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Spin fractionalization in a Kondo-lattice superconductor heterostructure
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Kondo lattices are one of the classic models of strongly correlated systems where despite a long history, a full
understanding of the excitation spectra is still not available. Here we propose that recent progress in engineering
heterostructures can be leveraged to gain insight into and even tune this spectra. We use a strong Kondo
coupling expansion to study spin-1 excitations of a Kondo lattice in both one and two dimensions to see whether
paramagnons in a Kondo insulator fractionalize into spin-1/2 excitations. We show that while paramagnons
are stable in the strong Kondo coupling limit, the presence of sufficient proximity-induced superconducting
pairing can favor fractionalization. Our results can be checked using a neutron scattering study of Kondo-lattice
heterostructures, and they can pave the way toward engineering strongly correlated electronic systems.
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I. INTRODUCTION

The Kondo-lattice (KL) model has emerged as a pow-
erful theoretical framework for understanding the interplay
between itinerant conduction electrons and localized mag-
netic moments in strongly correlated materials [1,2]. The
one-dimensional version, in particular, has been studied by
a number of analytical and numerical techniques, including
Monte Carlo [3–6], density matrix renormalization group
(DMRG) [7–13], bosonization [14–16], strong-coupling ex-
pansion [17,18], and exact diagonalization [19]. Furthermore,
renormalization and Monte Carlo methods have also been
used to examine the p-wave version of the one-dimensional
(1D) topological Kondo-lattice model, which exhibits topo-
logical end-states [20–23]. The focus of this paper is the usual
s-wave Kondo lattice model.

The collected wisdom using these approaches is that in the
particle-hole symmetric limit, the model realizes an insulator,
featuring a unique ground state with short-range entangle-
ments which can be smoothly evolved into a product state
of local Kondo singlets. Upon doping, the model realizes a
heavy Luttinger liquid which transitions into a ferromagnet in
the strong-coupling limit [10].

Despite this, the spectrum of low-energy excitations of
the system appears to hold exotic features related to spin
fractionalization [24], within which charge-neutral spin-1
paramagnons may fractionalize into charged excitations that
transform as spin-1/2 representations of the SU(2) group.
This phenomenon can be viewed as a deconfining transition
in the theory composed of coupled gauge and matter fields
[25]. While at strong coupling the two-particle excitations are
confined into a paramagnon, it is suggested in [24] that in
the weak Kondo coupling regime, the paramagnon might be
deconfined. This possibility has been raised in connection to
the numerical results from 1D matrix product states and is
expected to be even more relevant in higher dimensions.

In this paper, however, we discuss whether or not the
deconfinement can be influenced within the strong Kondo
coupling limit. We study the possibility of using spectroscopic
experiments on engineered heterostructures not only to study

the excited states but also to induce transitions in the spec-
trum. Linear response probes are regularly used to study the
properties of the ground states in quantum materials. Since
such techniques always probe a transition between the ground
state and low-lying excitations, a rearrangement in the man-
ifold of low-energy excited states can strongly influence the
result. Therefore, the aforementioned transitions qualitatively
affect the linear-response results.

A. Kondo-lattice model

The goal of the present paper is to study the standard
Kondo-lattice model, which is described by the Hamiltonian

HKL = JK

∑
j

�Sj · c†
j �σcj − t

∑
〈ij〉,σ

(c†
i,σ cj,σ + H.c.). (1)

Here, 〈ij〉 refers to nearest-neighboring sites and σ =↑,↓ is
the spin. We use boldface i, j to refer to lattice sites on a
one-dimensional or two-dimensional lattice. The Kondo term
proportional to JK represents the antiferromagnetic coupling

FIG. 1. (a) Kondo-lattice model in 1D. A spin-1 spin-flip excita-
tion can either propagate through the lattice as a whole or break up
into fractionalized spin-1/2 doublons and holons in between and then
recombine again. (b) A Kondo-lattice–superconductor heterostruc-
ture can be used to engineer the spin dynamics of the system, as
probed by x-ray scattering.
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between localized spins (magnetic moments) �S j and delocal-
ized (conduction) electrons, while the second term describes
the hopping of electrons on a 1D or 2D square lattice. When
the spin index is suppressed, the annihilation operator cn is
regarded as a spinor.

