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Mirror symmetry decomposition in double-twisted multilayer graphene systems
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Due to the observed superconductivity, the alternating twisted trilayer graphene (ATTLG) has drawn great
research interest very recently, in which three single-layered graphene (SLG) are stacked in an alternating twist
way. If one or several of the SLG in ATTLG are replaced by multilayer graphene, we get a double-twisted
multilayer graphene (DTMLG). In this work, we theoretically illustrate that, if the DTMLG has a mirror
symmetry along the z direction like the ATTLG, there exists a mirror symmetry decomposition (MSD), by
which the DTMLG can be exactly decoupled into two subsystems with opposite parity. The two subsystems
are either a twisted multilayer graphene (single twist) or a multilayer graphene, depending on the stacking
configuration. Such MSD can give a clear interpretation of all the novel features of the moiré band structures of
DTMLG, e.g., the fourfold degenerate flat bands, and the enlarged magic angle. Meanwhile, in such DTMLG,
the parity becomes a new degree of freedom of the electrons, so that we can define a parity-resolved Chern
number for the moiré flat bands. More importantly, the MSD implies that all the novel correlated phases in
the twisted multilayer graphene should also exist in the corresponding DTMLGs since they have the same
Hamiltonian in form. Specifically, according to the MSD, we predict that the superconductivity should exist
in the (1 + 3 + 1)-DTMLG.

DOI: 10.1103/PhysRevB.108.195119

I. INTRODUCTION

Due to the observation of unconventional superconduc-
tivity and Mott insulating phase at the magic angle, twisted
bilayer graphene (TBG) [1,2] has become the focus of re-
search in the field of condensed matter physics in the last few
years [1–4]. Although the origin of the superconductivity in
TBG is still under debate, it is believed that the flat bands
appearing at the magic angle will not only greatly enhance the
electron correlation but also play a key role in the supercon-
ductivity of TBG [5–7]. As pointed out by further theoretical
studies [8–18], the appearance of the magic angle and flat
bands is a general property of the twisted multilayer graphene
systems. So, an interesting question is whether we can ob-
serve superconductivity in other twisted multilayer graphene
systems. The twisted double-bilayer graphene [9,13,17], and
twisted monobilayer graphene (TMBG) [8,11,12] are two typ-
ical examples, which both have moiré flat bands at the magic
angle. Interestingly, different from the TBG, the flat bands in
the two systems are topological nontrivial [8,11–13,19], so the
correlation-induced topological phenomenon can be observed
in these moiré systems [9,20–22]. However, no definite signal
of superconductivity has been found experimentally in both
the twisted double-bilayer graphene and TMBG.
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Alternating twisted trilayer graphene (ATTLG) has drawn
great research interest very recently [23–50]. It is mainly
because that, except the TBG [1–3,51–65], the ATTLG is the
second definite moiré system, in which robust superconductiv-
ity is observed [23–27]. The ATTLG has a sandwich structure,
where three single-layer graphene (SLG) are stacked in an al-
ternating twist way with two twist angles (θ12 = −θ23). Thus,
the ATTLG has a mirror symmetry Mz along the z direction.
An immediate consequence of the mirror symmetry is that the
Hamiltonian of the ATTLG can be exactly mapped into two
subsystems [29–31], namely, a TBG and an SLG, which have
opposite parity (i.e., the eigenvalue of the Mz). Interestingly,
such decomposition shows that the moiré interlayer tunneling
in the TBG subsystem is scaled by a factor

√
2 so that the

ATTLG has a larger magic angle
√

2 × 1.05◦ ≈ 1.54◦ (1.05◦
is the magic angle of the TBG) [29–31]. Meanwhile, the
decomposition also clearly interprets the moiré band structure
of the ATTLG near E f , where one pair of moiré flat bands
results from the TBG subsystem and the two linear bands are
from the SLG part. It is believed that the intriguing supercon-
ductivity in ATTLG arises from the TBG subsystem of the
Hamiltonian since it has the same symmetry as that of TBG
[23–27].

Stimulated by the success of the ATTLG, people expect to
find more moiré structures similar to the ATTLG, which can
also host the superconducting phase. Very excitingly, several
recent experiments report that the superconductivity will be
enhanced in alternating twisted four- and five-layer graphene
[66,67], which are examples of the alternating twisted mul-
tilayer graphene (AT-NLG) with N = 4, 5 (N is the total
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mirror
plane

FIG. 1. Schematic diagram of the DTMLG with mirror symme-
try. (a) The (2 + 1 + 2)-DTMLG and (b) the (1 + 3 + 1)-DTMGL
where the twist angles θ and −θ have opposite rotation direction.
(c), (d) The stacking configurations of (a) and (b), respectively. A (B)
denotes the sublattice A (B) in each SLG, and the blue lines represent
the mirror reflect planes. (e) The Brillouin zone of DTMLG. The
subscripts of Km and Ktb stand for the middle and top and bottom
layers, respectively

number of layers). The AT-NLG means each SLG (N � 3)
is twisted in an alternating way, i.e., the twist angles are
(θ,−θ, θ, . . . ) [29,34,68,69]. Theoretically, it is proved that
the AT-NLG can be decoupled into N

2 ( N−1
2 ) copies of TBG

if N is even (odd), with an additional SLG for odd N [29,34].
Note that the mirror symmetry Mz also plays a key role for the
AT-NLG with odd n.

The double-twisted multilayer graphene (DTMLG) is an-
other kind of graphene moiré structure closely related to the
ATTLG [70–73]. The DTMLG is also a sandwich structure
like the ATTLG, where three van der Waals (vdW) layers are
stacked in an alternating twist way with two twist angles. But,
different from ATTLG, in DTMLG at least one of the three
vdW layers is replaced by a multilayer graphene [70,71]. Note
that we focus on the alternating twist case in this work, and do
not consider the chiral twist situations [74–76]. Specifically, a
general DTMLG can be denoted as an (X + Y + Z)-DTMLG,
where X , Y , and Z represent the layer number of the bottom,
middle, and top vdW layers, respectively. As shown in Fig. 1,
we plot the structures of two simple DTMLGs as examples,
i.e., (1 + 3 + 1)-DTMLG and (2 + 1 + 2)-DTMLG. In (1 +
3 + 1)-DTMLG, the middle vdW layer becomes a Bernal-
stacked graphene trilayer, while the top and bottom vdW
layers are still SLG. Meanwhile, the (2 + 1 + 2)-DTMLG has
bilayer graphene (BLG) as its top and bottom vdW layers,
and the middle vdW layer is SLG. Very interestingly, our
previous works have illustrated that the DTMLGs have fas-
cinating moiré band structures as well [70,71]. For example,
the (1 + 3 + 1)-DTMLG has fourfold degenerate flat bands
(for the single valley and single spin), twice as much as
that in TBG, at the magic angle θ ≈ 1.05◦ [71]. And the

(2 + 1 + 2)-DTMLG has a pair of moiré flat bands at the
magic angle θ = 1.54◦, coexisting with two parabolic bands
near E f [70]. Note that the DTMLG is actually a large family
of moiré heterostructures since various kinds of multilayer
graphene can be chosen as its vdW layers.

