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The recent experimental observations of loop current in Sr2IrO4, YBa2Cu3O7, and Sr14Cu24O41 have inspired
a theoretical study that broadly redefines loop current as a manifestation of quantum liquid crystals. Using the
density-matrix renormalization group method, we investigate the emergence of spin loop-current (sLC) textures
in carrier-doped (i) excitonic insulators, (ii) orbital-selective Mott insulators, and (iii) two-dimensional Mott
insulators, modeled by a two-orbital Hubbard model on a ladder lattice in (i) and (ii) and a single-orbital Hubbard
model on a square lattice in (iii). Calculating the spatial distribution of spin current around a bond to which
a pinning field is applied, we find conditions for longer-ranged sLC correlations. In system (i), when using
the model parameters employed to describe the excitonic condensation, we find that a sLC texture appears
near half-filling, associated with an excitonic condensation in a spin channel. In system (ii), using typical sets
of model parameters for BaFe2Se3, we find that a sLC texture appears at electron fillings where a block-type
antiferromagnetism develops. In system (iii), introducing a next-nearest-neighbor hopping t ′ ∼ −0.25 (in units
of the nearest-neighbor hopping) suggested for high-Tc cuprates, we find that an axial-sLC texture emerges at
hole-carrier density δ = 0.125, where the charge stripe simultaneously appears.
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I. INTRODUCTION

Unexpected phenomena often emerge in quantum many-
body systems, and they are most pronounced when strong
quantum fluctuations are present in strongly correlated elec-
tron systems. According to Landau, many-body phases of
matter exhibit spontaneous symmetry breaking at low temper-
atures, and phase transitions are characterized by symmetry
changes. However, for example, quantum spin liquids do not
break any symmetry and hence they are not characterized by
any local order parameter, indicating the presence of quan-
tum phases beyond the description of Landau’s symmetry-
breaking theory. Furthermore, an intermediate state between
spontaneous symmetry-broken and symmetry-unbroken states
has been proposed as a quantum liquid crystal [1–6]. Namely,
a quantum liquid crystal is regarded as a quantum state with
partially broken spatial symmetry, and it can exhibit un-
conventional properties since the partial symmetry-breaking
order can interplay with other intrinsic orders such as super-
conducting and magnetic orders.

A quantum nematic state [7–12] is one of the most
well-known examples of quantum liquid crystals, but there
is another quantum liquid crystal with spontaneous loop
current. Although quantum states with loop current, also
called staggered-flux or orbital-antiferromagnetic states, have
a long history in the field of strongly correlated electron sys-
tems [13–17], they have attracted renewed interest in the past
decade. This is due to the recent discovery of a series of quan-
tum states with various charge loop-current (cLC) textures in

Sr2IrO4 [18,19], YBa2Cu3O7 [20,21], and Sr14Cu24O41 [22]
via the improved measurements of the Kerr effect, polarized
neutron scattering, magnetic torque, and second-harmonic
generation. Theoretically, cLC textures have been extensively
studied based on the Hubbard models [23–27] as a cLC
long-range order [28–30] or its fluctuation [31] suggested to
characterize the pseudogap phase in high-Tc cuprate super-
conductors. However, no numerical evidence of cLC textures
has been reported in single- and three-orbital Hubbard mod-
els [23–27]. It has been proposed that quantum states with
cLC textures can be present in a generalized Hubbard lad-
der [32–35] and spinless Hubbard model [36–38] if unrealistic
interactions for real materials are introduced.

The recent experimental observations described above
have encouraged further theoretical investigation of loop-
current textures from a different point of view. One such
viewpoint is to explore the possibility of quantum states with
spin current rather than charge current [39,40]. Due to the
difficulty of treating strongly correlated electron systems,
many theoretical studies rely on the mean-field or perturbation
theory. Here, instead, we address the question of whether
nonperturbative treatment can elucidate quantum states with
spin loop-current (sLC) textures in the Hubbard models.

For this purpose, we employ the density-matrix renormal-
ization group (DMRG) method to investigate the possibility
of quantum states with sLC in the Hubbard models. In partic-
ular, we consider three kinds of strongly correlated electron
systems in this paper: carrier-doped (i) excitonic insulators,
(ii) orbital-selective Mott insulators, and (iii) two-dimensional
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Mott insulators, modeled by a two-orbital Hubbard ladder
with a crystal field for (i) and (ii) and a single-orbital Hubbard
model on a square lattice for (iii). In the two-orbital model, we
introduce the Hund coupling and pair hopping in addition to
the Coulomb interaction. Calculating the spatial distribution
of spin current around a bond to which a pinning field is
applied, we examine whether there are cases in which sLC
correlations can be enhanced.

We find that such cases exist, i.e., sLC textures emerging
for each of these systems (i)–(iii). In system (i), the sLC cor-
relations are enhanced if we introduce interorbital hopping in
the model. This is consistent with a previous study of dynam-
ical mean-field theory [39]. System (ii) is known to exhibit
stripe- and block-type antiferromagnetic (AFM) phases [41],
which have been observed experimentally in BaFe2X3 (X =
Se, S) [42–44]. We find a quantum state with sLC textures
in the vicinity of the block-type AFM phase. In contrast to
system (i), the interorbital hopping is not relevant to gener-
ating sLC textures here. The carrier density where the sLC
correlations are significantly enhanced corresponds to that in a
generalized Kondo-Heisenberg model (GKHM) where vector
chirality order appears [45]. In system (iii), we find that the
sLC correlations are enhanced when we introduce an appro-
priate value of the next-nearest-neighbor hopping t ′. The sLC
textures found here emerge at hole density δ = 0.125, and
they coexist with charge stripes having a spatial modulation
period of 4.