B. Strong-coupling limit

Strong-coupling expansion has been applied to the Kondo-
lattice model before [17,18]. Recent work [24] has revisited
the 1D Kondo insulator using a combination of tensor net-
work, strong-coupling expansion, and mean-field analysis. It
was shown that in contrast to previous results [18], for JK/t ∼
2 the two-particle excitation spectrum of the Kondo insulator
is dominated by a paramagnon at the lowest energies. At
strong coupling this has a simple interpretation as an attractive
interaction that binds the doublon and holon into a bound
state.

To see this, we use a strong Kondo coupling approxi-
mation, JK/t � 1, under which the first term in (1) is the
dominating term, favoring singlets at every site. In this limit,
the ground state is the product state,

|�〉 =
∏

n

|Kn〉, |Kn〉 =| ⇑n↓n〉 − | ⇓n↑n〉√
2

, (2)

with energy E0 = −(3JK/2)N , where N is the number of
sites. The charge-e, spin-1/2 single-particle excitations on top
of this ground state are known as doublons c†

nσ |�〉 and holons
cnσ |�〉 [18,24] with an energy of E1 = E0 + 3JK/2. Our pri-
mary interests are the spin-1 excitations, which in the large-JK

limit correspond to a simultaneous creation of a doublon and
holon on the same site [24]. As long as the ground state is a
Kondo singlet, we can write(

�Sn + c†
n

�σ
2

cn

)
|�〉 = 0, (3)

which indicates that a spin-flip excitation with the Kondo en-
ergy Et = E0 + 2JK is equivalent to a two-particle (charge-2e)
excitation at the same site. A doublon-holon (DH) state can be
written generally as the superposition

|DH〉 =
∑
n1n2

ψDH(n1, n2)c†
n1↑cn2↓|�〉. (4)

If not on the same site, a doublon-holon state has the
Kondo energy E2 = E0 + 3JK . This is schematically shown
in Fig. 1(a). A spin-flip can in principle fractionalize into
an independent doublon and holon, propagating through the
lattice and later recombining into a spin-excitation. However
since Et < E2, a paramagnon is energetically stable and does
not fractionalize. This can be interpreted in terms of the pres-
ence of an attractive interaction V = −JK < 0 that binds the
doublon and holon into a paramagnon.

C. Model—Additional terms

The stability of the paramagnon is not set in stone. For
example, adding a local interaction to the Hamiltonian

HU = U
∑

j

(∑
σ

c†
jσ c jσ − 1

)2

(5)

changes the energies of the doublon/holon to E1 = E0 +
3JK/2 + U and E2 = E0 + 3JK + 2U without affecting the
paramagnon energy [Fig. 1(a)]. The attractive interaction be-
tween the holon and doublon is modified to V = − JK − 2U .
Therefore, for an attractive U < −JK/2, it is energetically
favorable for the spin to fractionalize.

The negative sign of U makes it impossible to experimen-
tally verify this prediction. To tune the fractionalization in an
actual experiment, in this paper we consider adding a singlet
s-wave pairing between conduction electrons,

H� = �
∑

j

(c†
j,↑c†

j,↓ + H.c.), (6)

to the Hamiltonian, where we assumed � to be real. Such a
term can be induced by depositing a thin layer of Al on the
epitaxially grown CeCoIn5 as shown in Fig. 1(b). Alterna-
tively, it can be produced by including a superconducting layer
[26] in twisted multilayer graphene heterostructures where the
hybridization of an itinerant band with a localized band is
already established [27].

Our primary goal is to examine whether superconducting
proximity, represented by H�, can by itself favor frac-
tionalized spin excitations. At first sight it seems that the
spin-singlet superconductivity only acts in the charge sector
and is unlikely to affect the spin sector. However, supercon-
ductivity can transform spin-1 doublon-holon excitations of
the Kondo lattice into either doublon-doublon or holon-holon
excitations. Since the latter two are not confined, the hy-
bridization may induce deconfinement.

In the next section, we introduce the method we use to
study the problem and provide technical details of our cal-
culations. The readers interested in results can skip to Sec. III,
where the results are presented. The paper ends with a conclu-
sion and some open questions.