In this work, we consider a special kind of DTMLG, i.e.,
DTMLGs with mirror symmetry Mz (see Fig. 1), where the
(1 + 3 + 1)-DTMLG and (2 + 1 + 2)-DTMLG are the two
simplest examples. We show that, like the ATTLG, there is
also a mirror symmetry decomposition (MSD) in such kind
of DTMLG, by which the DTMLG can be exactly mapped
into two subsystems with opposite parity. Depending on their
stacking configuration, the two subsystems are either a twisted
multilayer graphene (single twist) or a multilayer graphene
(no twist).

For a general (X + Y + Z)-DTMLG, to satisfy the mirror
symmetry Mz, there are several apparent requirements: (1)
X = Z , the thickness of the top and bottom vdW layers must
be the same. (2) The total number of graphene layers, i.e.,
X + Y + Z , should be an odd number, which means that Y
has to be odd. (3) The middle vdW layer should intrinsically
have mirror symmetry. The (1 + 3 + 1)-DTMLG is a typical
example with X = Z = 1 and Y = 3, where the middle vdW
layer, i.e., a Bernal-stacked (ABA-stacked) graphene trilayer,
is mirror symmetric relative to the middle SLG. The middle
SLG of the DTMLG here is always the reflection plane of the
Mz symmetry (see Fig. 1). Our study indicates that, depending
on whether the middle vdW layer is SLG (i.e., Y = 1) or not,
the MSD can be classified into two categories:

(1) When Y = 1, the DTMLG can be decoupled into a
(1 + X )-type twisted multilayer graphene with a magic angle
θ = √

2 × 1.05◦ ≈ 1.54◦ (even parity) and an X -layer multi-
layer graphene (odd parity). The (2 + 1 + 2)-DTMLG is an
example of this case.

(2) When Y > 1 (Y need be odd in this case), the DTMLG
can be decoupled into a (X + Y +1

2 )-type twisted multilayer
graphene (even parity) and a (X + Y −1

2 )-type twisted mul-
tilayer graphene (odd parity). For the two subsystems, the
magic angles are both 1.05◦, which means there are fourfold
degenerate flat bands at the magic angle. The (1 + 3 + 1)-
DTMLG is an example of this situation.

Here, the (1 + X )-type twisted multilayer graphene means
an SLG and an X -layer multilayer graphene system are
stacked with a twist angle (single twist). The (X + Y ±1

2 )-type
twisted multilayer graphene is defined in the same way, where
Y ±1

2 is the total number of the layers of the top vdW layer.
The MSD above is the central result of this work, which is
summarized in Fig. 2. It is worth mentioning that in principle
Y = 2 could also respect mirror symmetry, i.e., AA-stacked
bilayer graphene. But, compared to the SLG and ABA tri-
layer graphene, the AA bilayer graphene is highly unstable
in reality. Therefore, it is extremely hard to realize a moiré
heterostructure with an AA bilayer in an experiment based on
contemporary technique. So, in the main text, we only focus
on the experimentally feasible cases, and the cases with AA
stacking (e.g., A-AAA-A and AA-A-AA DTMLG) are given
in the Appendixes. Note that the rules summarized in Fig. 2
are not valid for AA stacking. In other words, Y should be
odd, as indicated above.
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FIG. 2. Classification of the mirror symmetry decomposition
(MSD) for a general (X + Y + Z)-DTMLG.

Such decomposition will give us several important insights
into the essential features of the DTMLGs with mirror sym-
metry: (1) All the intriguing features of the moiré bands of
DTMLG, such as the different magic angles (1.54◦ or 1.05◦)
and fourfold degenerate flat bands, can be clearly interpreted
by this decomposition. (2) The parity becomes a new discrete
degree of freedom of the electrons in DTMLG, and we can
define parity-resolved Chern numbers for the moiré flat bands.
(3) Such exact mapping strongly implies that the exotic cor-
relation phases observed in twist multilayer graphene (single
twist) or multilayer graphene all can exist in the DTMLG
systems. (4) Due to the mirror symmetry, the vertical elec-
tric field E⊥ acts merely as hybridization terms between the
two subsystems and is not directly applied to the subsystems
themselves. It thus indicates that E⊥ will affect the correlation
states of the subsystems in a rather different way.

The paper is organized as follows. In Sec. II, we first
introduce the general continuum Hamiltonian of the DTMLG.
Then, we use the (2 + 1 + 2)-DTMLG and (1 + 3 + 1)-
DTMLG as examples to illustrate the ideas of the MSD in
Secs. III and IV, respectively. Then, we derive the decompo-
sition formulas for a general DTMLG in Sec. V. Finally, a
short summary is given in Sec. VI.

II. CONTINUUM HAMILTONIAN OF DTMLG

Based on the continuum model method [77–80], the
Hamiltonian of a general (X + Y + Z)-DTMLG for one val-
ley and one spin is

HX+Y +Z =
⎛⎝HX (k1) T †

XY (r) 0
TXY (r) HY (k2) T †

Y Z (r)
0 TY Z (r) HZ (k3)

⎞⎠, (1)

where the HX,Y,Z are the Hamiltonian of the bottom, mid-
dle, and top vdW layers, i.e., the Hamiltonian of multilayer
graphene [70,71,81]. The Brillouin zone of the DTMLG is
given in Fig. 1, and θXY = −θY Z = θ is the twist angle.

TXY (TY Z ) describes the moiré hopping between the bottom
and middle (middle and top) vdW layers:

TXY =
∑

n=0,1,2

T n
XY eiqnr, (2)

where qn = 2kD sin( θ
2 ) exp(i 2nπ

3 ). kD = 4π
3a0

is the magnitude
of the BZ corner wave vector of a single vdW layer, where

a0 = 2.46 Å is the graphene lattice constant,

T n
XY = IXY ⊗

(
ωAA ωABeiφn

ωABe−iφn ωAA

)
. (3)

Here, IXY is a matrix with only one nonzero matrix element.
Other parameters are φn = sign(θXY ) 2nπ

3 , ωAA = 0.0797 eV,
ωAB = 0.0975 eV. TY Z is given similarly.

III. MSD OF (2 + 1 + 2)-DTMLG

Here, we consider the (2 + 1 + 2)-DTMLG as the first
example [70], which is shown in Figs. 1(a) and 1(c). To satisfy
the mirror symmetry, the (2 + 1 + 2)-DTMLG here refers to
a (BA-A-AB)-type structure [see Fig. 1(c)], where the moiré
interfaces are aligned before twisting. We can see that the
middle vdW layer is just SLG, which is also the reflection
plane of the mirror symmetry Mz.