Our findings clearly show that sLC textures can sponta-
neously emerge by introducing carriers and/or orbital degrees
of freedom to increase quantum fluctuations, which induce
quantum liquid crystallinity. Therefore, our approach, which
does not rely on the mean-field or perturbation theory, will
add another perspective to the study of quantum liquid
crystals.

The rest of this paper is organized as follows. We first
introduce the phenomenological theory of a quantum liquid
crystal with sLC textures in Sec. II. We then show the re-
sults of our DMRG study of two-orbital Hubbard ladders
in Sec. III. In Sec. III A, we numerically demonstrate that
sLC textures emerge in a carrier-doped excitonic insulator.
Here, the interorbital hopping and crystal field are necessary
for inducing the excitonic condensation with sLC textures.
In Sec. III B, we show that sLC textures arise in a carrier-
doped orbital-selective Mott insulator, where the introduction
of an appropriate carrier density and the different degree of
localization in the two orbitals are both necessary to achieve
sLC textures. Next, we show in Sec. IV the results on a
single-orbital Hubbard model on a square lattice, for which
the intermediate value of t ′ is necessary for sLC textures that
emerge at hole density δ = 0.125. In Sec. V, we summarize
this paper. In Appendix A, we supplement the explanation
of the pinning-field approach used in our DMRG study with
further numerical results. In Appendix B, we demonstrate
numerically that the spontaneous hybridization indeed occurs
in the carrier-doped two-orbital Hubbard model on a ladder
lattice, suggesting an excitonic condensation. In Appendix C,
we provide additional analysis on the spin current induced by
a pinning field, which exhibits power-law decay as a func-
tion of distance from the bond at which a pinning field is
applied.

II. QUANTUM LIQUID CRYSTAL WITH SPIN
LOOP-CURRENT TEXTURES

Quantum liquid crystals in two dimensions have been dis-
cussed on the basis of the Pomeranchuk instability [46] in
Landau’s Fermi liquid theory [47,48]. Considering a charge
channel, quantum liquid crystals can be described with phase
separation, charge nematic [9], and cLC. Here, we focus on
a spin channel, which might yield sLC. In the momentum
space, the order parameters for quantum liquid crystals in a
spin channel are given as〈

Qa
l,x

〉 =
∑
k,τ,τ ′

〈ψ†
τ (k)σ a

ττ ′ψτ ′ (k)〉 cos(lθk) (1)

and 〈
Qa

l,y

〉 =
∑
k,τ,τ ′

〈ψ†
τ (k)σ a

ττ ′ψτ ′ (k)〉 sin(lθk) (2)

along the x and y directions, respectively [49,50], where ψτ (k)
is an annihilation operator for an electron with momentum
k and spin τ =↑,↓, σ a

ττ ′ indicates the (τ, τ ′) element of the
Pauli matrix σ a with a = x, y, and z, and θk is the azimuthal
angle of k. l denotes an orbital angular momentum and thus it
is a non-negative integer (for quantum liquid crystals, l > 0).

A quantum liquid crystal with nonzero 〈Qa
l,x/y〉 might be

induced by the Pomeranchuk instability of the Fermi sur-
faces [46]. The Landau parameters Fl quantify the strength
of the forward scattering interactions among quasiparticles at
low energies close to the Fermi surface in a spin channel.
The thermodynamic stability of the Fermi liquid state requires
that the Landau parameters Fl not be too negative. Namely,
the thermodynamic instability occurs when Fl < −(2l + 1).
The most typical Pomeranchuk instabilities are found in the
s-wave channel: the Stoner ferromagnetism with 〈Qa

0,x/y〉 �= 0
is induced at F0 < −1. For the p-wave channel, 〈Qa

1,x/y〉 �=
0 represents spin currents flowing along the x/y direction,
leading to spin-dipole moments in momentum space. For
l � 1 [49,50], 〈Qa

l,x/y〉 breaks spin-orbital symmetry as orig-

inally proposed in 3He [48,51]. An emergent Rashba [52]
-Dresselhaus [53] -like spin-orbit coupling can lead to a
quantum state with sLC textures [49,50,54]. In the following
sections, we show the numerical results of our microscopic
study for quantum states with sLC textures.

III. TWO-ORBITAL HUBBARD LADDERS

A. Carrier-doped excitonic insulators

The order parameter 〈Qa
l,x/y〉 of a quantum liquid crys-

tal is a particle-hole pair condensation, which is analogous
to an exciton condensation in semimetals [13,55–58]. The
emergence of sLC textures associated with an exciton con-
densation has been suggested previously in (dynamical)
mean-field analysis [39,59,60]. The sLC textures are asso-
ciated with an exciton condensation in the spin channel,
which is stabilized in the presence of Hund’s coupling and
pair hopping [61]. Furthermore, the pair field of an exciton
condensation can be imaginary when interorbital hopping is
suitably selected [39,62].

Here, we numerically investigate sLC textures associated
with an exciton condensation in the spin channel. Our study is
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based on the two-orbital Hubbard model on a ladder lattice.
In the SU(2)-symmetric form, it is given by the following
Hamiltonian:

HTH = −
∑

〈i, j〉,γ ,γ ′,τ

tγ γ ′ (c†
i,γ ,τ c j,γ ′,τ + H.c.)