II. METHOD

We consider a model that in its most general form includes
all the terms introduced, H = HKL + HU + H�. To tackle this
problem, we use a strong Kondo coupling approximation,
JK/t � 1, according to which HK is the dominating term. For
concreteness, we assume a periodic boundary condition with
L sites in every direction.

A. Schrödinger equations

Here, we focus on two-particle charge-2e and spin-1 exci-
tation, whose Sz = +1 state, using Eq. (3) is most generally
written as

|F 〉 =
∑
n1n2

[
ψDD(n1, n2)c†

n1↑c†
n2↑ + ψDH(n1, n2)c†

n1↑cn2↓

+ ψHH(n1, n2)cn1↓cn2↓
]|�〉. (7)

The three terms on the right are doublon-doublon |DD〉,
doublon-holon |DH〉, and holon-holon |HH〉 states, respec-
tively. For the |DD〉 and |HH〉 states, we use the antisymmetry
of the wave function ψDD/HH(n1, n2) = −ψDD/HH(n2, n1) to
limit ourselves to the n1 > n2 case. By applying H |F 〉 = E |F 〉
and matching the operators from both sides, we obtain the
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single-particle Schrödinger equations

− t

2

∑
δ̂

[ψDD(n1 + δ̂, n2) + ψDD(n1, n2 + δ̂)] + �ψDH(n1, n2) − �ψDH(n2, n1) = (E − E2)ψDD(n1, n2), (8)

− t

2

∑
δ̂

[ψDH(n1 + δ̂, n2) − ψDH(n1, n2 + δ̂)] + V δn1,n2ψDH(n1, n2) + �ψDD(n1, n2) + �ψHH(n1, n2)

= (E − E2)ψDH(n1, n2), (9)

+ t

2

∑
δ̂

[ψHH(n1 + δ̂, n2) + ψHH(n1, n2 + δ̂)] + �ψDH(n1, n2) − �ψDH(n2, n1) = (E − E2)ψHH(n1, n2). (10)

Here δ̂ ∈ {x̂,−x̂} for the one-dimensional problem and δ̂ ∈ {x̂,−x̂, ŷ,−ŷ} for the two-dimensional problem. We remind the
reader that � is the superconductivity pairing amplitude and V = −JK − 2U is the strength of on-site interaction between
doublons and holons. Note that the on-site interaction V does not act on �DD or �HH because due to Pauli principles, these states
vanish when the corresponding particles are on the same site.

B. Making use of the translational invariance

Translational invariance requires that upon an equal shift of positions n1 and n2, the wave function can only acquire a phase
shift. This implies a separation of variables,

ψ (n1, n2) = eik̄·n̄φ(�n; k̄), (11)

where n̄ = (n1 + n2)/2 and �n = n1 − n2, and k̄ is the total momentum of the two-particle complex. It should be clear from the
context whether � refers to the amplitude of pairing or the difference in positions. This reduces the dimension of the Schrödinger
equations from L2- to L-dimensional matrices, written as

− t
∑
|δ̂|

cos(k̄δ̂/2)[φDD(�n + δ̂) + φDD(�n − δ̂)] + �φDH(�n) − �φDH(−�n) = (E − E2)φDD(�n),

− it
∑
|δ̂|

sin(k̄δ̂/2)[φDH(�n + δ̂) − φDH(�n − δ̂)] + V δ�n,0φDH(�n) + �φDD(�n) + �φHH(�n) = (E − E2)φDH(�n),

+ t
∑
|δ̂|

cos(k̄δ̂/2)[φHH(�n + δ̂) + φHH(�n − δ̂)] + �φDH(�n) − �φDH(−�n) = (E − E2)φHH(�n), (12)

where |δ̂| = x̂ in 1D or x̂, ŷ in 2D.

