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Natural orbital impurity solver for real-frequency properties at finite temperature
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We extend the natural orbital impurity solver [Y. Lu, M. Höppner, O. Gunnarsson, and M. W. Haverkort,
Phys. Rev. B 90, 085102 (2014)] to finite temperatures and apply it to calculate spectral and transport properties
of correlated electrons within the dynamical mean-field theory. First, we benchmark our method against the exact
diagonalization result for small clusters, finding that the natural orbital scheme works well not only for zero
temperature but for low finite temperatures. The method yields smooth and sufficiently accurate spectra, which
agree well with the results of the numerical renormalization group. Using the smooth spectra, we calculate the
electric conductivity and Seebeck coefficient for the two-dimensional Hubbard model at low temperatures which
are within the scope of many experiments and practical applications. These results demonstrate the usefulness
of the natural orbital framework for obtaining the real frequency information of correlated electron systems.
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I. INTRODUCTION

Understanding correlated electron systems is one of the
central issues in condensed-matter physics. To address the is-
sue, the dynamical mean-field theory (DMFT) [1–3] has been
developed and extended in scope in the past few decades. The
DMFT properly takes into account the temporal fluctuations,
which are essential to describe the Mott metal-insulator tran-
sition, while it ignores the spatial fluctuations, which could
be important for low-dimensional fluctuating systems such as
cuprates. Combined with ab initio calculations, the DMFT
has also been used to calculate the electronic structure of real
materials, where several orbital degrees of freedom are usually
involved [4,5].

In the DMFT, we need to solve a quantum impurity model,
which is usually simpler than the original lattice model but
still difficult to solve analytically. Many numerical methods
have been proposed for solving that model. The continuous-
time quantum Monte Carlo (CT-QMC) method [6] is one of
the most commonly used methods since it gives a numeri-
cally exact result within a statistical error and is applicable
to relatively large degrees of freedom. However, because it is
formulated on the imaginary (Matsubara) time axis, an ana-
lytic continuation of the numerical data with statistical errors,
which is an ill-posed inverse problem, is required to obtain
real-frequency properties. While the numerical analytic con-
tinuation method has been improved [7–9], the dependence on
the data precision is unavoidable, and it is difficult to correctly
describe a high-frequency structure or sharp structure like the
Drude peak at low temperatures.

The real-frequency data are, however, indispensable to
compare with spectroscopic experiments like optics, photoe-
mission, and scanning tunneling spectroscopies, as well as
electronic Raman and resonant inelastic x-ray scatterings. Be-
sides these, they are also necessary for calculating transport
properties such as electric and thermal conductivities, as well
as a thermoelectric effect measured by the Seebeck or Nernst

coefficient. Furthermore, the real-frequency structure of the
Green function and the self-energy can give crucial informa-
tion on the underlying mechanism of physical phenomena,
as exemplified by the electron-phonon mechanism of conven-
tional superconductivity established through the analysis of
the frequency-dependent superconducting gap function [10].

Thus, to apply the DMFT to these issues of real materi-
als, we need an impurity solver that allows direct access to
real-frequency properties and is potentially applicable to mul-
tiorbital systems. One way in this direction is to improve the
numerical renormalization group (NRG) [11,12] or density-
matrix renormalization group (DMRG) method [13–15] for
multiorbital systems, as indeed has been done in Refs. [16–19]
up to three orbitals. Recently, the fork tensor-product state was
also proposed and applied to a three orbital system [20].

Another way is to improve the exact diagonalization (ED)
[21] method. The problem in the ED solver is a severe limi-
tation in the number of bath sites, which results in a discrete
spectrum of the impurity Green function. Even with modern
computers, it is difficult to deal with more than 20 degrees of
freedom (except for spin) including both impurity and bath
sites. Because of this limitation, it has been difficult to apply
the ED solver to more than four site or orbital degrees of
freedom at the impurity. Also, to mitigate the finite-size effect,
the spectrum is usually calculated with an energy-smearing
factor (i.e., the imaginary part of the energy), which defines
the width of each discrete spectral peak. While this does not
alter the position and weight of the spectral peaks, it changes
the broadness of the spectra and can considerably affect the
values of transport coefficients, making it difficult to deter-
mine them unambiguously.