According to Eq. (1), the explicit form of the Hamiltonian
of the (2 + 1 + 2)-DTMLG is

H0 =

⎛⎜⎜⎜⎜⎜⎝
H1 T †

1,2 0 0 0
T1,2 H2 T̃ †

2,3 0 0
0 T̃2,3 H3 T̃ †

3,4 0
0 0 T̃3,4 H4 T †

4,5
0 0 0 T4,5 H5

⎞⎟⎟⎟⎟⎟⎠. (4)

Here, we use the Bloch waves of each SLG {|Ai〉, |Bi〉 } as
the basis, where |Ai〉 is the Bloch wave of the A sublattice of
the ith graphene layer. Hi(�k) = −vF [R(θi )(�k − �Kξ

i )] · �σ is the
Hamiltonian of the ith graphene layer, and R(θ ) is the rotation
matrix. Since the bottom (top) vdW layer is a BA-type (AB-
type) BLG [see Fig. 1(c)], T1,2 denotes the interlayer hopping
between the first and second graphene layers (AB stacked, no
twist)

T1,2 =
(

0 t⊥
0 0

)
, (5)

and T4,5 = T †
1,2. T̃2,3 is the moiré interlayer hopping,

T̃2,3 =
∑

n=0,1,2

(
ωAA ωABeiφn

ωABe−iφn ωAA

)
eiqn·r, (6)

which depends on the twist angle θ . T̃3,4 is given in a similar
way. Here, we only consider the nearest-neighbor interlayer
hopping and do not include the remote hopping terms for
simplicity. Since the remote hopping does not break the mirror
symmetry of the crystal structure, it will not affect the MSD
here. But, it will slightly change the shape (and the valley
Chern number) of the energy bands [8,13].

The idea of MSD in DTMLG is quite like that in the AT-
TLG [29,30,34] as well as the ABA-stacked trilayer graphene
[82,83]. Namely, we build a different basis that satisfies mirror
symmetry. Based on this different basis, the Hamiltonian (4)
can be decoupled into two subsystems with opposite parity.
Because the middle graphene layer is the mirror reflection
plane, we see that the first (second) and the fifth (fourth)
graphene layers are exactly aligned, as shown in Fig. 1(c).
Thus, a natural choice is {|A1,5,+〉, |B1,5,+〉, |A2,4,+〉,
|B2,4,+〉, |A3〉, |B3〉, |A2,4,−〉, |B2,4,−〉, |A1,5,−〉, |B1,5,−〉},
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where

|A1,5,+〉 = 1√
2

(|A1〉 + |A5〉),

|A1,5,−〉 = 1√
2

(|A1〉 − |A5〉). (7)

Here, |A1,5,±〉 are the two parity-resolved basis functions
coming from the A sublattice of the first and fifth graphene
layers, where + (−) denotes the even (odd) parity. And,
|B1,5,±〉 are for the B sublattice accordingly. Meanwhile,
|A2,4,±〉 and |B2,4,±〉 correspond to the second and fourth
graphene layers, which are defined in the same way. This
parity-resolved basis gives rise to a unitary transformation,

U = 1√
2

⎛⎜⎜⎜⎜⎝
I 0 0 0 I
0 I 0 I 0
0 0

√
2I 0 0

0 I 0 −I 0
I 0 0 0 −I

⎞⎟⎟⎟⎟⎠, (8)

where I is a 2 × 2 identity matrix. Under this transformation,
Hmirr = U −1H0U , where

Hmirr =
⎛⎝HTMBG 0

0 HBLG

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎝
H1 T †

1,2 0 0 0
T1,2 H2

√
2T̃ †

2,3 0 0
0

√
2T̃2,3 H3 0 0

0 0 0 H2 T1,2

0 0 0 T †
1,2 H1

⎞⎟⎟⎟⎟⎟⎠. (9)

We see that Hmirr is decoupled into two subsystems: HTMBG

and HBLG. Importantly, HTMBG is exactly equivalent to the
Hamiltonian of TMBG [8,11,12,22,84–87], except that the
moiré interlayer hopping is multiplied by a factor of

√
2, i.e.,√

2T̃2,3. HBLG is precisely equal to the Hamiltonian of a BLG.
Meanwhile, according to the parity-resolved basis, HTMBG is
of even parity, while the HBLG belongs to odd parity.

Such decomposition clearly interprets the moiré band
structure of the (2 + 1 + 2)-DTMLG. It is known that a
TMBG has a pair of flat bands at the magic angle 1.05◦,
gapped from other high-energy bands [8]. However, in HTMBG

above, because the factor
√

2 in moiré interlayer hopping, it is
expected that the magic angle now should be

√
2 × 1.05◦ ≈

1.54◦ like that in ATTLG [29,30]. Meanwhile, due to the
HBLG, we also expect that there should be a pair of parabolic
bands like that in BLG touching at the Ktb point. Then, we
plot the energy bands of Hmirr in Figs. 3(a) and 3(b), which
is consistent with our former numerical results [70]. The blue
(red) solid lines represent the even-parity (odd-parity) bands.
In Fig. 3(b), we do find a perfect flat band (even parity) coex-
isting with a pair of parabolic bands (odd parity) at θ = 1.54◦,
which coincides well with the MSD above.

The MSD also indicates that the electrons here now have
three discrete degrees of freedom, i.e., spin, valley, and parity
(even or odd). It thus becomes possible to define a parity-
dependent Chern number for the flat bands. As shown in
Fig. 3(b), the two flat bands near E f come from an equivalent
TMBG, i.e., HTMBG, which are of even parity. Meanwhile,

E 
(e

V
)

E 
(m

eV
)

E 
(e

V
)

E 
(e

V
)

FIG. 3. Band structure of the (2 + 1 + 2)-DTMLG with mirror
symmetry. (a) For θ = 2.65◦; (b) for θ = 1.54◦; (c) and (d) are
enlarged views of the flat bands in (a) and (b), respectively. Blue
(red) solid lines represent the band structure of TMBG (BLG), and
the black numbers indicate the Chern numbers for the energy bands.

the two parabolic bands are of odd parity. So, though the flat
bands and the parabolic bands degenerate at the Ktb point, we
can study their topological features separately. It is known that
a TMBG has two topological flat bands, each of which has a
nonzero valley Chern number [8]. And, different from TBG,
the two flat bands in TMBG are not degenerate at the Dirac
points, due to the lack of C2T symmetry. All these unique
features of the flat bands are reserved in the (2 + 1 + 2)-
DTMLG because of the exact mapping between HTMBG and
a real TMBG. Figures 3(c) and 3(d) are the enlarged view of
the flat bands in Figs. 3(a) and 3(b), respectively. Although
the magic angle now is larger, the two flat bands have nonzero
valley Chern numbers, namely, that of the upper (lower) flat
band is 1 (−2), which are the same as that in a real TMBG at
the magic angle 1.05◦ [8]. As for the HBLG, we can exclusively
calculate the Berry curvature of the parabolic bands, which is
the same as that of the BLG.