C. Boundary conditions: One-dimensional case

We assume a periodic boundary condition, i.e., the system
is on a ring in the one-dimensional case. The boundary condi-
tion on the DH state is

ψDH(n1 + L, n2) = ψDH(n1, n2 + L) = ψDH(n1, n2), (13)

and it can be translated to the boundary conditions on n̄ and
�n. For n̄ we simply have

eik̄L = 1, k̄ = 2π

L
m, m = 0 · · · (L − 1). (14)

Imposing the periodic boundary condition on �n in the DH
sector is more subtle. With an open boundary condition, we
would have �n = −(L − 1) · · · (L − 1), but in the presence of
a periodic boundary condition there is a redundancy. It is help-
ful to introduce an auxiliary wave function φ̃DH(�n), in terms
of which ψDH(n1, n2) = eik̄n1 φ̃DH(�n), that treats the position
of the doublon n1 rather than average position n̄ as the refer-
ence of coordinate, i.e., the doublon is at zero and the holon
is at �n. It is clear that the two wave functions are related
by φDH(�n) = eik̄�n/2φ̃DH(�n), for which the wave function
φ̃DH(�n) has a trivial boundary condition. We are free to

label any of the L sites the holon occupies by identifying the
end points, with one possible choice as 1 − L/2� � �n �
L/2�. Identifying the two ends leads to φ̃DH(L/2 + 1�) =
φ̃DH(1 − L/2�) and φ̃DH(−L/2�) = φ̃DH(L/2�). Translat-
ing the latter condition to φDH(�n), we find

φDH(L/2�) = eik̄L/2φDH(−L/2�). (15)

This result has a simple interpretation. As the two particles
move away from each other on a ring, �n initially grows, but
at some point when they are at diametrically opposite sides
the center of mass moves from one side of the circle to the
other. The wave functions are equivalent up to a change in
the center of mass, which leads to Eq. (15). This also follows
more directly from the substitution of the wave function in
Eq. (11) into Eq. (13).

A more useful choice is �n = 0 · · · (L − 1) to conclude
that φ̃DH(L) = φ̃DH(0) and φ̃DH(−1) = φ̃DH(L − 1). More
generally, we have that φ̃DH(−|�n|) = φ̃DH(L − |�n|). In
terms of the φDH(�n) wave function, this means

φDH(L) = eik̄L/2φDH(0), (16)

or equivalently φDH(−1) = e−ik̄L/2φDH(L − 1).
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FIG. 2. (a) The periodic boundary condition in 1D can be im-
posed by identifying the two points of any interval, while keeping
one particle (red dot) at �n = 0. (b) As the particles get further
apart there is a critical point, �n = L/2, where the center of mass
coordinate n̄ = (n1 + n2)/2 moves from one side of the ring to the
other, resulting in a phase-shifted boundary condition. (c) The same
approach in 2D. The periodic boundary condition can be imposed by
fixing either one of the particles at �n = 0.

For DD and HH states, the boundary condition is simpler.
Due to the antisymmetry of the wave function, we can focus
on n1 � n2, or equivalently 0 � �n � L. Furthermore, they
cannot occupy the same site. Therefore, the boundary condi-
tion on �n is that of an open boundary condition,

φDD/HH(L) = φDD/HH(0) = 0. (17)

D. Boundary conditions: Two-dimensional case

Again we assume a periodic boundary condition which in
2D means the system lives on a torus. Without losing gen-
erality, let us assume Lx = Ly = L. The boundary condition
Eq. (13) becomes

ψDH(n1 + Lδ̂, n2) = ψDH(n1, n2 + Lδ̂) = ψDH(n1, n2),

which can be translated to the boundary conditions on n̄ and
�n. We find that

ek̄·Lδ̂ = 1, k̄ = 2π

L
m, (18)

and

φ(Lx̂ + yŷ) = e
i
2 k̄xLφ(yŷ), φ(xx̂ + Lŷ) = e

i
2 k̄yLφ(xx̂).

For the DD and HH states, it is again helpful to pick
one of the particles as the center of coordinate and define
ψ (n1, n2) = eik̄·n1 φ̃(�n). Since the two-particles live on a
torus (Fig. 2), both �nx and �ny can each be chosen to
vary over 0 · · · (L − 1), with the condition that �n = 0 (two
particles occupying the same site) is eliminated. Note that the
choice of the center of coordinate is irrelevant since

φ̃(−|nx|, ny) = φ̃(L − |nx|, ny),

φ̃(nx,−|ny|) = φ̃(nx, L − |ny|). (19)

E. Dynamic spin susceptibility

The dynamic spin susceptibility has the form

χS (n, t ) = −iθ (t )〈�|[S+
n (t ), S−

0 (0)]|�〉. (20)

This correlation function can be experimentally measured via
inelastic x-ray or neutron scattering [28]. The S−(0, 0) op-
erator creates a triplet state at site n = 0 at time t = 0, and
the triplet propagates through the lattice and is measured by
S+(n, t ) at a later time t on the site n by annihilating the
triplet.

