap states in the half-filled 1D ex-
tended Hubbard model (1DEHM) including nearest-neighbor
Coulomb interaction. This was achieved by examining the
nonequilibrium optical conductivity using time-dependent ex-
act diagonalization [37] and density-matrix renormalization
group [38] techniques. However, previous studies have shown
system-size dependencies in their results since their calcula-
tions were conducted using finite clusters.

In this paper, by employing time-dependent tensor-network
algorithms in the infinite matrix-product state (iMPS) repre-
sentation, we simulate the nonequilibrium dynamics of the
1DEHM directly in the thermodynamic limit to investigate
nonequilibrium phenomena induced by an intense, short-time
pulse. We elucidate the dynamical properties of this sys-
tem by examining the linear response of a subsequent weak
probe pulse, corresponding to pump-probe spectroscopy ex-
periments. Our focus lies primarily on optical conductivity
and time- and angle-resolved photoemission spectroscopy
(TARPES) in nonequilibrium situations.

Calculating with an infinite system enables distinct differ-
entiation between excitation spectra arising from continuous
and discrete levels. In finite-system analyses, spectra may
appear discretized even if the excitation derives from con-
tinuous levels. By directly simulating an infinite system,
this issue can be circumvented. Additionally, thanks to the
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high-resolution calculation concerning momentum, we can
easily obtain detailed peak structure and dispersion relations,
facilitating unambiguous comparisons between theory and
experiments. Furthermore, we demonstrate that the nonequi-
librium dynamics can be comprehensively understood by
studying both optical conductivity and TARPES in a comple-
mentary fashion. Our study aims to deepen the understanding
of nonequilibrium phenomena in strongly correlated elec-
tron systems and provide valuable insights for experimental
investigations.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the 1DEHM and describe the numerical
method used in this paper. In Sec. III, we present the numeri-
cal results of nonequilibrium optical conductivity induced by
an intense pump pulse. In Sec. IV, we demonstrate the sim-
ulated single-particle excitation spectra, which are expected
to be observed in TARPES experiments. Finally, we provide
conclusions and future outlook in Sec. V.

II. MODEL AND METHOD

In this section, we introduce the Hamiltonian of the
1DEHM and provide a brief explanation of the numerical
calculations that we performed.

A. Extended Hubbard model

We consider the 1DEHM at half filling. Under the influence
of a spatially uniform vector potential A(t ), the Hamiltonian
is written as

Ĥ (t ) = −th
∑
j,σ

(
ei ae

h̄c A(t )ĉ†
j,σ ĉ j+1,σ + H.c.

)

+ U
∑

j

(
n̂ j,↑ − 1

2

)(
n̂ j,↓ − 1

2

)

+ V
∑

j

(n̂ j − 1)(n̂ j+1 − 1), (1)

where ĉ j,σ (ĉ†
j,σ ) is the annihilation (creation) operator of an

electron at site j with spin σ , th is the hopping integral, U is
the on-site interaction, and V is the intersite interaction. We
define the number operators of the electrons as n̂ j,σ = ĉ†

j,σ ĉ j,σ

and n̂ j = ∑
σ n̂ j,σ . For the sake of simplicity, the lattice con-

stant a, the electron charge −e, the Planck constant h̄, and
the speed of light c are set at unity, hereafter. In the strong-
coupling limit, where U,V � th, the ground state (GS) of this
model exhibits a spin-density wave (SDW) state for U � 2V
and a charge-density wave (CDW) state for U � 2V [39].
Note that the SDW-CDW transition occurs at V/th ≈ 5.124
for U/th = 10. In the following, we set th = 1 as the energy
unit.

B. Time evolution

We simulate the time-dependent quantum state under a
high-intensity laser pulse with a vector potential given by

A(t ) = A0e−(t−t0 )2/2σ 2
0 cos(ω0t ), (2)

where A0 is the amplitude, t0 is the central time, σ0 is
the width, and ω0 is the frequency of the pump light. To

numerically calculate the GS and the time-evolution dynam-
ics, we employ the infinite time-evolving block decimation
(iTEBD) method [40,41]. The quantum state at time t is
denoted as |ψ (t )〉, and we set |ψ (−∞)〉 as the GS obtained
by carrying out the imaginary-time evolution. We repre-
sent the time-evolution operator from t ′ to t as Û (t, t ′) =
T exp[−i

∫ t
t ′ dt ′′Ĥ (t ′′)], where T is the time-ordering op-

erator, allowing us to write |ψ (t )〉 = Û (t,−∞)|ψ (−∞)〉.
We denote the expectation value at time t as 〈· · · 〉t =
〈ψ (t )| · · · |ψ (t )〉.