Now, we discuss the influence of the perpendicular electric
field E⊥. Since that E⊥ does not commute with Mz, it does not
directly act on HTMBG and HBLG but works as the hybridization
terms between the two subsystems [34]. In the parity-resolved
basis, the Hamiltonian of E⊥ is

HV =
(

0 D
D† 0

)
, (10)

D =
⎛⎝ 0 2V I

V I 0
0 0

⎞⎠, (11)

where D is the hybridization matrix, V is the potential dif-
ference between adjacent layers, and I is a 2 × 2 identity
matrix. Here, we assume that the E⊥ induced potential will be
uniformly distributed among the graphene layers. Clearly, HV

indicates that the E⊥ has different ways to couple with a real
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FIG. 4. Band structures of the (2 + 1 + 2)-DTMLG at θ = 1.54◦

in the presence of E⊥ or lateral shift. (a) V = 4 meV. (b) V =
15 meV. (c), (d) The enlarged view of the flat bands in (a) and (b),
respectively. (e), (f) Show the energy bands of the HBA+A+CA after
sliding, where (e) V = 0 meV and (f) V = 15 meV.

TMBG and with the subsystem HTMBG, though they have the
same Hamiltonian in form. In a real TMBG, E⊥ will shift the
energy of the states at Km and Ktb towards opposite directions,
separate the two flat bands, and change their valley Chern
number [8]. However, in the (2 + 1 + 2)-DTMLG here, E⊥
merely works as the hybridization between the two subsys-
tems and thus has a completely different influence. First of
all, due to E⊥, the parity is no longer a good quantum number
now. In Figs. 4(a) and 4(b), we plot the moiré bands of the
(2 + 1 + 2)-DTMLG in the presence of E⊥. We see that, once
an E⊥ is applied, the degeneracy of the parabolic bands at Ktb

point is broken immediately, and the central two flat bands are
isolated from other bands by an obvious gap. Meanwhile, E⊥
will induce a hybridization between the flat bands and other
odd-parity bands, which changes their Chern numbers at once.
We zoom on the flat bands in Figs. 4(c) and 4(d), which show
that the Chern number of the lower flat band is changed from
−2 to 0. It should be noted that E⊥ has little effect on the states
near the Km point. The gap between the two flat bands at Km

is still very tiny, even if a large E⊥ is applied. Another distinct
feature is that the effects of E⊥ are irrelative to the direction of
E⊥ because of the mirror symmetry of (2 + 1 + 2)-DTMLG.
It is different from the case of TMLG, where the top SLG and
bottom BLG are asymmetric [8].

The lateral shift of the moiré interface plays an important
role in the ATTLG and DTMLG systems, which not only
breaks the mirror symmetry but also significantly modifies the
band structures [32,35]. So far, accurate control of the lateral
shift in moiré heterostructure is still impossible. Here, the
MSD above also can give some insight into the lateral shift.
As shown in Fig. 1, we always assume that the graphene layers
of a moiré interface are aligned when θ = 0. For example,
the (2 + 1 + 2)-DTMLG above has a (BA + A + AB)-type
configuration. If the top vdW layer is shifted, we then get a
(BA + A + CA)-DTMLG. To get the Hamiltonian of (BA +
A + CA)-DTMLG, we only need to replace the T̃34 in Eq. (4)
by T̃ ′

34 accordingly,

T̃ ′†
34 =

∑
n=0,1,2

(
ωAA ωABeiφn

ωABe−iφn ωAA

)
ei(qn·r+φn ). (12)

With the same unitary transformation, we get HBA+A+CA =
Hmirr + Hshift, where all the effects of lateral shift are attributed
to Hshift:

Hshift =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 −T̃ ′† 0 0
0 −T̃ ′ 0 T̃ ′ 0
0 0 T̃ ′† 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠. (13)

Here, T̃ ′ =
√

2
2 (T̃2,3 − T̃ ′†

3,4). In the mirror symmetric (BA +
A + AB) configuration, T̃2,3 = T̃ †

3,4 and thus T̃ ′ = 0. But for

the (BA + A + CA) configuration after sliding, T̃2,3 
= T̃ ′†
3,4,

so that T̃ ′ becomes nonzero. In fact, the T̃ ′ represents the
effects of lateral shift. It not only appears in the hybridization
terms to break the mirror symmetry, but also occurs in the
even-parity block. Therefore, the influence of lateral shift is
more complicated than that of the E⊥. In Fig. 4(e), we plot
the band structure of the (BA + A + CA) configuration after
sliding. We see that the two flat bands and two parabolic bands
are heavily hybridized, but we still can get a large DOS at E f .
Meanwhile, the central four bands near E f are isolated from
other high-energy bands, and their total valley Chern number
is −5. Very interestingly, when we apply a proper electric
field E⊥ (3 meV < V < 65 meV) on the (BA + A + CA)
configuration, we eventually get a pair of flat bands isolated
from other bands with nonzero valley Chern number, quite
like that in the (BA + A + AB) configuration [see Fig. 4(f)].

IV. MSD OF (1 + 3 + 1)-DTMLG

Then, we discuss the case of (1 + 3 + 1)-DTMLG [71].
Compared with the (2 + 1 + 2)-DTMLG above, the middle
vdW layer now becomes Bernal-stacked trilayer graphene, but
the middle SLG is still a mirror reflection plane (see Fig. 1).

Based on Eq. (1), The Hamiltonian of (1 + 3 + 1)-
DTMLG is

H0 =

⎛⎜⎜⎜⎜⎜⎝
H1 T̃ †

12 0 0 0
T̃12 H2 T †

23 0 0
0 T23 H3 T †

34 0
0 0 T34 H4 T̃ †

45
0 0 0 T̃45 H5

⎞⎟⎟⎟⎟⎟⎠. (14)
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Note that the moiré interlayer hopping now is T̃1,2 (T̃4,5),
which exists between the first (fourth) and second (fifth)
graphene layers.

Since the middle graphene layer is still the mirror reflection
plane, we can still use the parity-resolved basis in the last
section to do the MSD. After the unitary transformation, we
get

Hmirr =
⎛⎝H ′

TMBG 0

0 HTBG

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎝
H1 T̃ †

1,2 0 0 0
T̃1,2 H2

√
2T †

2,3 0 0
0

√
2T2,3 H3 0 0

0 0 0 H2 T̃1,2

0 0 0 T̃ †
1,2 H1

⎞⎟⎟⎟⎟⎟⎠. (15)

Here, we see that the (1 + 3 + 1)-DTMLG is mapped into two
subsystems: an equivalent TMBG H ′

TMBG (even parity) and an
equivalent TBG HTBG (odd parity). The two subsystems here
are different from that of the (2 + 1 + 2)-DTMLG. First, the
even-parity part H ′

TMBG in Eq. (15) here is distinct from the
HTMBG in Eq. (9). It is because the

√
2 factor is now at the in-

terlayer hopping without twist, instead of the moiré interlayer
hopping like in Eq. (9). Therefore, in (2 + 1 + 2)-DTMLG,
the magic angle of the subsystem HTMBG is

√
2 × 1.05◦, but

the magic angle of the H ′
TMBG in the (1 + 3 + 1)-DTMLG

is still 1.05◦. Further numerical calculations show that the
enlarged term

√
2T2,3 has little influence on the bands near E f .