+ U
∑
i,γ

ni,γ ,↑ni,γ ,↓ + (U − 5JH/2)
∑

i

ni,ani,b

− 2JH

∑
i

Si,a · Si,b + JH

∑
i

(P†
i,aPi,b + H.c.), (3)

where c†
i,γ ,τ is the electron creation operator at site i with spin

τ (=↑,↓) and orbital γ (= a, b). ni,γ = ∑
τ ni,γ ,τ is the total

charge density operator for orbital γ at site i, where ni,γ ,τ =
c†

i,γ ,τ ci,γ ,τ .
The first term of the Hamiltonian HTH represents the

nearest-neighbor electron hopping from orbital γ at site i to
orbital γ ′ at site j and vice versa with a hopping amplitude
tγ γ ′ . 〈i, j〉 is a nearest-neighbor pair of sites i and j. The
second term represents the intraorbital Coulomb interaction
with its magnitude U . The third term represents the interor-
bital Coulomb interaction. The fourth term represents Hund’s
coupling JH between spins Si,γ = (Sx

i,γ , Sy
i,γ , Sz

i,γ ) at differ-

ent orbitals with Sa
i,γ = 1

2

∑
τ,τ ′ c†

i,γ ,τ σ
a
ττ ′ci,γ ,τ ′ . The last term

represents the on-site interorbital pair hopping with Pi,γ =
ci,γ ,↑ci,γ ,↓.

In addition, we extend this Hamiltonian by introducing the
following crystal-field (CF) splitting term:

HCF = �

2

∑
i,τ

(ni,a,τ − ni,b,τ ). (4)

Therefore, the total Hamiltonian HETH of an extended two-
orbital Hubbard model (ETHM) is described by HETH =
HTH + HCF. Following Refs. [39,63], we set the model pa-
rameters as U = 4, JH = U/4, and (taa, tbb) = (0.4,−0.2)
in units of eV, which are used to capture the basic fea-
tures of perovskite cobaltites. Note that we introduce the
on-site interorbital pair hopping term, which is ignored in
Refs. [39,59,60,62]. At half-filling, a band (Mott) insulator is
stable for large (small) �, while an excitonic insulator can be
realized for intermediate �.

The continuity equation along with the Heisenberg equa-
tion of motion for a spin operator Sz

l,γ leads to a spin-current
operator

js
γ γ ′ (r) := i(sgn tγ γ ′ )

∑
τ

sτ

2
(c†

l,γ ,τ
cm,γ ′,τ − c†

m,γ ′,τ cl,γ ,τ ) (5)

for a bond (l, m) connecting sites l and m located at
position vector r, where sτ = +1 (−1) for τ =↑ (↓). To
investigate the spin current, we use a pinning-field ap-
proach [32,33,35,64–66], where we introduce a small pinning
field js

γ γ ′ (r) on a bond (l, m) of orbitals γ and γ ′ described
by Hs

γ γ ′ = −h|tγ γ ′ | js
γ γ ′ (r) with h = 0.0001. Note that con-

clusions obtained from this approach are essentially the same
as those obtained from correlation functions [33,35]. In Ap-
pendix A, we demonstrate that the pinning-field approach
is useful for detecting numerically current correlations that
appear in the staggered flux phase. The pinning-field ap-

proach has an advantage because the DMRG method can
calculate local quantities with much better accuracy than cor-
relation functions [64,66]. Although the computational cost
increases because complex numbers have to be used, the
pinning field approach has been applied successfully for the
DMRG study of off-diagonal orders or fluctuations of super-
conducting pairs and current, which are usually difficult to
detect.

Figure 1 shows the results of 〈 js
γ γ ′ (r)〉 for three different

values of � = 2.6, 3, and 3.4, when the interorbital hoppings
tab = tba = 0.05 are introduced. We choose � 	 3 since spon-
taneous hybridization between orbitals a and b is obtained
(see Appendix B), indicating an exciton condensation. Note
that this type of interorbital hopping satisfying tabtba > 0 is
usually referred to as “even.” These results are obtained near
half-filling, i.e., electron density n = N/L = 1.92, where N is
the total number of electrons and L = LxLy is the number of
sites. Note that n = 2 corresponds to half-filling in the ETHM.
We evaluate the ground state for the two-leg ladder with
(Lx, Ly) = (24, 2), keeping χ = 2500 largest density-matrix
eigenstates and taking 40 sweeps, which leads to a truncation
error less than 10−11. The pinning field is introduced in the
bond of orbital b that is indicated by an arrow with “pinning”
in Fig. 1. Even when the pinning field is applied to orbital a,
the following argument remains qualitatively the same. Since
the expectation values of the spin current depend on h and
increase in proportion to the density of states at the Fermi
level, we normalize these quantities by |〈 js

γ γ ′ (r)〉| at the bond
applied with the pinning field in order to compare the results
among different electronic states.

We find in Fig. 1(b) that the signal of sLC is most en-
hanced with clear sLC textures for � = 3, with which exciton
condensation in the spin channel is associated [67]. The
spatial distribution of 〈 js

aa(r)〉 and 〈 js
bb(r)〉 away from the

bond with the pinning field, indicated by the blue dotted
rectangles in Fig. 1(b), decays in distance and approxi-
mately follows the power-law behavior (see Appendix C).
For larger and smaller values of �, i.e., � = 2.6 and 3.4,
no sLC textures are observed in Figs. 1(a) and 1(c). Note
that the presence of Hund’s coupling is crucial for realizing
the sLC texture, while the pair hopping is irrelevant. We
also find that all off-diagonal parts of spin current 〈 js

ab(r)〉
and 〈 js

ba(r)〉, shown in Fig. 1(b), flow in the same direction.
At first glance, this behavior appears to be a spontaneous
flow of global spin current. However, it turns out that the
total spin current including both orbital diagonal and off-
diagonal parts vanishes [59,60], thus satisfying the Bloch
theorem [68–71].