Recently, an interesting idea was proposed in Refs. [22,23]
to remedy this problem of the finite bath. Representing the
bath sites in the natural orbital basis, which is defined as a
basis diagonalizing the bath density matrix, Lu et al. con-
structed efficient algorithms to take account of low-energy
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FIG. 1. (a) Schematic figure of the natural orbital Hamiltonian.
The dark square is the interacting impurity site and the open square
is an active bath site. Filled (open) circles are valence (conduction)
bath sites that are almost occupied (empty). We perform exact diago-
nalization for the HI part, and consider only a few particle excitations
for Hchain. (b) General flow of the finite temperature natural orbital
impurity solver.

excitations beyond the size tractable with the conventional
ED. They calculated a real-frequency Green function in a
restricted Hilbert space, where the significant reduction of its
dimension allowed them to consider ∼1000 bath sites, to yield
a sufficiently smooth spectrum. Considering the tractable size
of the Hilbert space in the ED, the improvement by the natural
orbitals may enable us to deal with up to five orbitals in
near future, where many correlated materials—in particular
transition-metal compounds with five d orbitals—await the
clarification by theory.

The idea of the natural-orbital solver [cf., Fig. 1(a)] is in
line with the configuration-interaction (CI) method, which
has recently been applied to the DMFT by several groups
[24–27]. The CI method is widely used for molecules in
quantum chemistry, where it is justifiable to use fully filled
localized molecular orbitals and the mixture of Slater de-
terminants only for the remaining degrees of freedom. On
the other hand, in metallic states in solids, orbitals are more
hybridized with each other, and it is intractable with the CI
method. Actually, the ground state of the Hubbard cluster
is quite entangled and difficult to describe solely by a few
Slater determinants. Nevertheless, for the quantum impurity
model, it turned out that the ground state is well described

by a small number of Slater determinants and low-energy
particle-hole excitations from it, so that the CI method works
well [25]. The natural orbital framework gives us a general
way to construct the new basis set where the CI scheme
works efficiently. Recently, it was suggested that the nat-
ural orbital configuration is also useful for tensor network
calculations [28].

The application of the natural orbital method has, however,
been limited to zero temperature. In view of the compari-
son with experiments, its extension to finite temperatures is
indispensable. In this paper, we attempt such an extension
by constructing different natural orbitals for each electron-
spin number sector. We find that the minimum energy of
each sector and the Green function are well approximated
by the scheme at low but finite temperatures. We bench-
mark the accuracy of our result for a small cluster against
a direct ED calculation, and we show that a smooth spec-
trum consistent with the NRG result in the literature is
obtained with a large number of bath sites. Then, we cal-
culate transport properties for the two-dimensional Hubbard
model. We obtain results consistent with those from the pre-
vious CT − QMC+Padé studies, while the current scheme
can potentially reach much lower temperatures for general
models, which are relevant to many experiments and practical
applications.

The paper is organized as follows: In Sec. II, we give an
overview of the natural orbital framework and introduce our
extension for different sector calculations toward finite tem-
peratures. In Sec. III, we present some benchmark results for
small clusters and large systems at zero temperature. Then, we
show our results for conductivity and the Seebeck coefficient
for the two-dimensional Hubbard model on a square lattice.

II. FORMALISM

We apply the idea of natural orbitals [22,23] to the finite-
temperature ED solver [21,29,30] of the DMFT. In the ED,
we first divide the Hilbert space into independent sectors
specified by quantum numbers, instead of dealing with the
whole Hilbert space at once. In this paper, we assume a
spin-conserved system, so that (n↑, n↓) specifies each sector,
where nσ is the number of spin-σ electrons in the whole
system. We then use the Lanczos algorithm for each sector.
Here, we employed ED since it is the most straightforward
and controllable, while there are other numerical methods to
analyze the simplified natural orbital models [31].

We basically follow the previously proposed algorithm of
the natural orbital solver with the projection approach for
calculating the Green function [23]. The new point here is
that not only the ground state but also all sectors contribute to
the Green function at finite temperatures. For this reason, we
construct different natural orbitals for each sector to evaluate
the energy difference between each sector accurately.