Second, the odd-parity block HTBG now has a moiré interface
and becomes an equivalent TBG, which thus will also give
rise to a pair of flat bands at the magic angle 1.05◦. So, in
(1 + 3 + 1)-DTMLG, we get two pairs of flat bands at the
magic angle 1.05◦, where one pair is of even parity and the
other is of odd parity. The MSD here gives a clear interpre-
tation of the fourfold degenerate flat bands first reported in
our previous work [71]. Interestingly, the AT-NLG also can be
decoupled into several copies of TBGs, but their magic angles
are different [29,34]. In that case, we cannot get two pairs of
flat bands at the same time [66,67].

In Figs. 5(a) and 5(b), we plot the energy bands of the
(1 + 3 + 1)-DTMLG at two different twisted angles, where
blue (red) lines represent the even-parity (odd-parity) bands
from H ′

TMBG (HTBG). At 1.05◦, we do observe the fourfold
degenerate flat bands [see Fig. 5(b)]. Similar to the (2 + 1 +
2)-DTMLG, we can also define a parity-dependent valley
Chern number for the fourfold flat bands. In Figs. 5(c) and
5(d), we zoom in on the flat bands. As we expected, the two
flat bands from H ′

TMBG (blue lines) have tiny gaps at the Km

and Ktb points, which is the typical feature of the flat bands
in TMBG [8]. Meanwhile, such two flat bands have a nonzero
valley Chern number as well, which is also the same as that in
TMBG. As for the two flat bands from HTBG (red lines), they
are topological trivial and degenerate at the Km and Kt p points,
which is the same as that in TBG.

In the parity-resolved basis, the Hamiltonian of E⊥, i.e.,
HV , has the same form as that of the (2 + 1 + 2)-DTMLG
[see Eq. (10)]. E⊥ breaks the mirror symmetry and acts as
hybridization terms between the even- and odd-parity blocks,

E 
(e

V
)

E 
(e

V
)

E 
(e

V
)

E 
(m

eV
)

FIG. 5. Band structures of the (1 + 3 + 1)-DTMLG with mirror
symmetry. (a) θ = 2.0◦, (b) θ = 1.05◦. (c), (d) The enlarged view
of the flat bands in (a) and (b), respectively. Blue (red) solid lines
represent the band structure of TMBG (BLG), and the black numbers
indicate the Chern numbers for the energy bands.

which is similar to that in (2 + 1 + 2)-DTMLG. In Figs. 6(a)
and 6(b), we plot the moiré bands of the (1 + 3 + 1)-DTMLG
at 1.05◦ with V = 4 meV and V = 10 meV, respectively. And
we zoom in on flat bands in Figs. 6(c) and 6(d). Although the
(1 + 3 + 1)-DTMLG is decoupled into an equivalent TMBG
and an equivalent TBG, the influence of the E⊥ is rather dif-
ferent from that in real TMBG and TBG. First, as mentioned
above, parity is no longer a good quantum number once E⊥
is applied. Meanwhile, the hybridization breaks the flat-band
degeneracy of the HTBG at the Ktb point. In contrast, in a real
TBG, we know that an electric field cannot lift the degeneracy
of flat bands at the Dirac points. Due to the mirror symmetry,
the moiré bands in the (1 + 3 + 1)-DTMLG are unrelated to
the direction of E⊥ as well, i.e., ±V give rise to the same
moiré band structures. Furthermore, E⊥ also can change the
Chern number of the flat bands, as shown in Figs. 6(c) and
6(d). Figures 6(b) and 6(d) further indicate that, when V is
large enough, the outermost two flat bands will overlap with
the high-energy bands in energy.

We then discuss the effects of the lateral shift. Here, with
a lateral shift, we get an (A + ABA + C) configuration, in
which the top vdW layer is shifted. In the parity-resolved
basis, the effects of the lateral shift can be attributed to a shift
term Hshift:

Hshift = 1√
2

×

⎛⎜⎜⎜⎜⎝
0 −T̃ ′† 0 T̃ ′† 0

−T̃ ′ 0 0 0 T̃ ′
0 0 0 0 0
T̃ ′ 0 0 0 −T̃ ′

0 T̃ ′† 0 −T̃ ′† 0

⎞⎟⎟⎟⎟⎠, (16)

where HA+ABA+C = Hmirr + Hshift and Hmirr is the Hamilto-
nian of the (A + ABA + A) configuration. From Hshift, we see
that the lateral shift will not only give rise to hybridization
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FIG. 6. Band structures of the (1 + 3 + 1)-DTMLG at θ = 1.05◦

in the presence of E⊥ or lateral shift. (a) V = 4 meV, (b) V =
10 meV. (c), (d) The enlarged view of the flat bands in (a) and (b),
respectively. (e), (f) Show the energy bands of the HA+ABA+C after
sliding, where (e) V = 0 meV and (f) V = 4 meV.

between the even- and odd-parity blocks but also have direct
effects on the two subsystems. In Figs. 6(e) and 6(f), we
plot the moiré bands of the (A + ABA + C)-DTMLG at the
magic angle, with V = 0 and 4 meV, respectively. Although
the high-energy bands are changed, we still get four nearly
degenerate flat bands and E⊥ also can lift the degenerate of
the four flat bands.

V. MSD OF A GENERAL DTMLG

Similar to the two examples above, we actually can give
a simple decomposition scheme for a general DTMLG with
mirror symmetry. As mentioned above, we consider a general
(X + Y + X )-DTMLG with mirror symmetry. For conve-
nience, we first rewrite the Hamiltonian of Eq. (1),

H0 =
⎛⎝Hdown T †

dm 0
Tdm HN T †

um
0 Tum Hup

⎞⎠. (17)

Here, we define N = X + Y +1
2 , so that the middle SLG, i.e.,

the mirror reflection plane, is just the N th graphene layer from
bottom to top. HN here is the Hamiltonian of the middle SLG.
Why we treat the middle SLG individually here is to facilitate
constructing a proper basis. Then, all the graphene layers
above (below) the middle graphene layer are described by Hup

(Hdown), which is a (2X + Y − 1) × (2X + Y − 1) matrix. Tum

(Tdm) denote the hybridization between Hup (Hdown) and HN .
Considering the position of the moiré interlayer hopping,

there are two different cases depending on whether Y = 1 or
not. Y = 1 means that the middle vdW layer is just an SLG,
where the (2 + 1 + 2)-DTMLG is the simplest example. In
this situation, the moiré interlayer hopping is in Tum and Tdm,
where

Tdm = (0 . . . 0 T̃N,N−1), (18)

T †
um = (T̃ †

N,N+1 0 . . . 0) (19)

and

Hdown =

⎛⎜⎜⎜⎝
H1 T †

1,2 · · · 0

T1,2 H2 · · · ...
...