We can obtain sLC textures only when even-type interor-
bital hoppings are introduced. In other words, no sLC textures
emerge if odd-type interorbital hoppings are introduced or
if no interorbital hoppings are introduced. Figure 2 shows
the results of 〈 js

γ γ ′ (r)〉 for the odd-type interorbital hoppings
tab = −tba = 0.05. Indeed, we find that sLC textures are short-
ranged. We also obtain almost the same results as in Fig. 2
when no interorbital hoppings are introduced. Therefore, the
symmetry of the interorbital hoppings is a key factor in
the generation of sLC textures. These features are in fact
consistent with the previous work based on the (dynamical)
mean-field theory [39,59,60], and thus we conclude that a sLC
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FIG. 1. 〈 js
γ γ ′ (r)〉 for the ETHM in the two-leg ladder with (Lx, Ly ) = (24, 2) at electron density n = 1.92 close to half-filling. Their

normalized magnitudes are shown by arrows with a heat map at the bond r for the intraorbital (γ = γ ′) and interorbital (γ �= γ ′) spin current
in the left and right panels, respectively (also see schematic drawings). Here, the legs of the ladder are labeled as leg 1 and leg 2, and the
small pinning field is applied at the bond in leg 2 for orbital b (indicated by “pinning”). The model parameters are set to U = 4, JH = U/4,
(taa, tbb) = (0.4, −0.2), and tab = tba = 0.05 with (a) � = 2.6, (b) � = 3, and (c) � = 3.4 in units of eV. The results indicated by blue dotted
rectangles in (b) are also used in Fig. 12(a).

texture associated with an exciton condensation in the spin
channel can occur in the ETHM.

It should be noted, however, that our numerical results are
consistent with previous studies only for the two-leg ladder
system. We find that the spatial distribution of the spin cur-
rent away from the bond with the pinning field decays more
steeply in the three- and four-leg ladder systems than in the
two-leg ladder system. Since an excitonic condensation in
the spin channel has been proposed in Pr0.5Ca0.5CoO3 and
Ca2RuO4 [39,63], there is a possibility of sLC textures be-
ing realized in these materials. However, our DMRG study

suggests that having a two-leg structure is also an important
condition for the emergence of sLC textures.

B. Carrier-doped orbital-selective Mott insulators

In the previous section, we demonstrated that sLC textures
emerge in the ETHM, and we showed that interorbital hop-
pings play a crucial role in stabilizing sLC textures associated
with an exciton condensation in the spin channel. In this
section, we shall demonstrate that it is also possible to realize
sLC textures in the ETHM without interorbital hoppings, i.e.,

FIG. 2. Same as Fig. 1 but for tab = −tba = 0.05.
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FIG. 3. 〈 js
γ γ ′ (r)〉 with γ = γ ′ for the ETHM in the two-leg ladder with (Lx, Ly ) = (24, 2). Their normalized magnitudes are shown by

arrows with a heat map at the bond r for (a) n = 2.5, (b) n = 2.67, and (c) n = 2.83. Here, the legs of the ladder are labeled as leg 1 and leg
2, and the small pinning field is applied at the bond in leg 2 for orbital b (indicated by “pinning”). The model parameters are set to U = 3.5,
JH = U/4, (taa, tbb) = (−0.5, −0.15), and � = −1.6 in units of eV with the interorbital hoppings tab = tba = 0. The results indicated by blue
dotted rectangles in (b) are also used in Fig. 12(a). In (d)–(f), Jγ (q) are evaluated from the results shown in (a)–(c), respectively. The diameter
of the bubbles indicates the value of Jγ (q) at different momentum (qx, qy ). The lower and upper panels in each figure are for 〈 js

aa(r)〉 and
〈 js

bb(r)〉 or Ja(q) and Jb(q), respectively.

tab = tba = 0. For this purpose, we set the model parame-
ters to be U = 3.5, JH = U/4, � = −1.6, and (taa, tbb) =
(−0.5,−0.15) in units of eV, which are used to describe
orbital-selective Mott insulators such as BaFe2Se3 [41]. As
in Sec. III A, we consider the two-leg ladder with (Lx, Ly) =
(24, 2). Magnetic structures of this model have been investi-
gated by the DMRG method, and several types of block AFM
order have been suggested [41].

We calculate the ground state of the ETHM by using
the DMRG method, keeping χ = 2500 largest density-matrix
eigenstates and taking 40 sweeps, which leads to a trunca-
tion error less than 10−7. Figures 3(a)–3(c) show the results
of 〈 js

aa(r)〉 and 〈 js
bb(r)〉 for three different electron densities

n = 2.5, 2.67, and 2.83. In these calculations, we introduce
the pinning field at the bond of orbital b indicated in the figure.
However, the following argument remains qualitatively the
same even when the pinning field is applied to orbital a. At
n = 2.5, a (π, 0) stripe order, i.e., AFM spin alignment along
the legs and ferromagnetic (FM) spin alignment along the
rungs, appears. Since the magnetic structure has already been
studied [41], here we focus on the possibility of the emergence
of sLC textures.