Equation (3) indicates that as long as the ground state is
a Kondo singlet, a spin flip is equivalent to a two-particle
(charge-2e) excitation. Therefore, S+

n and S−
n in Eq. (23) can

be replaced with c†
n↑cn↓ and its Hermitian conjugate, respec-

tively. These operators act in the two-particle sector, within
which the resolution of the identity can be expressed as

1̂ =
∑

k̄

∑
λ

|Fk̄,λ〉〈Fk̄,λ|, (21)

where the eigenstates |F 〉 in Eq. (7) have DD, DH, and HH
sectors. Here, λ is the label for the energy eigenstates for a
given momentum k. Using Eq. (21) and Eq. (3) into Eq. (23),
only the DH sector is picked by c†

n↑cn↓, and the susceptibility
becomes

χS (n, t ) = −iθ (t )
∑
k̄,λ

[e−it (Ek,λ−E0 )〈�|c†
n↑cn↓|Fk̄,λ〉〈Fk̄,λ|c†

0↓c0↑|�〉 − eit (Ek,λ−E0 )〈�|c†
0↓c0↑|Fk̄,λ〉〈Fk̄,λ|c†

n↑cn↓|�〉]

= −iθ (t )
∑
k̄,λ

[eit (E0−Ek,λ )ψDH,k,λ
(n, n)ψ∗

DH,k,λ(0, 0) − eit (Ek,λ−E0 )ψDH,k,λ(0, 0)ψ∗
DH,k,λ(n, n)]. (22)

After substituting Eq. (11) into Eq. (22) and perform-
ing a Fourier transform, we find that the imaginary part of
χS (q, ω + iη) for positive ω is

−χ ′′
S (q, ω > 0) =

∑
λ

|φDH,q,λ(�n = 0)|2δ(ω − ξq,λ), (23)

where ξq,λ = Eq,λ − E0 is the excitation energy. Therefore,
the knowledge of energy eigenvalues of the two-particle ex-
citations and the equal-position DH admixture of the wave

functions is sufficient to determine the dynamic spin suscepti-
bility.

We should also comment on renormalization of |�〉 and
|F 〉 by the hopping term t . The hopping term creates virtual
DH pairs that appear as an admixture to the product state [24],
but these DH pairs are in the singlet sector, and as such they
do not mix with the triplet sector DH. Consequently, these
virtual singlet DH pairs cost 3JK more, and their contributions
are suppressed in the strong-coupling limit.
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III. RESULTS

In this section, we use the machinery developed above to
study the spin susceptibility of Kondo lattices in the presence
of electronic interaction and superconducting proximity. In
all cases, the Schrödinger equations with the corresponding
boundary conditions are mapped to eigenvalue problems that
are solved to extract the eigenvalues and eigenvectors. The
latter two are then used to reconstruct the dynamical spin
susceptibility.

We first start with one dimension, where the analytical
solution in the absence of superconductivity can provide some
insight, then we include the superconductivity numerically,
and finally we move on to the two-dimensional case.

A. 1D case without superconductivity

First, we look at the problem in the absence of super-
conductivity � = 0. Note that the three equations (8)–(10)
decouple in this limit and we are interested only in the |DH〉
sector.

For the time being, we will label our wave functions with
good quantum numbers k1 and k2, which are the momenta of
the doublon and holon, respectively. The total momentum k̄
is conserved due to the translational invariance of the model,
meaning that such a k1, k2 state can be mixed with k′

1 = k1 + q
and k′

2 = k2 − q. When the doublon and holon are far apart,
|�n| � 0, the potential is absent and the associated energy
conservation condition is

cos(k1) − cos(k2) = cos(k1 + q) − cos(k2 − q), (24)

since doublons and holons have opposite dispersion. This has
solutions that fix k′

1 = π − k2 and k′
2 = π − k1.