In this study, we divided the entire Fock space into several
sectors based on N (total number of electrons) and Sz (S is
the total spin), which are conserved. In the presence of the
spin-orbit coupling, we can divide the space based on N and
Jz (J is the total angular momentum) instead. This separation
is still valid in the presence of the isotropic Hund’s coupling.
For more general interactions, we may be able to separate the
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space based only on N , so that the dimension of each sector
becomes large. This may limit the tractable size of the HI

(i.e., the core part of the impurity Hamiltonian), though there
can be other conserving quantities in some cases [32]. In this
paper, we focus on the single-band model. The extension to
the multiorbital systems would be straightforward; see, e.g.,
Ref. [28].

The formalism is summarized in Fig. 1(b). We start with
the standard Anderson impurity model,

HAIM = Hloc + Hbath, (1)

Hloc =
∑

σ

εimpa†
imp,σ aimp,σ + Ua†

imp,↑aimp,↑a†
imp,↓aimp,↓,

(2)

Hbath =
nbath∑

i=1,σ

εi,σ a†
i,σ ai,σ +

nbath∑
i=1,σ

Vi(a
†
imp,σ ai,σ + H.c.), (3)

where εimp is the energy level of the impurity site, and
a†

imp,σ (aimp,σ ) and a†
i,σ (ai,σ ), respectively, are the electron cre-

ation (annihilation) operators at the impurity site and the ith
bath site with spin σ ∈ {↑,↓}. U is the on-site Coulomb
repulsion, and Vi is the hybridization to the ith bath site.

First, we choose a sector (n↑, n↓). Then, following
Ref. [23], we make the mean-field Hamiltonian (HMF) whose
energy level is adjusted to keep the density at the impurity
site. We calculate the density matrix with the lowest-energy
state of HMF within the sector (n↑, n↓). Natural orbitals are
obtained as the basis set diagonalizing the bath density matrix.
Notice that even if we assume the paramagnetic system, we
need to construct spin-dependent natural orbitals to calculate
the contribution from the spin imbalanced sectors. After that,
we construct the natural orbital representation of the quantum
impurity Hamiltonian (HNO

AIM) for each sector in the same way
as the previous study in Refs. [22,23].

The natural orbital Hamiltonian contains the impurity site
(imp), the active bath site (b), and valence (v)/conduction (c)
chains [Fig. 1(a)]. We then determine the cutoff length nL for
the ED calculation. Outside this cutoff, we assume the fully
occupied (empty) configuration for the valence (conduction)
chain. Thus, the whole Hamiltonian is decoupled into two
terms as

HNO
AIM = HI + Hchain, (4)

HI =Hloc +
∑

σ

[
εbb†

σ bσ + V imp,b
σ (b†

σ aimp,σ + H.c.)

+V imp,c
σ (c†

1,σ aimp,σ + H.c.) + V imp,v
σ (v†

1,σ aimp,σ + H.c.)

+ εc
1,σ c†

1,σ c1,σ + V c
1,σ (c†

1,σ bσ + H.c.)

+ εv
1,σ v

†
1,σ v1,σ + V v

1,σ (v†
1,σ bσ + H.c.)

]

+
nL∑

σ,i=2

[
εc

i,σ c†
i,σ ci,σ + V c

i,σ (c†
i,σ ci−1,σ + H.c.)

]

+
nL∑

σ,i=2

[
εv

i,σ v
†
i,σ vi,σ + V v

i,σ (v†
i,σvi−1,σ + H.c.)

]
, (5)

Hchain =
nc

σ∑
σ,i=nL+1

[
εc

i,σ c†
i,σ ci,σ + V c

i,σ (c†
i,σ ci−1,σ + H.c.)

]

+
nv

σ∑
σ,i=nL+1

[
εv

i,σ v
†
i,σ vi,σ + V v

i,σ (v†
i,σ vi−1,σ + H.c.)