First, we do not find robust sLC textures for typical values
of electron density in the range of 2.0 � n � 2.5 and n ∼ 3.
Indeed, the correlation of spin current is short-ranged, as
shown in Fig. 3(a) for n = 2.5 and Fig. 3(c) for n = 2.83.
These features are better quantified by evaluating the Fourier
transform of these quantities, i.e., Jγ (q) = ∑

r〈 js
γ γ (r)〉 cos(q ·

r). As shown in Fig. 3(d) for n = 2.5 and Fig. 3(f) for

n = 2.83, Jγ (q) has a structure around q = (π, 0) and (0,0),
respectively, but it is rather broad. In contrast, we find the
enhanced signal of sLC textures in the range of electron den-
sity 2.63 < n < 2.71, where the correlation of spin current is
longer-ranged, as shown in Figs. 3(b) and 3(e) for n = 2.67.
The spatial distribution of 〈 js

aa(r)〉 and 〈 js
bb(r)〉 away from

the bond with the pinning field, indicated by the blue dotted
rectangles in Fig. 3(b), decays in distance and approximately
follows the power-law behavior (see Appendix C). It should
be noted that the correlation of the spin current in Fig. 3(b)
appears weaker than that in Fig. 1(b).

We should note that the sLC textures found here are unaf-
fected by the introduction of the interorbital hoppings tab =
±tba = 0.05 also used in Sec. III A, which indicates that the
sLC textures found in this section are due to a mechanism
different from the exciton condensation in the spin channel.
We also find that the introduction of � �= 0 does not play an
essential role. Since the sLC signal becomes small when the
ratio of tbb/taa is closer to 1, the difference in the itinerancy of
electrons in orbitals a and b is important to the development
of sLC textures.

Recalling that noncollinear magnetism can produce spin
current [72], vector chirality is one of the possible origins
for the sLC textures. It has been proposed in Ref. [45] that
the correlation of vector chirality jns

bb(r) := (Sl,b × Sm,b)z =
Sx

l,bSy
m,b − Sy

l,bSx
m,b of localized spins on orbital b can be devel-

oped in the GKHM, which is an effective model of the ETHM
in the strong-coupling limit. Note that the vector chirality
operator jns

bb(r) is also regarded as a spin-current operator
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FIG. 4. na
+(x) (upper panel) and na

−(x) (lower panel) for the
ETHM in the two-leg ladder. Red circles are for (Lx, Ly ) = (24, 2)
at n = 8/3 	 2.67 and black circles are for (Lx, Ly ) = (32, 2) at
n = 85/32 	 2.66. The model parameters are the same as those used
in Fig. 3

defined on localized spins. It is also interesting to notice that
the electron density n where sLC textures emerge is consistent
for both models, i.e., the ETHM studied in this paper and
the GKHM studied in Ref. [45]. However, the pattern of sLC
textures is different between these two systems. In the ETHM,
spin current flows in the leg direction for each orbital a or b, as
shown in Fig. 3(b). Because spin currents in these two orbitals
flow in opposite directions, the global spin current does not
flow in total. In the GKHM, on the other hand, spin currents
generated by itinerant electrons and by localized spins are
inequivalent, which may thus induce another kind of sLC
texture, i.e., staggered spin current circulating around 2 × 2
plaquettes [45]. We have also examined jns

γ γ (r) in the ETHM
and confirmed that the correlation of jns

γ γ (r) is developed when
js
γ γ (r) exhibits enhanced correlation.

Finally, we note that the sLC textures found here in
the ETHM coexist with charge stripes. Figure 4 shows
the results of na

+(x) := 1
Ly

∑
y=1,2(〈ny

x,a〉 − n) and na
−(x) :=

1
Ly

∑
y=1,2[(−1)y〈ny

x,a〉], where ny
x,a is an electron density op-

erator at the xth rung (x = 1, 2, . . . , Lx) for leg y and orbital a.
These two quantities na

+(x) and na
−(x) represent, respectively,

the average and difference of the numbers of electrons at legs
1 and 2 in each rung. When the sLC textures emerge, we
find that charge stripes also appear probed in both na

+(x) and
na

−(x), as shown in Fig. 4 for n = 2.67 with (Lx, Ly) = (24, 2)
(red circles) and n = 2.66 with (Lx, Ly) = (32, 2) (black cir-
cles), indicating the spontaneous formation of charge stripes
both along rungs and legs. After removing the contribu-
tions from edges to reduce the finite-size effects, we find
that ña

+(qx ) := ∑
x na

+(x) cos(qxx) shows a peak structure at

qx ∼ 2 and similarly ña
−(qx ) := ∑

x na
−(x) cos(qxx) shows a

peak structure at qx ∼ 1, which correspond to charge stripes
with the period of λ 	 3 and 6 (in units of the lattice con-
stant), respectively. These charge stripes can trigger vector
chirality when they form superlattice structures that break
local inversion symmetry [73,74]. Indeed, the emergence of
antisymmetric exchange, i.e., the Dzyaloshinskii-Moriya in-
teraction, has been proposed in ABC-type superlattices [75].
The coexistence of vector chirality and charge stripes is one
manifestation of multiferroicity [72,76]. We should also note
that the coexistence of cLC textures and stripes has recently
been reported in a spinless Hubbard model [38].