In the following section, we investigate nonequilibrium
dynamics when a pump pulse is applied to both the SDW and
CDW states of the 1DEHM. Namely, we focus on nonequi-
librium optical conductivity and single-particle excitation
spectra. For pump-pulse parameters, we fix σ0 = 0.5 and set
A0 = 0.3 for V 
= 0 and A0 = 0.6 for V = 0. To efficiently
generate nonequilibrium states, ω0 is set to the value where
the optical conductivity in the GS becomes the largest for
each V . Optical conductivities in the GS for various V are
given in the next section.

In the time-evolution calculations for optical conductivity
and single-particle excitation spectra, we set the time step to
δt = 0.01 and 0.05, respectively, and the bond dimensions
to χ = 3000 and 1500, respectively. We apply the fourth-
order Trotter decomposition for optical conductivity and the
second-order one for single-particle excitation spectra.

III. NONEQUILIBRIUM OPTICAL CONDUCTIVITY

We estimate the optical conductivity by examining the
response of an electric current to a weak electric field. The
current operator in a vector potential A(t ) is written as

ĴA(t ) = −∂Ĥ

∂A
= th

∑
j,σ

(ieiA(t )ĉ†
j,σ ĉ j+1,σ + H.c.). (3)

Upon applying a weak electric field Epr = − ∂Apr (t )
∂t as a probe

pulse in addition to the pump pulse, the induced deviation in
the current per site satisfies

jpr (t ) = 1

L
(〈ĴA+Apr 〉t − 〈ĴA〉t ) =

∫ t

−∞
σ (t, t ′)Epr (t

′)dt ′, (4)

where L is the system size and σ (t, t ′) represents the
linear-response function for the electric field. Since
the response function should satisfy causality, i.e.,
σ (t, t ′) = θ (t − t ′)σ (t, t ′), Eq. (4) can be expressed
as jpr (t ) = ∫ ∞

−∞ σ (t, t ′)Epr (t ′)dt ′. Taking the Fourier
transform of both sides with respect to t , we obtain
jpr (ω) = ∫ ∞

−∞ σ (ω, t ′)Epr (t ′)eiωt ′
dt ′, where σ (ω, t ′) ≡∫ ∞

−∞ σ (t, t ′)eiω(t−t ′ )dt . Assuming that the probe pulse Epr (t )
is nonzero only within the period tpr ± τ/2, where τ is much
smaller than the characteristic time scale of the system, and
that σ (ω, t ′) remains constant during this period, we approxi-
mate jpr (ω) � σ (ω, tpr )

∫ ∞
−∞ Epr (t ′)eiωt ′

dt ′ = σ (ω, tpr )Epr (ω)
[42]. In this case, the optical conductivity of the frequency ω

at probe time tpr can be evaluated from

σ (ω, tpr ) = jpr (ω)

i(ω + iη)Apr (ω)
, (5)
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where Apr (ω) = Epr (ω)/i(ω + iη) with a damping factor η.
Even though this factor is introduced for the convergence of
our numerical Fourier transformation, it is associated with the
lifetime of the quasiparticles due to, for example, impurity
scattering in actual materials. In this way, we can directly
determine equilibrium and nonequilibrium optical conduc-
tivities in the thermodynamic limit by means of the iTEBD
method. We adopt a weak, narrow probe pulse Apr (t ) =
A0,pre

−(t−tpr )2/2σ 2
pr , where ωA0,prσpr  1 is satisfied.

The advantage of this method is that it allows simultane-
ous calculation of the response to an external field across all
frequencies. This is because the probe pulse can be regarded
as a delta function when σpr is very small compared to the
characteristic time scale of the system. In other words, this
probe pulse is a superposition of waves at all frequencies. In
particular, when assuming σpr → 0, Eq. (5) yields the same
result as the optical conductivity obtained by applying the
Kubo formula, originally formulated for thermal systems, to
a nonequilibrium state [38,42]. Note that the same method
was used to simulate the nonequilibrium optical conductiv-
ity in previous studies [37,38,42–44]. The ultrashort probe
pulses used in this paper are idealized, and in actual pump-
probe spectroscopy experiments the probe pulse is a wave
packet with a finite width. The interpretation of nonequilib-
rium optical conductivity is complicated by the uncertainty
relation between energy and time. There is an ongoing debate
about the theoretical description of the optical conductivity
observed in actual pump-probe spectroscopy [42,45,46]. A
detailed quantitative analysis to reconcile the experimental
results remains a subject for future work. In the following, we
set A0,pr = 0.05, σpr = 0.05, and η = 0.1 for the computations
of optical conductivity. We denote �tpr = tpr − t0 and rewrite
Eq. (5) as σ (ω,�tpr ).