]
,

(6)

where ε
c(v)
i,σ , V c(v)

i,σ , and nc(v)
i,σ are the energy levels, hoppings

of conduction (valence) sites, and the number of these sites,
respectively. V imp,b and V imp,c (V imp,v ) are hoppings between
the impurity site and the active bath site and the first con-
duction (valence) site. b†

σ (bσ ), c†
i,σ (ci,σ ), and v

†
i,σ (vi,σ ) are

the electron creation (annihilation) operators at the active bath
site, the ith conduction-bath site, and the ith valence-bath site
with spin σ , respectively. The number of electrons in the small
system, (nI

↑, nI
↓), is automatically determined as

nI
σ = nσ − nv

σ + nL, (7)

and then we perform the exact diagonalization for HI with
(nI

↑, nI
↓) electrons. From this, the energy of the whole system

(EAIM) is calculated as

EAIM = EHI +
nv

σ∑
σ,i=nL+1

εv
i,σ , (8)

where EHI is the direct result from the ED. The contribution
to the Green function from each sector is computed by the
projection method proposed in Ref. [23] with p = 2. After
obtaining eigenstates of HI, we construct nM Krylov vectors
H j

I a†
imp|�〉( j = 1, . . . , nM ) for each eigenstate, |�〉, within

HI space. From that Krylov subspace, we consider up to two
excitations (two electrons, an electron-hole, or two holes) into
the conduction (valence) chain (Hchain) when tridiagonalizing
the whole Hamiltonian for calculating the Green function
[33]. Since the calculation for the Green function of each
sector is fully independent of each other, we can just sum
up all the sector contributions with the Boltzmann weight
e−β(EAIM−EGS ), where EGS is the ground-state energy of the
whole system.

After obtaining the Green function, we complete the
DMFT self-consistent loop in a usual way. Since we employ
a large number of bath sites to represent a real frequency
structure, we can perform the bath-fitting directly at real fre-
quencies with equal weight configurations [34] to determine
the bath parameters in Eq. (3).

III. RESULTS

A. Benchmarks for a small cluster

In this section, we start with some benchmarks of finite-
temperature results for a small cluster. First, we study the
12-site impurity problem (one impurity site and eleven bath
sites), and we test the accuracy of the natural orbital solver
against the direct ED calculation. For the natural orbital cal-
culation, we diagonalize a 6-site HI problem (i.e., nL = 2)
by assuming a fixed configuration for the remaining six bath
degrees of freedom. Namely, we construct conduction- and
valence-bath chains with these six degrees of freedom and
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FIG. 2. Comparison of the lowest energy of each (n↑, n↓) sector
between the 12-site exact diagonalization (ED) and the 6-site ED
with the natural orbital configuration (NO). Two cuts with n↓ = n↑
and n↓ = 6 are shown for (a) T = 0.02D and (b) T = 0.05D.

connect them to HI. We employ the semicircular density of
states ρ(ε) = 2

√
(1 − ω/D)2/πD and U = D, where D is

half of the bandwidth. The electron density is set to n =
n↑ + n↓ = 0.8, which makes the system hole-doped but still
close to half-filling.

In Fig. 2, we first show the lowest energy at each sector,
(n↑, n↓), obtained with the ED and natural orbital calculation.
The parameters of the impurity model are determined from
the converged 12-site DMFT-ED calculations at two different
temperatures: (a) T = 0.02D and (b) T = 0.05D. From the
ED calculations, (n↑, n↓) = (6, 6) is the ground-state sector,
so that we show n↑ dependence of the lowest energy of each
sector for n↓ = 6 (circles) and n↓ = n↑ (squares). The results
show a good agreement, particularly at low energies, which
are important to calculate the Green function accurately. At
n↑ = 2 and 10, we find some deviation from the ED result,
which suggests that the natural orbital representation becomes
worse for the sectors in which the length of the chain becomes
nearly zero, i.e., nc

σ or nv
σ ∼ 0. In general, such states would

have a relatively high energy, and their contribution to the
Green function is small. Furthermore, such a contribution
becomes more and more negligible as the total number of bath
sites (chain length) increases, for which we will be able to
reach a few hundred in the following. Thus, we can conclude

FIG. 3. Comparison of (a),(b) the spectrum and (c),(d) the imagi-
nary part of the self-energy between the 12-site exact diagonalization
(ED) and the 6-site ED with the natural orbital configuration (NO).

that the natural orbital configuration is accurate enough to
describe the energy not only for the ground-state sector but
also for all energy configurations of the system.