IV. SINGLE-ORBITAL HUBBARD MODEL
ON A SQUARE LATTICE

In Sec. III, we have demonstrated the emergence of sLC
textures in the two-orbital Hubbard model on a ladder lattice.
Even with only a single orbital, the two-dimensional Hubbard
model exhibits very rich quantum phases with highly entan-
gled spin and charge degrees of freedom. In this section, we
focus on sLC textures in the single-orbital Hubbard model on
a square lattice. There are several proposals for sLC textures in
the Hubbard model on a square lattice. In the Hubbard model
with a single hole on a square lattice, the emergence of sLC
textures has been suggested [77]. The sLC textures are driven
by a many-body Berry-like phase, i.e., phase string [78–80]
in the single-hole t-J model on a square lattice. We should,
however, note that total Sz is nonzero in Ref. [77], where time-
reversal symmetry is explicitly broken in the Hamiltonian.
Even for total Sz being zero, the recent theoretical analy-
sis based on the functional renormalization-group method in
Ref. [40] has revealed the emergence of sLC textures in a
hole-doped Hubbard model on a square lattice with further-
neighbor hoppings. The sLC textures found in this analysis are
characterized with a wave vector q = (π/2, π/2), which is
diagonal and closely related to the nesting vector of the Fermi
surface [40].

Here, we investigate sLC textures in the single-orbital Hub-
bard model on a square lattice by using the DMRG method.
The Hamiltonian of the Hubbard model on a square lattice is
given as

Ht-t ′-U = − t
∑

〈i, j〉,τ
(c†

i,τ c j,τ + H.c.)

− t ′ ∑
〈〈i, j〉〉,τ

(c†
i,τ c j,τ + H.c.) + U

∑
i

ni,↑ni,↓, (6)

where c†
i,τ is the electron creation operator at site i with spin

τ (=↑,↓) and ni,τ = c†
i,τ ci,τ . t and t ′ are the nearest-neighbor

and next-nearest-neighbor hoppings on a square lattice, re-
spectively, and U is the on-site Coulomb interaction. The sum
indicated by 〈i, j〉 (〈〈i, j〉〉) runs over all pairs of nearest-
neighbor (next-nearest-neighbor) sites i and j.

We use a cluster of (Lx, Ly) = (8, 6) on a cylinder geome-
try, i.e., open and periodic boundary conditions along x and y
axes, respectively. Although we can treat even larger clusters
at the expense of accuracy, we avoid using too large clusters
since the high computational accuracy is required to correctly
calculate off-diagonal quantities such as spin current. To treat
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FIG. 5. 〈 js(r)〉 for the single-orbital Hubbard model with U/t = 9 and t ′/t = −0.3 on the square lattice with (Lx, Ly ) = (8, 6). Their
normalized amplitudes are shown by arrows with a heat map at the bond r for (a) δ = 0.042, (b) δ = 0.083, (c) δ = 0.125, (d) δ = 0.167,
(e) δ = 0.208, (f) δ = 0.25, (g) δ = 0.292, and (h) δ = 0.333. Here, the bond to which the small pinning field is applied is indicated by
“pinning” in (a). The same pinning field is also applied in (b)–(h), but it is not explicitly indicated.

a two-dimensional cluster in the DMRG method, we construct
a snakelike one-dimensional chain out of the two-dimensional
square lattice, running from site at (0,0) to site at (0, Ly − 1),
then from site at (1, Ly − 1) to site at (1,0), and this pattern
is repeated until we reach site at (Lx − 1, 0). We keep χ =
10 000 largest density-matrix eigenstates and take 40 sweeps
in the DMRG calculations, leading to a truncation error less
than 5 × 10−5.

Similar to Eq. (5), the spin current operator for the single-
band Hubbard model is defined as

js(r) := i(sgn t or t ′)
∑

τ

sτ

2
(c†

l,τ cm,τ − c†
m,τ cl,τ ) (7)

for a bond (l, m) connecting sites l and m located at a posi-
tion vector r. To investigate the spin current, we introduce a
small pinning field js(r) on a bond (l, m), described by Hs =
−h|t | js(r) with h = 0.0001, i.e., site l located at (0,2) and site
m located at (0,3) for our cluster with (Lx, Ly) = (8, 6) (also
see Fig. 5).

Figure 5 summarizes the results of 〈 js(r)〉 for t ′/t = −0.3
and U/t = 9 with different hole concentrations δ = 1 − n. We
find that the correlation of 〈 js(r)〉 is rather short-ranged except
for δ = 0.125. Note that half-filling is achieved at n = 1 for
the single-orbital Hubbard model. We also note that the global
spin current in the x direction should be zero due to the
open boundary conditions, whereas the spin current in the y
direction should be suppressed by L−1

y due to the periodic
boundary conditions [71].

In addition to the hole concentration, several other con-
ditions are required for the emergence of the sLC textures.
Figure 6 shows the results of 〈 js(r)〉 for different values of
t ′ at δ = 0.125, revealing that the presence of t ′/t ∼ −0.25
is necessary to induce the robust sLC textures. Figures 7(a)–
7(c) show the results of 〈 js(r)〉 for three different values of
U/t = 4, 6, and 9 at δ = 0.125 and t ′/t = −0.266. These
results clearly find that the sLC textures are most extended and

enhanced when U/t is smaller. Figures 7(d)–7(f) show J (q) =∑
r〈 js(r)〉 cos(q · r) evaluated from the results of 〈 js(r)〉 in

Figs. 7(a)–7(c). We find that the centroid of J (q) is concen-
trated toward q 	 (π, 0) with decreasing U/t . We should also
note that even when U/t = 4, no sLC textures emerge if t ′/t
deviates significantly away from −0.25.