Figure 1(a) shows the real parts of the optical conductivity
of the SDW states for U = 10 and various V in the absence
of the pump pulse [A(t ) = 0], which is consistent with previ-
ous dynamical density-matrix renormalization group studies
[47,48]. A broad peak appears above a charge gap at V = 0,
originating from the excitations between the continuous levels
of the upper-Hubbard band (UHB) and the lower-Hubbard
band (LHB). Turning on the intersite interaction V , the energy
level of a doublon-holon bound state (exciton) emerges, and
decreases as V increases. The energy level of the exciton
becomes smaller than the bottom of the energy continuum for
V � 2, leading to the emergence of a sharp peak below the
charge gap [49]. We should note that in our numerical cal-
culations the amplitude of this excitonic peak is finite due to
the finite η and diverges as η → 0 [48]. The excitonic energy
level becomes the lowest value at the SDW-CDW transition
point V � U/2.

The optical conductivities of the CDW state V > U/2 are
shown in Fig. 1(b). Here, the peak position of Re σ (ω) in-
creases as V increases. This peak position corresponds to the
energy required to dissociate a doublon.

The peak positions of the optical conductivities can be
readily estimated in the strong-coupling limit (U,V � th).
In this limit, the SDW state comprises singly occupied sites.
Thus, the energy of the first-excited state, characterized by the
presence of an adjacent doublon and holon, is approximately
U − V . On the other hand, doublons and holons align
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FIG. 1. The real part of the optical conductivity of the 1DEHM
for U = 10 in the GS at (a) SDW phase (V � U/2) and (b) CDW
phase (V > U/2). The damping factor is set to η = 0.1.

alternately in the CDW state. Therefore, the first-excited state,
where two adjacent sites become singly occupied, requires an
excitation energy of approximately 3V − U .

A. SDW phase

We first show the nonequilibrium optical conductivity of
the 1DEHM with U = 10 and V = 3 in Fig. 2. The pump-
pulse frequency is set to ω0 = 6.04, where Re σ (ω) reaches
its maximum [see Fig. 1(a)]. By comparing the spectra ob-
tained at �tpr = 0 with those in the absence of the pump
pulse, we observe two characteristic features. One is the neg-
ative spectra at the pump-light frequency ω = ω0, which may
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FIG. 2. The real part of nonequilibrium optical conductivity of
the 1DEHM at U = 10 and V = 3 (SDW phase) for various probe
times. The black solid line indicates the optical conductivity in the
GS. The pump-light frequency and intensity are set to ω0 = 6.04 and
A0 = 0.3, respectively.
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FIG. 3. The real part of the nonequilibrium optical conductivity
of the 1DEHM at U = 20 and V = 6 (SDW phase). The black and
blue solid lines are for the GS and the nonequilibrium state at �tpr =
8, respectively. The labels above the spectrum denote the new peaks
that arise in the nonequilibrium state. The pump-light frequency and
intensity are set to ω0 = 13.55 and A0 = 0.3, respectively.

originate from the population inversion of the electrons due
to the pump-pulse irradiation. This nonthermal state leads
to stimulated emission by the probe pulse, resulting in the
negative optical conductivity [50]. The other is the emer-
gence of a new peak at small ω, which implies the creation
of an in-gap state. This in-gap state is associated with two
types of excitons in the 1DEHM: even- and odd-parity ex-
citons [37]. The energy level of the even-parity excitons
is slightly larger than that of the odd-parity excitons, and
the optical transitions to the even-parity excitons from the
GS are forbidden [51–53]. However, once a state enters the
odd-parity excitonic state due to the pump pulse, the state
can be further excited to an even-parity exciton level by the
subsequent probe pulse. Therefore, transitions to the even-
parity excitonic state, which are not allowed from the GS, are
realized.