For convenience, we choose the related quantum numbers
k̄ = k1 − k2 and �k = (k1 + k2)/2, interpreted as the total

and relative momentum, respectively. Suppressing the DH
label and using translational invariance, we can write

ψk̄,�k (n1, n2) = eik̄n̄φ�k (�n), (25)

where n̄ = (n1 + n2)/2 and �n = n1 − n2. With this ansatz,
the 2D equation (9) becomes the 1D equation

−it sin(k̄/2)[φ(�n + 1) − φ(�n − 1)]

+V δ�n,0φ(�n) = (E − E2)φ(�n). (26)

For |�n| � 0, the potential drops out and a plane-wave solu-
tion φ(�n) ∼ ei�k�n implies that

EDH = E2 + 2t sin(k̄/2) sin(�k) (27)

for an appropriate �k, is the energy of the |DH〉 state.
For a general wave function, we assume the ansatz

φ(�n) =
⎧⎨
⎩

Aei�k�n + A′ei(π−�k)�n, �n < 0,

C, �n = 0,

Bei�k�n + B′ei(π−�k)�n, �n > 0,

(28)

where ei�k�n and ei(π−�k)�n plane waves are mixed, as a
consequence of Eq. (24). We also need to impose the peri-
odic boundary condition. Choosing the interval 1 − L/2� �
�n � L/2� makes it clear that this is a scattering problem.
However, for calculations it is more convenient to choose
0 � �n � L, which allows us to use only the �n � 0 part
of Eq. (28). We then substitute Eq. (28) into Eq. (26) for
the cases of �n = −1, 0, 1. For �n = 1, Eq. (26) enforces
the continuity condition C = B + B′, which is evident from
Eq. (28). The other two cases can be rewritten in the following
matrix equation:

(
1 − eik2L 1 − (−1)Le−ik1L

e−i�k (1 − eik2L ) − u −ei�k[1 − (−1)Le−ik1L] + u

)(
B
B′

)
= 0, (29)

where we have defined

u ≡ V/it

sin(k̄/2)
. (30)

For nontrivial solutions, the determinant of the matrix in
Eq. (29) has to vanish, giving rise to the equation

u = −2 cos(�k)

(
1 − (−1)Le−ik1L

)(
1 − eik2L

)
(−1)Le−ik1L − eik2L

, (31)

between k̄ and �k. The associated eigenvector has com-
ponents that enforce B = B′e−i(k̄/2+�k)L such that the wave
function Eq. (28) is determined up to an overall normalization
B′ = 1/L

√
2. Note that the momenta k1, k2 need not be purely

real, as the introduction of an imaginary relative momentum
in Eq. (28) enforces exponential decay for large separations
|�n| � 0. This leads naturally to the formation of the bound
state (BS) of a doublon-holon pair, which we interpret as the
paramagnon excitation.

To determine the �k of the BS, we note that the energy
Eq. (27) of the BS must be a real quantity. This restricts
sin(�k) to be real, such that a general form �k = �k′ + i�k′′
must necessarily be

�k = ±π

2
+ i�k′′ (32)

for a DH bound state. Note that the ± is determined by
sign(E − E2) in Eq. (27). For this choice of �k, the secular
equation (31) can be recast as

V = ±2t sin(k̄/2) sinh(�k′′), (33)

where fixing ± via Eq. (27) implies that the sign of the
physical quantity V fixes the sign of �k′′.

With the choice of E < E2, to get exponential decay in
Eq. (28) for |�n| � 0 it is clear that B′ = 0. Furthermore,
a substitution of Eq. (28) into Eq. (26) forces the remaining
coefficients to be equivalent, B = C. So, the wave function is
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FIG. 3. The imaginary part of the dynamical spin susceptibility
−χ ′′

S (q, ω + iη). (a) At U = 0, the continuum of excitations form the
upper band, while the paramagnon bound state has the lowest energy.
(b) For sufficiently attractive interaction among electrons U < −J/2,
the continuum of excitations is energetically more favorable.

determined up to an overall normalization. We find that

φBS(�n) ∝ i−�ne−�k′′ |�n| (34)

is the wave function for the doublon/holon BS with

EBS − E2 = −2t sin(k̄/2) cosh(�k′′), (35)

as the BS energy according to Eq. (27). The exponential decay
as �n grows in Eq. (34) is the key for confinement. Combin-
ing Eqs. (33) and (35), it can be seen that a BS, with �k′′ > 0,
has the lowest energy only if V > 0. Similarly, it can be seen
that V < 0 leads necessarily to a high-energy antibound state
at E > E2.