It is interesting to compare the sLC textures obtained
here by the DMRG method with those reported in Ref. [40].
Based on the functional–renormalization-group method, the
presence of sLC textures has been proposed in the single-
orbital Hubbard model with t ′/t = −1/6, t ′′/t = 1/5, and
U/t = 3.3 at δ = 0.2, where t ′′ is the third-nearest-neighbor
hopping [40]. The suggested sLC textures are characterized by
wave vector q 	 (π/2, π/2). The similarity and differences
of the results between our study and their study [40] are sum-
marized as follows. Both studies suggest that the introduction
of relatively small or intermediate U/t and t ′/t is crucial for
the emergence of the robust sLC textures. However, the sLC
textures appear most significantly at δ = 0.125 in our study
but at δ = 0.2 in their study. The wave vector q characterizing
the spatial pattern of sLC textures is also different: while the
axial-sLC textures with q = (π, 0) are found by our DMRG
study, the diagonal-sLC textures with (π/2, π/2) are obtained
by their functional renormalization-group study [40]. The
axial-sLC textures may be stabilized here because we employ
the cluster of a cylinder geometry. However, a more detailed
study is warranted to clarify this point.

Now we comment on the coexistence of sLC textures and
charge stripes at δ = 0.125. The hole density of δ = 0.125
is well-known as the density at which the charge stripes ap-
pear, and many previous studies have been focused on this
density [81–93]. In the Hubbard model in the strong-coupling
region or the t-J model on a four-leg ladder under the cylinder
geometry, the axial charge stripes with a period of λ = 8 (in
units of the lattice constant), characterized by its ordering
wave vector q = (π/4, 0), are stabilized at δ = 0.125 [90].
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FIG. 6. Same as Fig. 5 but for three different t ′ values (indicated in the figures) at δ = 0.125.

Introducing t ′/t = −0.25, the λ = 4 charge stripes with their
ordering wave vector q = (π/2, 0) appear. Here, we shall
show that the charge stripes also appear on the six-leg ladder
used in this section.

To quantify the charge distribution along the x axis, i.e.,
the leg direction, we evaluate n(x) := 1

Ly

∑Ly−1
y=0 〈ny

x〉, where

ny
x is an electron density operator at the xth rung (x =

0, 1, . . . , Lx − 1) in leg y. Since the computation of diagonal
quantities such as the charge density is not severely sensitive
to the lower accuracy in the DMRG method, we can evaluate
this quantity n(x) for a larger cluster with (Lx, Ly) = (16, 6).
Since the cluster is on a cylinder geometry, we expect that
the axial charge stripes are more stable. We indeed find in
Fig. 8 that the axial charge stripes appear at δ = 0.125, and
the period of these stripes becomes longer with decreasing U .

To further discuss the period of the charge stripes, we also
evaluate n(qx ) := ∑

x n(x) cos(qxx) and the results are shown
in Fig. 9. As shown in Fig. 9(a), when t ′/t = −0.3 and U/t =
4, n(qx ) has a broad peak at 0.32 � qx/π � 0.80 for the

cluster with (Lx, Ly) = (8, 6). We can reduce the finite-size
effect when we consider the cluster with (Lx, Ly) = (16, 6),
for which the results of n(qx ) are shown in Figs. 9(b)–9(d)
for three different values of U/t = 4, 6, and 9. As shown
in Fig. 9(b), when t ′/t = −0.3 and U/t = 4, n(qx ) exhibits
a peak at 0.25 � qx/π � 0.48, which indicates the charge
stripes with λ 	 5. This is consistent with the results obtained
by the variational Monte Carlo study on a six-leg Hubbard
ladder with t ′ [93]. With increasing U , the characteristic or-
dering wave vector of the charge stripes becomes larger, as
shown in Fig. 9(d) for U/t = 9, where n(qx ) has a peak at
0.45 � qx/π � 0.60, leading to λ 	 4. Since δ = 0.125 is a
key factor in the development of the sLC textures, it is most
likely that the presence of λ 	 4 and 5 charge stripes is crucial
for the emergence of the sLC textures found here. Assuming
that a symmetry breaking leads to the emergent spin-orbit
coupling as discussed in Sec. II, the electric field produced
locally by charge stripes may induce spin current by a similar
mechanism to the spin Hall effect [94,95].

FIG. 7. (a)–(c) Same as Fig. 5 but for (a) U/t = 4, (b) U/t = 6, and (c) U/t = 9 at δ = 0.125 and t ′/t = −0.266. The results indicated by
blue dotted rectangles are also used in Fig. 12(b). (d)–(f) J (q) evaluated form 〈 js(r)〉 shown in (a),(b), i.e., for (d) U/t = 4, (e) U/t = 6, and
(f) U/t = 9. The diameters of bubbles indicate the values of J (q).
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FIG. 8. Charge density averaged over sites along the y direction,
n(x), for the single-orbital Hubbard model with t ′/t = −0.266 at δ =
0.125 on the square lattices with (Lx, Ly ) = (8, 6) (red circles) and
(Lx, Ly ) = (16, 6) (black circles). The on-site Coulomb interaction
is set to (a) U/t = 4 and (b) U/t = 9. For easier comparison, the
results for (Lx, Ly ) = (8, 6) are displaced by 4 in the horizontal axis.