Once the pump pulse has passed, the system begins to
relax via the recombination of doublons and holons. As shown
in Appendix A, this is evident from the gradual decrease in
double occupancy. The negative spectra at ω = ω0 gradually
turn into positive asymmetric ones, which implies the emer-
gence of Fano resonance. In this case, there is a quantum
interference between the exciton level and the doublon-holon
continuum [38]. On the other hand, the in-gap state remains
over time. The reason why the peak position with regard to the
in-gap state at �tpr > 0 becomes smaller than that at �tpr = 0
can be attributed to the Stark effect of the excitons [54,55].
The electric field of the pump pulse at �tpr = 0 enhances
the splitting between the even- and odd-parity exciton levels.
The energy of the in-gap state eventually stabilizes at approx-
imately ω ≈ 0.2.

To further scrutinize the aforementioned features, we also
examine the SDW state with a larger interaction strength.
Figure 3 shows the nonequilibrium optical conductivity at
U = 20 and V = 6 with ω0 = 13.55. In addition to the low-
energy peak originating from two exciton levels at small ω

[37], labeled as α, we find that there are two broad struc-
tures (β and γ ) and a sharp peak at ω ≈ 10.5 (δ) below the
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FIG. 4. The real part of the nonequilibrium optical conductivity
of the 1DEHM at U = 10 and V = 6 (CDW phase) for various probe
times. The black solid line indicates the optical conductivity in the
GS. The pump-light frequency and intensity are set to ω0 = 6.34 and
A0 = 0.3, respectively.

optical gap. Moreover, a new peak arises at ω ≈ 21.1 (ε),
which is located at a higher energy than the exciton level.
Apart from the peak α, the origins of these peaks can be bet-
ter understood from the numerical results of nonequilibrium
single-particle excitation spectra, which we will discuss in the
subsequent section.

B. CDW phase

Figure 4 illustrates the real part of the nonequilibrium
optical conductivity upon application of the pump pulse with
ω0 = 6.34 to the CDW state with U = 10 and V = 6. Similar
to the SDW phase, the pump-pulse irradiation results in a
prominent negative spectrum at ω = ω0. Following the pas-
sage of the pump pulse, the spectral weight at this energy
recovers to positive values, eventually forming an asymmetric
spectrum.

A notable change is the emergence of a new state at ω ≈
3.3 in the nonequilibrium state, which is consistent with the
previous study [37]. This in-gap state can be interpreted from
the newly formed bands in the single-particle spectra, as will
be discussed later.

We also observe messy spectral structures for ω < 2
that are newly generated and strongly time dependent.
At �tpr = 16, the Drude weight (i.e., the spectrum at ω = 0)
becomes finite, indicating photoinduced metallization. Unfor-
tunately, our iTEBD simulations are constrained to this time
due to limited numerical accuracy and computational-time re-
striction. Further time evolution, while maintaining accuracy,
should allow the system to reach a steady state.

IV. TIME- AND ANGLE-RESOLVED
PHOTOEMISSION SPECTRA

We now discuss the time-dependent single-particle ex-
citation spectra in the 1DEHM, taking into account
TARPES experiments. The intensity of single-particle ex-
citation spectra with momentum k and energy ω is given
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by [56,57]

A−(k, ω,�tpr )

= 1

L

∑
j,�,σ

e−ik(r j−r� )
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2eiω(t1−t2 )

× s(t1 − tpr )s(t2 − tpr )〈ĉ†
�,σ (t2,−∞)ĉ j,σ (t1,−∞)〉−∞,

(6)

where s(t − tpr ) is an envelope function of the wave packet
of the probe pulse at central time tpr and ĉ j,σ (t, t ′) =
Û †(t, t ′)ĉ j,σÛ (t, t ′) is the Heisenberg representation. The en-
velope function utilized in this paper is a Gaussian function
written as

s(t − tpr ) = 1√
2πσpr

exp

(
− (t − tpr )2

2σ 2
pr

)
, (7)

where σpr represents the width of the wave packet. To sim-
ulate single-particle excitation spectra in nonequilibrium, we
construct the window state from the iMPS obtained from the
iTEBD method and employ the infinite-boundary conditions
with a uniform update scheme [58]. For more detail, refer to
Ref. [59]. In addition, we define the integrated photoemission
spectra as

A−(ω,�tpr ) =
∫ π

−π

dk

2π
A−(k, ω,�tpr ), (8)

which in the following will be denoted as the time-resolved
density of states (TDOS).