Using Eq. (23), the dynamical spin susceptibility becomes

−χ ′′
S (q, ω > 0) =

∑
�k

|Cq,�k|2δ(ω − ξq,�k ), (36)

where ξq,�k is defined as

ξq,�k = E2 − E0 + 2t sin(�k) sin(q/2). (37)

The susceptibility is plotted in Fig. 3 for both U = 0 and the
presence of a finite attractive Coulomb interaction between
electrons U = −3J/4. Note that for U < −J/2 the bound
state becomes an antibound state and moves to higher ener-
gies.

B. t = 0 limit and the ground-state stability

For nonzero �, all terms in Eq. (12) need to be taken into
account. It is instructive to first analyze a simplified version of
the problem where t = 0. In this case, the single-doublon or
holon states are mixed by the � term.

This gives rise to new states |U〉 and |L〉 of the form

|U/L〉 = |D〉 ± |H〉√
2

⊗ {|⇑〉, |⇓〉}. (38)

These states are denoted as “upperons” and “lowerons” by
virtue of their associated energies EU/L = E1 ± �, and they
will be shown to play a key role in explaining certain features
of the updated dynamic spin susceptibility. On a two-particle
sector, the states would be |UU〉, |UL〉, and |LL〉 with energies
E2 + 2�, E2, and E2 − 2�, respectively. So, for t � � � J
we expect to see three bands in the two-particle spectrum.
The |DH〉 orbital, responsible for the magnetic response of

FIG. 4. (a)–(c) The imaginary part of dynamical spin susceptibil-
ity −χ ′′

S (q, ω + iη) in the presence of superconductivity for JK/t = 2
in an L = 100-site 1D Kondo lattice. As � increases, the upperon
and loweron bands separate from the DH continuum, and for suffi-
cient � the loweron merges with the DH bound state, which results
in the formation of a new (flipped) bound state. (d) The lowest energy
wave function in the DH sector for varying �. At a k-dependent
critical pairing �/J > 0.5, the bound state transforms into a free
state.

the system, is expressible in terms of |UU〉, |UL〉, and |LL〉
bands.

Note that Kondo singlets are not affected by the pairing,
i.e., H�|�〉 = 0. The fact that for U = 0 the lowest energies
of single-particle and two-particle excitations are modified to
EL − E0 = 3JK/2 − � and ELL − E0 = 3JK − 2� indicates
that the t = 0 ground state composed of a product of sin-
glets is stable for �/JK < 3/2 and |�〉 = ∏

n |Kn〉 neither
changes energy nor mixes with other states H�|�〉 = 0, and
the initial/final states in Eq. (23) are still the same |�〉
defined without pairing. The only intermediate states in-
volved in Eq. (23) are the two-particle excited states with a
doublon-holon (DH) pair, whose modification due to pairing
is captured via the Schrödinger equation. As long as t � JK ,
we expect this assumption to remain valid. In the following,
we show that even for �/JK as small as 0.1 there are critical
momenta below which spins are fractionalized.

C. 1D case with superconductivity

For nonzero hopping, t �= 0, we numerically diagonalize
the full Hamiltonian Eq. (12) and use the resulting eigen-
states in the computation of the dynamic spin-susceptibility.
Figure 4 shows the effect of superconducting proximity on
the dynamic spin susceptibility for various values of �/J .
The figure shows the formation of upperon/loweron bands that
split off the continuum of doublon-holon excitations. Interest-
ingly, new UU, UL, and LL bands each inherit the attractive

195120-6



SPIN FRACTIONALIZATION IN A KONDO-LATTICE … PHYSICAL REVIEW B 108, 195120 (2023)

FIG. 5. The spectrum of two-particle triplet excitations vs mo-
mentum at (a) �/JK = 0.1 and (b) �/JK = 0.55. The DH, HH, and
DD contents of each eigenstate are shown in red, green, and blue,
respectively. The top-left inset shows a zoom into the black rectangle,
and the top-right inset shows the DH weight of the lowest-energy
state in each case vs k. Note a first-order vs second-order transition
in weight in the two cases.

doublon-holon interaction and produce their own (anti)bound
states.