. . .
. . .

...

0 · · · TN−2,N−1 HN−1

⎞⎟⎟⎟⎠, (20)

Hup =

⎛⎜⎜⎜⎝
HN+1 T †

N+1,N+2 · · · 0
...

. . .
. . .

...
... · · · HL−1 T †

L−1,L
0 · · · TL−1,L HL

⎞⎟⎟⎟⎠. (21)

For convenience, we define L = 2X + Y as the total layer
number of the DTMLG. When Y > 1, e.g., (1 + 3 + 1)-
DTMLG, the moiré interlayer hopping is in Hup and Hdown.
So, we have

Tdm = (0 . . . 0 TN,N−1), (22)

T †
um = (T †

N,N+1 0 . . . 0) (23)

and now

Hdown =

⎛⎜⎜⎜⎜⎜⎜⎝
H1 T †

1,2 · · · · · · 0
...

. . .
. . .

. . .
...

... TX−1,X HX T̃ †
X,X+1

...
...

. . .
. . .

. . .
...

0 · · · · · · TN−2,N−1 HN−1

⎞⎟⎟⎟⎟⎟⎟⎠, (24)

Hup =

⎛⎜⎜⎜⎜⎜⎜⎝
HN+1 T †

N+1,N+2 · · · · · · 0
...

. . .
. . .

. . .
...

... TX+Y −1,X+Y HX+Y T̃ †
X+Y,X+Y +1

...
...

. . .
. . .

. . .
...

0 · · · · · · TL−1,L HL

⎞⎟⎟⎟⎟⎟⎟⎠.

(25)

The moiré interlayer hoppings now are the terms T̃X,X+1 and
T̃X+Y,X+Y +1. The two cases above will give different results
after the MSD.

Then, we can construct a set of parity-resolved bases:

|Ai,L+1−i,+〉 = 1√
2

(|Ai〉 + |AL+1−i〉),

|Ai,L+1−i,−〉 = 1√
2

(|Ai〉 − |AL+1−i〉),

|AN ,+〉 = |AN 〉,
|BN ,+〉 = |BN 〉, (26)
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where i ∈ {1, 2, . . . , N − 1} and ± denote the parity. For
example, when i = 1, we get |A1,L,+〉 = 1√

2
(|A1〉 + |AL〉),

which is obviously of even parity considering the mir-
ror symmetry. Similarly, the wave function |A1,L,−〉 is of
odd parity. |AN ,+〉 and |BN ,+〉 are the wave functions
of the middle graphene layer, which should be of even
parity. With the definitions above, we get a set of parity-
resolved bases, i.e., {|+〉, |−〉}, where the even-parity basis
is |+〉 = {|A1,L,+〉, |B1,L,+〉, |A2,L−1,+〉, |B2,L−1,+〉, . . . ,
|AN−1,N+1,+〉, |BN−1,N+1,+〉, |AN ,+〉, |BN ,+〉} and the odd-
parity basis is |−〉 = {|AN−1,N+1,−〉, |BN−1,N+1,−〉, . . . ,
|A2,L−1,−〉, |B2,L−1,−〉, |A1,L,−〉, |B1,L,−〉}.

In such basis, the H0 in Eq. (17) can be decoupled by a
unitary transformation

Hmirr = U −1H0U =
(

H+ 0
0 H−

)
. (27)

The H+ (H−) is the even- (odd-) parity block

H+ =
(

Hdown

√
2T †

dm√
2Tdm HN

)
,

H− = Hup, (28)

The detailed derivation is given in the Appendix. Note that,
though the Hdown and Hup in Hmirr above have the same form
as that in Eqs. (20), (21), (24), and (25), they correspond to
the parity-resolved basis, instead of the original Bloch wave
basis. Now, we see that the DTMLG with mirror symmetry
can always be decoupled into two subsystems with opposite
parity, i.e., H+ and H−. As mentioned above, depending on
whether the middle vdW layer is an SLG or not, there are
two distinct situations in which the H+ and H− correspond
to different concrete systems. The reason is where the moiré
interlayer hopping is.

When Y = 1, the moiré interlayer hopping is in Tdm and
Tum, as shown in Eqs. (18) and (19). So, H− = Hup does not
have moiré interlayer hopping [see Eq. (21)]. Namely, H−
is just an equivalent multilayer graphene system, which has
the same stacking order as the top vdW layer. For example,
in (2 + 1 + 2)-DTMLG, H− is just a bilayer graphene (AB
stacking). Meanwhile, from Eqs. (28), (18), and (19), we can
see that H+ now describes a (1 + X )-type twisted multilayer
graphene (single twist) [9,18,81,88] with a

√
2 scaled moiré

interlayer hopping. It implies that H+ should have a pair of
flat bands at the magic angle

√
2 × 1.05◦. This is also in accor-

dance with the (2 + 1 + 2)-DTMLG where H+ is equivalent
to a TMBG with a

√
2 × 1.05◦ magic angle.

When Y > 1, the moiré interlayer hopping is in Hdown and
Hup, as shown in Eqs. (24) and (25). Thus, H− = Hup now cor-
respond to a (X + Y −1

2 )-type twisted multilayer graphene [see
Eq. (25) and definition of Hup]. An example is the (1 + 3 + 1)-
DTMLG with Y = 3 and X = 1. In this example, H− is equal
to a TBG, i.e., (1 + 1) type, which coincides with the general
decomposition formula above. Then, we discuss H+. From
Eqs. (28), (22), and (23), we see that the hopping between HN

and Hdown is a normal interlayer hopping between graphene
layers, instead of the moiré one. It implies that H+ now
describes a (X + Y +1

2 )-type twisted multilayer graphene with
a single-twist angle. In the example of (1 + 3 + 1)-DTMLG,
H+ thus becomes a TMBG, i.e., (1 + 2) type. Here, since the

√
2 factor is not at the moiré interlayer hopping, both H−

and H+ should have a pair of flat bands at the magic angle
1.05◦. Because the moiré band structures of twisted multilayer
graphene are known [9,18,81,88], the band structure of such
DTMLG with mirror symmetry can be well understood from
the MSD, namely, from the behaviors of H+ and H−.

With parity-resolved basis, the perpendicular electric field
can be described as hybridization terms between H+ and H−
since it breaks the mirror symmetry. The Hamiltonian of E⊥
is

HV =
(

0 D
D† 0

)
, (29)

where H = Hmirr + HV . D is now a (2X + Y + 1) × (2X +
Y − 1) matrix

D =
(

�

0

)
(30)

and � is a (X + Y −1
2 ) × (X + Y −1

2 ) block matrix, where each
block �i, j = V (N − i)Iδi,N− j is 2 × 2 matrix. As defined be-
fore, V is the potential difference between adjacent graphene
layers. Clearly, the HV indicates that E⊥ will not directly act
on the H+ and H−, but works as the hybridization between H+
and H−.