Increasing the width of the probe-pulse wave packet im-
proves the energy resolution, but decreases the time resolution
due to the uncertainty relation. In this section, we set the width
of the probe pulse to σpr = 3. We find that a window-state size
of Lw = 64 is sufficient for this case. We present calculations
for the single-particle excitation spectra of nonequilibrium
states at �tpr = 0 and 8. However, we have confirmed
that the spectral shape for �tpr > 8 is almost unchanged
from that for �tpr = 8, implying that the single-particle ex-
citation spectra are essentially stationary over time after
photoexcitation.

A. SDW phase

Let us first recall the results of single-particle excitation
spectra in the pure Hubbard model, i.e., V = 0 in Eq. (1), as
shown in the upper panels of Fig. 5, which have also been
discussed in Ref. [59].

In the absence of the pump pulse [A(t ) = 0], the Bethe
ansatz [60,61] provides the exact energy dispersion, which
explains the results for U = 10 in Fig. 5(a). There are one
spinon and two holon bands due to spin-charge separation.
The two holon bands are degenerate at k = 0 and ±π , and
their width is 4th. The spinon and holon bands split at k = 0,
while the upper holon band merges with the spinon band
at k = ±π/2. The spinon-holon excitation continuum below
the lower holon band is visible for |k| � π/2. The spectra
obtained here correspond to the LHB. A detailed comparison
of the exact results and the calculated spectra can be found in
Refs. [62–64].

We now turn to the case for the nonequilibrium state.
It should be noted that this photoexcited state is associated
with the emergence of the so-called η-pairing state [65–68],
which is the exact eigenstate of the Hubbard model [61,69].
Figures 5(b) and 5(c), respectively, show A−(k, ω,�tpr ) at
�tpr = 0 and 8. The pump pulse induces a photoexcited state,
leading to the emergence of new spectral weights with a
dispersion ranging from k = −π to π above the Fermi level
and exhibiting a minimum at k = 0. A similar dispersion can
also be observed in finite-temperature photoemission spectra
attributed to thermally excited electrons [63,70,71]. This ob-
servation suggests that the electrons in the LHB are resonantly
excited into the UHB by the pump pulse [72]. Simultaneously,
a reduction in the spectral intensity of the LHB occurs. The
shift of the spectral weight after pulse irradiation can also be
confirmed in the results of the TDOS [see Fig. 5(d)].

Next, we introduce intersite interactions. Figure 5(e) shows
the single-particle excitation spectra in the GS of the 1DEHM
for U = 10 and V = 3. By introducing V , the charge gap
becomes slightly smaller; however, the dispersion relation is
almost the same as for the case of V = 0. Unlike the optical-
conductivity spectra, the single-particle excitation spectra in
the GS do not display features associated with excitons.
This is because photoemission involves the removal of a sin-
gle electron from the system, and therefore does not form
a doublon-holon bound state. We also find weak but new
spectral weights around k = ±π/2 and ω ≈ −10.3 appearing
below the LHB. While it is slightly difficult to see them in the
intensity plot of Fig. 5(e), they can be recognized in the DOS
illustrated in Fig. 5(h) as a black solid line.

Figures 5(f) and 5(g) show A−(k, ω,�tpr ) after the pump
pulse irradiation. In this case, the pump pulse creates numer-
ous doublons and holons, leading to the formation of excitons
due to the nonlocal interactions. We find a new dispersion
above the Fermi level, as in the case of V = 0. However,
unlike the case of V = 0, this dispersion has the maxima at
k = ±π/2. The difference between the maximum energy of
the newly emerged band and that of the LHB is almost equal
to the excitonic energy, estimated from the peak position of
the optical conductivity [ω ≈ 6.04, see Fig. 1(a)]. Therefore,
we can interpret that the new dispersion originates from the
excitons created by the pump pulse. This new band has the
same dispersion as the LHB and its visibility increases with
the intensity of the pump pulse (not shown here).

To better clarify the state under the creation of excitons
by the pump pulse in the SDW phase, we also present the
results with larger interaction parameters. Figure 6(a) shows
the single-particle excitation spectra in the GS at U = 20
and V = 6. Reflecting the large interaction parameters, the
LHB appears at a lower-energy level. Figure 6(b) shows
A−(k, ω,�tpr ) after the pump-pulse irradiation, which resem-
bles the dispersions obtained by the interaction quench [73]. A
new dispersion with the same shape as the LHB appears above
the Fermi level. The energy difference between the new band
and the LHB is the same as the excitonic energy estimated
from the peak position of Re σ (ω) (ω ≈ 13.55, see Fig. 3).