Figure 4(d) shows the wave function |φDH(�n)| at a fixed
momentum k/π = 0.38. For �/J < 0.5, the wave function is
evanescent, indicating the dominance of a bound state. How-
ever, the correlation length increases with increasing �/J ,
and for �/J > 0.5 the wave function transitions to that of a
particle-in-a-box, indicating that the spin-triplet is carried by
two spin-1/2 particles rather than a spin-1 bound state.

To gain better insight into this dynamical spin susceptibil-
ity, we plot the entire two-particle triplet spectrum in Fig. 5.
The DH, DD, and HH admixtures of the states are marked
by red, blue, and green, respectively. The DD/HH states have
their largest bandwidths at k = 0, whereas the DH state has its
largest bandwidth at k = π . Therefore, the BS is hybridized
with the DD/HH states for arbitrarily small pairing �. For
�/J = 0.1, from the insets of the Fig. 5(a) we see that the BS
crosses the DD/HH continuum, leading to a sharp transition
in the DH character of the lowest triplet state. For k/π <

0.15, the triplet is mostly carried by DD/HH states (and it
is deconfined), whereas this character abruptly changes for
k/π > 0.15. This is, however, not reflected in the spin sus-
ceptibility of Fig. 4(a) as the latter only probes the DH states.
For �/J = 0.55, the transition moves to larger k/π = 0.25
and the triplet state changes continuously. Since the dynamic
susceptibility is only sensitive to the DH admixture with an
equal doublon and holon position, this change in character
explains the disappearance of the signal at low momenta.

To summarize this section, we observe that an arbitrar-
ily small � is sufficient to induce deconfinement at the
lowest momenta. Fast-moving magnons are confined, but
slow-moving ones are deconfined. Note that for k̄ > π/2, the
BS continues to be the lowest spin-1 excitation of the system.

D. Generalization to 2D

The problem can be easily generalized to two dimensions.
Solving Eqs. (12) numerically and using Eq. (23) to compute
the susceptibility leads to the results shown in Fig. 6. This
case shares similar features to the 1D version. Namely, at
small momenta the spin-excitation is carried by the DD and

FIG. 6. (a)–(c) Dynamical spin susceptibility of a (40×40)-site
2D Kondo insulator for JK/t = 2 and various values of �/JK . The
inset of (a) shows the Brillouin zone cut. (d) The two-particle triplet
spectrum for �/J = 0.2. The inset of (d) shows the DH weight of
the lowest-energy state.

HH sectors, but at higher momenta it is carried by the BS.
At higher �/J the spin susceptibility is qualitatively affected,
moving the BS to higher energies even in the DH sector.

IV. CONCLUSION

In summary, we have studied spin excitations of the 1D and
2D Kondo-lattice models at half-filling in the strong Kondo
coupling limit. In this limit, the lowest-energy excitation is a
paramagnon with a continuum band of fractionalized spin-1/2
excitations at higher energies.

The significance of the lowest excited states is that
typically due to interactions not included explicitly, e.g.,
electron-phonon coupling, it is expected that the excitation
decays into the lowest energetic state with the same quantum
numbers. This energetic order can be flipped by a sufficiently
attractive Coulomb interaction, without affecting the ground
state.

More practically, however, we showed that a supercon-
ducting proximity can cause a deconfining transition and
subsequent spin fractionalization. This is somewhat surpris-
ing, as the charge sector is affecting the spin sector. In the
presence of an energy-relaxation mechanism, a small pairing
is sufficient to hybridize confined and deconfined sectors and
ultimately fractionalize the spins into spin-1/2 doublons and
holons at low momenta. Furthermore, even in the absence
of energy relaxation, a sufficiently large pairing can lead to
deconfinement. Our work opens a window into engineering
strongly correlated electronic systems and predictions that can
shed light on our understanding of such systems.

The tensor network calculations of [24] suggest that
perhaps in the weak-coupling regime t/J < 1 the spin
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fractionalization can take place naturally in the normal Kondo
lattice without including other terms considered here. At weak
coupling, particle-hole excitations (Kondo singlets breaking
into virtual doublon-holon pairs) create a plasma of doublons
and holons. It is conceivable that such a plasma screens the
interaction between the doublon-holon triplet, causing them to
be free. Whether such a scenario can lead to fractionalization

is a fascinating new many-body problem that is outside the
scope of the present work, and we leave it to future work.
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