In short, according to the discussions above, the MSD can
be summarized in a schematic in Fig. 2.

VI. SUMMARY

We theoretically reveal that a general (X + Y + Z)-
DTMLG with mirror symmetry can be exactly decoupled into
two subsystems, i.e., H+ and H−, with opposite parity, by con-
structing a parity-resolved basis. Such MSD can be classified
into two categories, depending on whether the middle vdW
layer is an SLG (Y = 1) or not.

When Y = 1, the DTMLG is mapped into a (1 + X )-type
twisted multilayer graphene (single twist, even parity) and
an X -layer graphene multilayer (no twist, odd parity). Since
the moiré interlayer hopping is scaled by a factor of

√
2, the

(1 + X )-twisted multilayer graphene has an enlarged magic
angle

√
2 × 1.05◦. The (2 + 1 + 2)-DTMLG is the simplest

example for this case, which can be decoupled into an equiv-
alent TMBG and an equivalent bilayer graphene. The MSD
can give a clear interpretation of the moiré band structure of
the (2 + 1 + 2)-DTMLG. For example, since the H+ is equal
to a TMBG, the (2 + 1 + 2)-DTMLG has a pair of topological
flat bands with nonzero valley Chern number, which is exactly
the same as the case of TMBG, but appears at a larger magic
angle.

When Y > 1, the DTMLG is mapped into two twisted
multilayer graphenes: a (X + Y +1

2 )-type (single twist, even
parity) and a (X + Y −1

2 )-type (single twist, odd parity). Here,
the moiré interlayer hopping does not have the

√
2 factor, so

the two subsystems both can give rise to a pair of flat bands
at the magic angle 1.05◦. In other words, we can get fourfold
degenerate flat bands in this case. The (1 + 3 + 1)-DTMLG is
the simplest example for this case, in which H+ is equal to a
TMBG, and H− is equal to a TBG. According to the MSD, we
can well understand the behaviors of the fourfold degenerate
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flat bands here. The two flat bands from TMBG are of even
parity and have nonzero valley Chern numbers. Meanwhile,
the two from the TBG are of odd parity and are topological
trivial [71].

The MSD indicates that the perpendicular electric field E⊥
will act as hybridization terms between H+ and H− since E⊥
breaks the mirror symmetry. In other words, E⊥ here has a
different way to couple with the DTMLG, distinct from the
single-twist moiré heterostructures.

Most importantly, the MSD implies that all the novel cor-
related states observed in the twisted multilayer graphene
systems (e.g., TBG [1–3,56], TMBG [22,84–87], twisted
double-bilayer graphene [17,89–92], etc.) as well as the multi-
layer graphene (e.g.. bilayer graphene [93–95]) can also exist
in the DTMLG system since their Hamiltonians are exactly
equivalent. It is quite like the case of ATTLG, which can be
decoupled into a TBG and SLG. Since the superconducting
state is observed in TBG, it is expected that the supercon-
ducting state should also exist in ATTLG, which is finally
confirmed in recent experiments. Thus, according to the MSD
above, we expect that similar to the TBG case, the super-
conducting state should exist in the (1 + 3 + 1)-DTMLG.
Meanwhile, due to the mirror symmetry, the parity (even
or odd) becomes a new discrete degree of freedom of the
electrons in the DTMLG, in addition to the spin and valley.
Thus, in principle, we may also expect that some new cor-
related states, which spontaneously break the parity degree
of freedom, can exist in the DTMLG systems. One possible
system is the (1 + 3 + 1)-DTFLG, where the parity-polarized
states may exist in the fourfold degenerate flat bands when the
Coulomb interaction is considered.

The MSD can give some further expectations about the
properties of the DTMGL system. The first one is the effect
of electron correlations. It is known that, due to the strong
influence of Coulomb interaction, the shape of flat bands
in magic-angle TBG [96–100] (as well as magic-angle AT-
TLG [50]) is very sensitive to the doping. In contrast, in
twisted double-bilayer graphene [101,102] (TMBG [103] and
twisted mono-trilayer graphene [103,104]), the influence of
the Coulomb interaction is strongly suppressed. So, for the
(1 + 3 + 1)-DTMLG, since its odd parity part is equivalent to
a TBG, the Coulomb interaction should significantly change
the flat bands when away from half-filling. Meanwhile, the
Coulomb interaction may have little effect on the even-parity
party (i.e., TMBG). We expect the situation to be similar in
other DTMLGs with mirror symmetry. The second one is the
electron-phonon coupling. Previous literature has shown that
the strength of the electron-phonon coupling is very large
in magic-angle TBG and magic-angle ATTLG, while it is
rather weak in TMBG and twisted double-bilayer graphene

[53,62,105]. A rather interesting question is whether similar
effects are also present in the DTMLG with mirror symmetry,
which deserves further efforts in the future.

Finally, it should be noted that mirror symmetry should ex-
ist in most double-twisted moiré systems (alternating twist), in
addition to the ones mentioned in this paper. For example, the
boron nitride(BN)/graphene/BN moiré structure has already
been realized in experiment [106–108] (mirror symmetry ex-
ists only when the relative orientation of the two BN layers is
0◦). On the one hand, mirror symmetry can be controlled by
the twist angle, which offers an intriguing way to manipulate
symmetry-related electronic properties. On the other hand, a
similar MSD may also exist in these systems [109,110], which
may be an interesting issue to be explored in further studies.

Note added. In this paper, our decomposition method de-
pends on mirror symmetry and gives an exact mapping. We
note that a chiral decomposition based on perturbation calcu-
lation is proposed in recent works [18,72], which is distinct
from our method.
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APPENDIX A: DERIVATION OF THE MSD
OF A GENERAL DTMLG

Here we derive the decoupled Hamiltonian in Eqs. (27) and
(28). We start from the Hamiltonian of a general (X + Y + Z)-
DTMLG with mirror symmetry as given in Eq. (17).

Considering the mirror symmetry, we use the parity-
resolved basis, as given in Eq. (26). The corresponding unitary
transformation is

U = 1√
2

⎛⎝E 0 γ

0
√

2I 0
γ 0 −E

⎞⎠. (A1)

Here E is a 2(N − 1) × 2(N − 1) identity matrix, and γ is a
2(N − 1) × 2(N − 1) matrix as

γ =

⎛⎜⎝0 · · · I
... I

...

I · · · 0

⎞⎟⎠. (A2)

So the general Hamiltonian after this unitary transformation is

Hmirr = U −1H0U = 1

2

⎛⎜⎜⎜⎝
Hdown + γ Hupγ

√
2(T †

dm + γ Tum) Hdownγ − γ Hup

√
2(Tdm + T †

umγ ) 2HN

√
2(Tdmγ − T †

um)

γ Hdown − Hupγ
√

2(γ T †
dm − Tum) γ Hdownγ + Hup

⎞⎟⎟⎟⎠. (A3)
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Now we need to use mirror symmetry, which implies

H1 = HL

H2 = HL−1

...