Furthermore, dispersionless flat bands, which may be asso-
ciated with charge-order fluctuations, also appear both above
and below the LHB [33,73]. Recall that, in the nonequilib-
rium optical conductivity after the pump-pulse irradiation,
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FIG. 5. Calculated single-particle excitation spectra of the 1DEHM at (a), (e), (i) �tpr = −∞ (GS); (b), (f), (j) �tpr = 0; and (c), (g), (k)
�tpr = 8. (d), (h), (l) TDOSs at �tpr = −∞ (black solid line) and �tpr = 8 (red dashed line). The on-site interaction is set to U = 10, and the
intersite interaction, the pump-light frequency, and its intensity are set to (a)–(d) V = 0, ω0 = 8.0, and A0 = 0.6; (e)–(h) V = 3, ω0 = 6.04,
and A0 = 0.3; and (i)–(l) V = 6, ω0 = 6.34, and A0 = 0.3.

four peaks β, γ , δ, and ε emerge in addition to the peak α

originating from the excitation between different parity ex-
citons (see Fig. 3). By comparing the peak positions in the
optical conductivity with the energy-level differences of the
peaks in the DOS, we can identify that the broad peak β is
ascribed to the excitation from the LHB to the flat band, the
hump structure γ originates from the excitation from the flat
band to the LHB, and the two peaks γ and ε arise from the
excitation from the flat bands to the newly emerging bands
above the Fermi level. The corresponding optical excitations
are depicted by black arrows in Fig. 6(c).

B. CDW phase

Finally, we examine the time-dependent single-particle ex-
citation spectra in the CDW phase, as shown in the lower

panels of Fig. 5 for U = 10 and V = 6. Under the forma-
tion of charge ordering in the GS, the two holon bands,
which are degenerate at k = 0 and ±π in the SDW phase,
split into a band with a cosine-type dispersion centered
at ω ≈ −6 and a relatively flat band centered at ω ≈ −9.
Figures 5(j) and 5(k) show A−(k, ω,�tpr ) under the in-
fluence of the pump pulse. Two new dispersions emerge
around the Fermi level. These results have been previously
reported by exact diagonalization for small clusters [74].
Thanks to the higher-resolution spectra obtained directly
in the thermodynamic limit, the excitation from the band
around ω ≈ −6 to the one around ω ≈ −2.7 can be sig-
nificantly distinguished, which is related to the in-gap state
observed in the nonequilibrium optical conductivity shown in
Fig. 4.
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FIG. 6. Calculated single-particle excitation spectra of the
1DEHM for U = 20 and V = 6 at (a) �tpr = −∞ (GS) and
(b) �tpr = 8. (c) The TDOS at �tpr = −∞ (black solid line) and
�tpr = 8 (red dashed line). The arrows in the TDOS correspond
to the optical excitations observed in the nonequilibrium optical
conductivity in Fig. 3. The pump-light frequency and intensity are
set to ω0 = 13.55 and A0 = 0.3, respectively.

V. CONCLUSIONS AND OUTLOOK

We explored the pump-probe spectroscopy of the 1DEHM
at half filling in an infinite system. In the strong-coupling
regime, the GS of this model resides in the SDW phase
when U � 2V and in the CDW phase when U � 2V . In the
SDW phase, doublons and holons, which are generated by
the intense pump pulse, form bound states known as exci-
tons through nonlocal interactions. In the CDW phase, the
charge order dissolves due to photoexcitation. The dynamical
response in the nonequilibrium state was revealed using the
iTEBD method.

We detected an in-gap state at small ω in the nonequilib-
rium optical conductivity for the model with U = 10 and V =
3, which resides in the SDW phase. This state can be inter-
preted as the transition between the odd-parity exciton and the
even-parity exciton. Furthermore, we investigated a stronger
interaction model with U = 20 and V = 6. In addition to
this in-gap state originating from the different parity excitons,
we discovered that additional peaks appear below and above
the excitonic energy. The origin of these additional peaks
can be understood by examining the single-particle excitation
spectra. Specifically, the new dispersions appearing above and
below the LHB after the pump pulse irradiation are associated
with these new peaks in the optical conductivity. We also
observed that the LHB is replicated in a higher-energy region,
where the energy difference is equal to the excitonic energy.

Moreover, we examined the nonequilibrium optical con-
ductivity for the model with U = 10 and V = 6, which resides
in the CDW phase. In this case, we also found an in-gap state
after the pump pulse irradiation. Additionally, we discovered
that the Drude weight becomes finite, suggesting the metal-
lization of the system. The origin of this in-gap state can be
understood from the single-particle excitation spectra.