We also compare the spectrum in Figs. 3(a) and 3(b), which
is obtained from the imaginary part of the Green function
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FIG. 4. Density of states for the semicircular noninteracting den-
sity of states. We take nHAIM = 302 and nHI = 10. Dotted curves are
NRG results taken from Ref. [35].

as A(ω) = −ImG(ω)/π , and the imaginary part of the self-
energy Im	(ω) in Figs. 3(c) and 3(d). Since we are focusing
here on the small cluster with a spiky spectrum, we employ a
relatively large smearing factor γ = 0.05D [i.e., ω → ω + iγ
when calculating G(ω) and 	(ω)]. The agreement here is also
quite good; in particular, spectrums match perfectly at a low-
frequency region. This result demonstrates that the projection
method [23] with p = 2 (i.e., up to double particle-hole ex-
citations to Hchain) for calculating the Green function works
quite well in the temperature region we study.

B. Spectrum for a large system

Now we move to the result with a large number of bath
sites, which cannot be addressed by the original ED method.
Here, we take 301 bath sites and 10 sites for the ED, i.e.,
nI = 10 and nL = 4. For obtaining the smooth spectra, we
convolute spectra here with a Gaussian kernel with the full
width at half-maximum of 0.04D following Ref. [23], and
employ a smearing factor of γ = 0.02D.

In Fig. 4, we show the DMFT spectrum at T = 0 for the
semicircular density of states for several interaction strengths
U = 1 − 5D at n = 0.8. The previous NRG result [35] is also
shown as dotted curves for comparison. We can see that the re-
sults agree very well in a low-energy regime and in an overall
structure. One difference is in the upper Hubbard band, where
our result shows an additional peak at the gap edge. While this
is not seen in the NRG results, it is known that NRG discards
detailed high-frequency structures due to the logarithmic dis-
cretization in energy. Such a peak was reported at half-filling
by the recent study using matrix product states [36,37] and
the D-DMRG [38], and its origin was further analyzed by
Lee et al. in Refs. [39,40]. Our results are consistent with
these studies, indicating that the current method works well
to obtain the smooth spectrum for calculating real-frequency
properties.

FIG. 5. (a) Spectral weight, (b) density of states, (c) resistivity,
and (d) Seebeck coefficient for the two-dimensional Hubbard model
on a square lattice with U = 3.5D. Units are represented by the
universal constants h̄, kB, e, and the out-of-plane lattice constant
c. Gray lines are the reference CT − QMC+Padé results taken from
Ref. [41].

C. Real-frequency properties at finite temperatures

Finally, we show the result of real-frequency properties at
finite temperatures. Here, we employ the square-lattice Hub-
bard model with only the nearest-neighbor hopping t = D/4
and U = 3.5D. We take 301 bath sites, and eight sites for the
ED calculation, where we employ γ = 0.01D. We sum up the
Green function contribution from each sector with an energy
cutoff: e−(E−EGS )/T � 0.02. As shown in Figs. 5(a) and 5(b),
the spectrum obtained with the present method is consistent
with the previous CT − QMC+Padé results [41]. We obtain
the clear upper Hubbard band structure, which is sometimes
difficult to obtain through a numerical analytical continuation
because it is located at a high energy, i.e., far away from the
Matsubara axis. The smooth spectrum allows us to calculate
the resistivity ρ and the Seebeck coefficient S from [41]

ρ = 1

σ1
, S = −σ2

σ1
,

σi = 2π

∫
dω

(
− ∂ f

∂ω

)(ω

T

)i−1 ∑
k

A(ω, k)2vx(k)2, (9)
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where f is the Fermi distribution function and vx(k) ≡
0.5D sin kx is the Fermi velocity along the x axis.

In Figs. 5(c) and 5(d), we show these results at n =
0.80, 0.85, 0.90 and around T = 0.01D. The temperature de-
pendence is also consistent with the CT − QMC+Padé result
[41] (gray line). Such a negative slope of the Seebeck coef-
ficient in the low-temperature region of the hole-doped Mott
insulator commonly appears in many lattice models, where
the correlation plays a crucial role in enhancing its intensity
[42–44]. Note that because the results of Ref. [41] could be
influenced by the error in the Padé approximation, a detailed
comparison beyond the overall agreement would not be very
meaningful. Thus, our calculations demonstrate that the natu-
ral orbital configuration provides us with an efficient way to
address low-temperature physics.