HN−1 = HN+1

T 1,2 = T †
L−1,L

T 2,3 = T †
L−2,1

...

T N−1,N = T †
N,N+1. (A4)

With the help of mirror symmetry, we also can verify Hdown =
γ Hupγ and T †

dm = γ Tum. From Eq. (A3), we finally get

Hmirr =
⎛⎝ Hdown

√
2T †

dm 0√
2Tdm HN 0
0 0 Hup

⎞⎠, (A5)

which is just Eq. (27) in the main text.

APPENDIX B: DERIVATION OF THE HV

Here we give a derivation of the influence of perpendicular
electric field E⊥ under parity-resolved basis, i.e., Eqs. (29) and
(30) in the main text. With the original Bloch wave basis {|Ai〉,
|Bi〉 }, the Hamiltonian of E⊥ is expressed as a block-diagonal
matrix

HV
0 = V I ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N − 1
N − 2

. . .

0
. . .

−(N − 2)
−(N − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B1)

where V is the potential difference between adjacent layers.
For convenience, we define a new block-diagonal matrix

χ = I ⊗

⎛⎜⎜⎜⎜⎝
N − 1

N − 2
· · ·

2
1

⎞⎟⎟⎟⎟⎠, (B2)

and then

HV
0 = V

⎛⎝χ 0 0
0 0 0
0 0 −γχγ

⎞⎠. (B3)

Under the parity-resolved basis, we have

HV = U −1HV
0 U = V

⎛⎝ 0 0 χγ

0 0 0
γχ 0 0

⎞⎠, (B4)

where the unitary matrix is given by Eq. (A1). We then define
� = V χγ , and finally we get

HV =
(

0 D
D† 0

)
, (B5)

where D is given in Eq. (30) of the main text.

APPENDIX C: MSD OF THE DTMLG BASED
ON A-A STACKING

1. MSD of the (A-AA-A)-DTMLG

Here we give the MSD of the (A-AA-A)-DTMLG. The
Hamiltonian of the (A-AA-A)-DTMLG based on Eq. (1)

under basis {|Ai〉, |Bi〉} (i = 1, 2, 3, 4) is

H0 =

⎛⎜⎜⎜⎝
H1 T̃ †

1,2 0 0

T̃1,2 H2 T
†
2,3 0

0 T 2,3 H3 T̃ †
3,4

0 0 T̃3,4 H4

⎞⎟⎟⎟⎠, (C1)

where the interlayer hopping between AA-stacked graphene
is denoted by

T 23 =
(

t⊥ 0
0 t⊥

)
. (C2)

The mirror symmetry in this system implies that

H1 = H4,

H2 = H3,

T̃1,2 = T̃ †
3,4,

(C3)

according to mirror symmetry, we can define a set of parity-
resolved bases similar to Eq. (7), and the corresponding
unitary transformation is

U = 1√
2

⎛⎜⎜⎝
I 0 0 I
0 I I 0
0 I −I 0
I 0 0 −I

⎞⎟⎟⎠. (C4)

The final result under this basis transformation is

Hmirr = U −1H0U

=

⎛⎜⎜⎝
H1 T̃ †

12 0 0
T̃12 H2 + T 23 0 0
0 0 H2 − T 23 T̃12

0 0 T̃ †
12 H1

⎞⎟⎟⎠. (C5)

195119-10



MIRROR SYMMETRY DECOMPOSITION IN … PHYSICAL REVIEW B 108, 195119 (2023)
E

 (e
V

)

E
 (e

V
)

FIG. 7. (a) The band structure of AA + A + AA structure at
1.54◦ and (b) is of A + AAA + A at 1.05◦.The blue solid line be-
longs to HA+AA (H ′

A+AA) and the red solid line belongs to HAA (HTBG)
corresponding to (a) [(b)]. For AA + A + AA systems the two flat
bands of BA + A + AB have been destroyed, and in A + AAA + A
systems the four flat bands of A + ABA + A become two, which
come from HTBG according to the parity-resolved Hamiltonian.

In principle, A-AA-A double-twisted tetralayer graphene is
decoupled into two subsystems. One (even parity) is TBG
with an additional T 23 term, which should be viewed as an
equivalent onsite potential. The other (odd parity) is the same,
but the onsite potential term now becomes −T 23.

2. MSD of the (AA + A + AA)-stacked graphene system

Here we give the mirror MSD of the (AA + A + AA)-
stacked graphene system. In the (2 + 1 + 2)-DTMLG, if the
Bernal stacking is changed to AA stacking, we will get (AA +
A + AA)-stacked graphene system. The total Hamiltonian
can be decoupled in the same way:

Hmirr =
⎛⎝HA+AA 0

0 HAA

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎝
H1 T

†
1,2 0 0 0

T 1,2 H2

√
2T̃ †

2,3 0 0
0

√
2T̃2,3 H3 0 0

0 0 0 H2 T 1,2

0 0 0 T
†
1,2 H1

⎞⎟⎟⎟⎟⎟⎠, (C6)

where the interlayer hopping between layer 1 (5) and layer 2
(4) is

T 12 =
(

t⊥ 0
0 t⊥

)
. (C7)

Here, HA+AA denotes a twisted trilayer system, which is com-
posed of an AA-stacked bilayer and an SLG. An additional√

2 factor appears at the moiré interlayer hopping terms.
Meanwhile, HAA represents AA-stacked bilayer graphene.

The band structures of such (AA + A + AA)-stacked
graphene system are shown in Fig. 7(a) at 1.54◦, where the
blue (red) lines represent the bands of HA+AA (HAA). Note that
there is no flat band in this system.

3. MSD of the (A + AAA + A)-stacked graphene system

With MSD, the decoupled Hamiltonian of the (A +
AAA + A)-stacked graphene system is

Hmirr =
⎛⎝H ′

A+AA 0

0 HTBG

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎝
H1 T̃ †

1,2 0 0 0

T̃1,2 H2

√
2T

†
2,3 0 0

0
√

2T 2,3 H3 0 0
0 0 0 H2 T̃1,2

0 0 0 T̃ †
1,2 H1

⎞⎟⎟⎟⎟⎟⎠. (C8)

In this case, the interlayer hopping between layers 2 and 3 is

T 23 =
(

t⊥ 0
0 t⊥

)
. (C9)

Here H ′
A+AAalso denotes a twisted trilayer system, which con-

sists of an AA-stacked bilayer graphene and an SLG. Now,
the

√
2 factor is associated with T 23. HTBG represents twisted

bilayer graphene.
The band structures of this (A + AAA + A)-stacked

graphene system are shown in Fig. 7(b) at 1.05◦, where the
blue (red) lines represent the bands of H ′

A+AA (HTBG). In this
case, we get two flat bands resulting from HTBG.
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