It would also be interesting to explore nonequilibrium
physics close to SDW-CDW phase boundaries, although this
paper focused on pump-probe spectroscopy deep in the SDW

and CDW phases. For instance, the time-resolved single-
particle spectral function has been studied around these phase
boundaries by means of the exact-diagonalization technique
[74]. Furthermore, a recent study indicates peculiar optical
responses in high-harmonic generation near the phase bound-
ary [75]. The issue with performing iTEBD simulations near
the quantum phase transition point is the increasing bond
dimensions required. It is thus highly desirable to improve the
accuracy of numerical techniques and simultaneously reduce
the computational time.

Lastly, we address the correspondence between our theo-
retical findings and experimental observations. The 1D Mott
insulator ET-F2TCNQ is well described by the 1DEHM with
interaction parameters U = 10 and V = 3 [53]. In fact, the
emergence of the in-gap state in optical conductivity af-
ter pump pulse irradiation has been observed. If TARPES
becomes feasible in this material, we expect that the single-
particle excitation spectra obtained in this paper would also
be observable. Another approach to realizing our results is
by employing a cold atomic system [76]. With an artificial
gauge field mimicking the pump pulse, the observation of
single-particle excitation spectra may be feasible. It is worth
emphasizing that our calculations, performed on an infinite
system, allow for a direct comparison of the spectra observed
in future experiments with our results.

In this paper, our focus was on nonequilibrium optical
conductivity and single-particle excitation spectra. Recently,
time-resolved resonant inelastic x-ray scattering (RIXS)
spectra have become observable through pump-probe spec-
troscopy [77–79]. RIXS allows us to examine the dynamical
correlations of charge and spin, including their momentum
dependence, thereby enabling us to obtain more detailed
information on strongly correlated materials. We anticipate
further developments in theoretical studies of pump-probe
spectroscopy using tensor-network algorithms in the future.
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APPENDIX A: DOUBLE OCCUPANCY

Figure 7 shows the double occupancies

nd(t ) = 1

L

∑
j

〈n̂ j,↑n̂ j,↓〉t (A1)

of the 1DEHM at U = 10 and V = 3 as functions of time, for
various pump-pulse intensities. Upon the pump-pulse irradia-
tion, doublons and holons are generated, leading to an increase
in double occupancy. Following the passing of the pump light,
the system begins to relax gradually. The relaxation process of
the photoexcited 1DEHM is still unclear, but there are some
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FIG. 7. The double occupancies of the 1DEHM at U = 10 and
V = 3 for various A0 as functions of time. The gray solid line
indicates the time dependence of the pump pulse A(t ). We denote
�t = t − t0 in the horizontal axis, where t0 is the central time of
the pump pulse. The pump-light frequency and intensity are set to
ω0 = 6.04 and A0 = 0.3, respectively.

suggestions, such as the Auger recombination of doublons and
holons [82,83].

The larger the value of A0, the more significant the increase
in the double occupancy. When a state is intensely excited by
a pump pulse, the entanglement of the quantum state evolves
throughout the system, suggesting that the system can no
longer be described by the iMPS. Specifically, the truncation
error reaches up to 4 × 10−5 in the calculation with A0 = 0.6.
For A0 = 0.3, we confirmed that the truncation error is sup-
pressed to below 4 × 10−6.

APPENDIX B: LINEAR RESPONSE THEORY
OF OPTICAL CONDUCTIVITY

In an ideal scenario, the optical conductivity should be cal-
culated using the Kubo formula, which is based on the linear
response theory and requires the calculation of current-current
correlation functions [38,42,84,85]. This process necessitates
the creation of a window state with infinite-boundary condi-
tions [58,59] and the application of the local current operator
at the center of the window state. Given the requirement
for long-time simulation to derive optical conductivities, the
influence of the local current operator applied at the center site
extends to the boundary before the calculation is finished. We
determined that, for a damping factor of η = 0.1, a window
state of size Lw > 128 should be prepared. As this incurs
substantial computational cost, we have chosen to employ the
method delineated in the main text.