IV. CONCLUSION AND OUTLOOK

In conclusion, we have extended the natural orbital im-
purity solver to finite temperatures by constructing different
natural orbitals for each sector in the ED. We have found that
the minimum energy of each sector and the Green function are
well approximated by this scheme at low but finite tempera-
tures. We have examined the accuracy of our result for the
small cluster against the direct ED calculation and obtained a
good agreement. We have also shown that the smooth spec-
trum can be obtained with a large number of bath sites. Then,
we have calculated real-frequency and transport properties for
the two-dimensional Hubbard model. Our results demonstrate
the usefulness of the natural orbital framework for obtaining
this information at finite temperatures.

While the ED itself is efficient at low temperatures, when
used as a DMFT impurity solver, it encounters (in the DMFT
self-consistent loop) a difficulty in accurately fitting the
dynamical mean field with a small number of bath sites,
particularly at low temperatures. The natural orbital scheme
removes this problem by incorporating many bath degrees of
freedom so that we can take the advantage of the original
strength of the ED for low temperature calculations.

In this paper, we construct distinct natural orbitals for dif-
ferent sectors, and in each sector we use a fixed set of natural
orbitals constructed for describing the accurate ground state.
Like the finite temperature ED, we consider multiple eigen-
states of HI in each sector on the basis of these fixed natural
orbitals, while they may not be suitable for describing excited
states of the whole system: HI + Hchain. In this sense, the
current treatment may still suffer from the finite-size effect,
which would become more important at higher temperatures
(as shown in the Appendix). Constructing different natural
orbitals for each excited state may accelerate the convergence
against nL (i.e., reduce the finite-size effect).

While the present work focuses on the extension to finite
temperatures, the extension to multiorbitals is also important
for the application to real materials. This is another direction
of future study. In such applications, the ED has an important
advantage in dealing with off-diagonal elements and general-
type interactions, which would cause a severe negative sign
problem in the CT-QMC methods. Another promising direc-
tion is the extension to the cluster DMFT calculation, which

FIG. 6. Total site number dependences of the density of states
calculated with (a) the exact diagonalization and (b) the natural
orbital framework with nI = 8.

can take the spatial fluctuation effect into account with high-
energy resolution.
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APPENDIX

In Fig. 6, we show the total site number dependence of the
density of states obtained with (a) the exact diagonalization
method and (b) the natural orbital framework for the two-
dimensional Hubbard model on a square lattice with U =
3.5D, n = 0.85, T = 0.01D [same as Fig. 5(b) in the main
text]. Here we set a smearing factor γ = 0.05D for the exact
diagonalization. In Fig. 6(b), we used γ = 0.01D for 302 site
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FIG. 7. Wide-range temperature dependence of the Seebeck co-
efficient. Purple dots represent the results of the present method. Blue
dots are the results of the fixed spectrum at βD = 100. Gray dots are
benchmark (CTQMC+Páde) results taken from Ref. [41].

calculation, and we increase γ for keeping the ratio of γ /(the
number of bath sites)−1 to avoid strong oscillation of the
spectrum [22]. Similar to the original work [22], we obtained
the almost converged result for the natural orbital framework.

On the other hand, the exact diagonalization results strongly
depend on the number of bath sites.

Next, we examine the accuracy of the current method for
higher temperatures. Figure 7 shows the wide-range temper-
ature dependences of the Seebeck coefficient (purple) against
the benchmark (gray) taken from Ref. [41]. As in Sec. III C,
we sum up the Green function contribution with energy cut-
off e−(E−EGS )/T � 0.02 except for T/D = 0.1, where we set
e−(E−EGS )/T � 0.1 for quicker convergence. The results indi-
cate that the agreement for low temperatures is good while it
becomes worse for higher temperatures. Aside from the am-
biguity due to the Padé approximation used in Ref. [41], this
would be because we use the same natural orbital description
even for excited states in the same sector as mentioned at the
end of the main text. For evaluating the effect of the current
finite-temperature extension, we also compared it to the re-
sults calculated with a fixed spectrum (result at T = 0.01D)
shown as the blue line in Fig. 7. We can see that the present
method improves the results significantly (blue → purple)
but not enough for high temperatures. There, we would need
further development, for example, constructing different nat-
ural orbitals for each excited state. Note that the deviation
becomes noticeable for T/D � 0.02, roughly corresponding
to T � 300 K assuming typical bandwidth D ∼ (a few eV).
Thus, the current formalism can still be useful to discuss the
low-temperature physics of our interest.
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