0.0

0.5

1.0

1.5

0 2 4 6 8

(a)

R
e 

σ
( ω

, Δ
t p

r =
 8

)

ω

χ = 2000
3000
4500

0 2 4 6 8

(b)

ω

χ = 2000
3000
4500

FIG. 8. The real part of the nonequilibrium optical conductivity
of 1DEHM with U = 10 and V = 3 at �tpr = 8 using (a) second-
order and (b) fourth-order Trotter decompositions for various bond
dimensions χ . The pump-light frequency and intensity are set to
ω0 = 6.04 and A0 = 0.3, respectively.

APPENDIX C: NUMERICAL CONVERGENCE
OF NONEQUILIBRIUM OPTICAL CONDUCTIVITY

As described in the main text, we employ a fourth-order
Trotter decomposition for optical-conductivity calculations.
This approach ensures the accuracy of the numerical Fourier
transformation, which necessitates extended simulation time.
In this paper, the induced deviation in the current jpr (t ) is
calculated up to t − tpr � 100.

Figure 8 shows the optical conductivity calculated using
both second- and fourth-order Trotter decompositions. For
optical conductivity with second-order Trotter decomposition,
the calculated spectra do not converge especially at the in-
gap-state energy (ω ≈ 0.2) even when the bond dimension is
increased up to χ = 4500, indicating that we do not obtain the
appropriate results. Conversely, the results of the fourth-order
Trotter decomposition indicate that a bond dimension of χ =
3000 provides sufficient accuracy for analyzing the optical-
conductivity spectra with finite frequency qualitatively. It is
worth noting that achieving full numerical convergence for
the Drude weight is challenging since it necessitates long-time
simulations maintaining high accuracy.

APPENDIX D: TARPES AND THE GREEN’S FUNCTION

By definition, Eq. (6) equals to

A−(k, ω,�tpr )

= 1

L

∑
j,�,σ

e−ik(r j−r� )
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2eiω(t1−t2 )

× s(t1 − tpr )s(t2 − tpr )〈ψ (t2)|ĉ†
�,σÛ (t2, t1)ĉ j,σ |ψ (t1)〉.

(D1)

Upon partitioning the integration range of t2 into two regimes,
t2 > t1 and t2 < t1, we derive

A−(k, ω,�tpr ) = 1

L

∑
j,�,σ

e−ik(r j−r� )
∫ ∞

−∞
dt1

∫ t1

−∞
dt2eiω(t1−t2 )s(t1 − tpr )s(t2 − tpr )〈ψ (t2)|ĉ†

�,σÛ (t2, t1)ĉ j,σ |ψ (t1)〉

+ 1

L

∑
j,�,σ

e−ik(r j−r� )
∫ ∞

−∞
dt1

∫ ∞

t1

dt2eiω(t1−t2 )s(t1 − tpr )s(t2 − tpr )〈ψ (t1)|ĉ†
j,σÛ (t1, t2)ĉ�,σ |ψ (t2)〉∗, (D2)
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and by replacing
∫ ∞
−∞ dt1

∫ t1
−∞ dt2 = ∫ ∞

−∞ dt2
∫ ∞

t2
dt1 in the first term, Eq. (D2) becomes

A−(k, ω,�tpr ) = 1

L

∑
j,�,σ

e−ik(r j−r� )
∫ ∞

−∞
dt2

∫ ∞

t2

dt1eiω(t1−t2 )s(t1 − tpr )s(t2 − tpr )〈ψ (t2)|ĉ†
�,σÛ (t2, t1)ĉ j,σ |ψ (t1)〉

+ 1

L

∑
j,�,σ

e−ik(r j−r� )
∫ ∞

−∞
dt1

∫ ∞

t1

dt2eiω(t1−t2 )s(t1 − tpr )s(t2 − tpr )〈ψ (t1)|ĉ†
j,σÛ (t1, t2)ĉ�,σ |ψ (t2)〉∗

= 2Im

⎡
⎣ 1

L

∑
j,�,σ

e−ik(r j−r� )
∫ ∞

−∞
dt2

∫ ∞

t2

dt1eiω(t1−t2 )s(t1 − tpr )s(t2 − tpr )G
<
j�(t1, t2)

⎤
⎦, (D3)

where G<
j�(t1, t2) = i〈ψ (t2)|ĉ†

�,σÛ (t2, t1)ĉ j,σ |ψ (t1)〉 is the lesser Green’s function. Initially, we calculate a sequence of iMPS for

each time by the iTEBD method. Subsequently, we generate window states corresponding to Û (t1, t2)ĉ�,σ |ψ (t2)〉 and ĉ j,σ |ψ (t1)〉.
By evaluating the inner product of these states, we numerically obtain the integrand of Eq. (D3).
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