V. SUMMARY

We have studied sLC textures emerging in the ground
states of the Hubbard models by using the DMRG method.
In particular, we have investigated carrier-doped (i) excitonic
insulators, (ii) orbital-selective Mott insulators, and (iii) two-
dimensional Mott insulators, modeled by the ETHM on a
two-leg ladder lattice in (i) and (ii), and the single-orbital Hub-
bard model with the next-nearest hopping t ′ on a square lattice
in (iii). In these systems, we have obtained the enhanced sLC
textures developed around a bond to which the pinning field
is applied.

In system (i), we have found the emergence of sLC tex-
tures, which is associated with an exciton condensation in
the spin channel. Using model parameters motivated for ex-
citonic insulators, we have found that the sLC correlations
are developed most significantly near half-filling at electron
density n = 1.92 when the crystal field and the interorbital
hoppings are suitably introduced. In system (ii), we have used
typical model parameters for iron oxides such as BaFe2Se3,
and we found that the robust sLC textures emerge in the
ETHM without introducing any interorbital hoppings. The
sLC textures are developed most profoundly when a relatively
large number of carriers is introduced in the range of electron
density 2.63 < n < 2.71 and the difference in itinerancy of
electrons in the two orbitals is large. We have also found that
the sLC textures coexist with the charge stripes formed in
both rungs and legs. In system (iii), we have found that the
sLC textures are most enhanced and extended at δ = 0.125

FIG. 9. n(qx ) for the single-orbital Hubbard model with t ′/t =
−0.266 at δ = 0.125. (a) U/t = 4 on the square lattice with
(Lx, Ly ) = (8, 6), and (b) U/t = 4, (c) U/t = 6, and (d) U/t = 9 on
the square lattice with (Lx, Ly ) = (16, 6).

when t ′/t ∼ −0.25 is introduced. We also found that the sLC
textures are most developed when U decreases from U/t = 9
to 4. The λ 	 4 and 5 charge stripes also simultaneously
appear when the sLC textures emerge.

In conclusion, we have found the conditions under which
the sLC textures are developed in each of the three systems
(i)–(iii). Our results clearly demonstrate that quantum many-
body effects can induce local spin current in the ground state.
It is interesting to explore whether the sLC textures can lead to
the development of spintronics in strongly correlated electron
systems. Finally, we note that the ground states with only
short-ranged cLC correlations have been found in all three
systems (i)–(iii). Namely, the expectation value of the charge
current away from the bond with the pinning field is nearly
zero.
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FIG. 10. 〈 jc(r)〉 for the t-J model Ht-J-V given in Eq. (A1)
with J/t = 0.4, V1/t = 3, and V2/t = 1 on the two-leg ladder with
(Lx, Ly ) = (20, 2) at hole density δ = 0.1. Their normalized ampli-
tudes are shown by arrows with a heat map at the bond r. The bond
to which the small pinning field is applied is indicated by “pinning.”
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APPENDIX A: PINNING-FIELD APPROACH

In Secs. III and IV, we introduce a small pinning field h
to the systems to study the spatial distribution of sLC correla-
tions. The pinning field approach has been used previously to
investigate cLC correlations [33,35], and in this Appendix we
shall reproduce their results of the cLC texture in our DMRG
calculations to clarify the role of the pinning field.

The Hamiltonian exhibiting a cLC texture reads

Ht-J-V = − t
∑

〈i, j〉,τ
(c̃†

i,τ c̃ j,τ + H.c.) + J
∑
〈i, j〉

(
S̃i · S̃ j − 1

4
ñiñ j

)

+ V1

∑
〈i, j〉

ñiñ j + V2

∑
〈〈i, j〉〉

ñiñ j, (A1)

which is a t-J model with the (next)-nearest-neighbor in-
teraction V1 (V2) on a two-leg ladder lattice with open
boundary conditions. Here, c̃i,τ = ci,τ (1 − ni,−τ ), ci,τ is the
annihilation operator of an electron with spin τ (↑,↓) at
site i, and ni,τ = c†

i,τ ci,τ with −τ being the opposite spin

of τ . ñi = ∑
τ ñi,τ with ñi,τ = c̃†

i,τ c̃i,τ = ni,τ (1 − ni,−τ ), and

(S̃i )a = 1
2

∑
τ,τ ′ c̃†

i,τ σ
a
ττ ′ c̃i,τ ′ = 1

2

∑
τ,τ ′ c†

i,τ σ
a
ττ ′ci,τ ′ is the a (=

x, y, z) component of the spin operator at site i. A charge-
current operator for a bond (l, m) connecting sites l and m
located at a position vector r is defined as

jc(r) := i(sgn t )
∑

τ

(c̃†
l,τ c̃m,τ − c̃†

m,τ c̃l,τ ). (A2)

To investigate charge current, we introduce a small pinning
field described by Hc = −h|t | jc(r) with h = 0.0001. Notice
here that the pinning field is applied only at the single bond
r. The results for the spatial distribution of 〈 jc(r)〉 on a two-
leg ladder lattice with (Lx, Ly) = (20, 2) are summarized in
Fig. 10, where we set J/t = 0.4, V1/t = 3, and V2/t = 1.
The bond with the pinning field is indicated by “pinning” in

FIG. 11. Hybridization average 〈v〉 between orbitals a and b as
a function of the crystal-field splitting � for the ETHM in the two-
leg ladder with (Lx, Ly ) = (24, 2) at electron density n = 1.92 close
to half-filling. The model parameters are set to U = 4, JH = U/4,
(taa, tbb) = (0.4,−0.2), and tab = tba = 0.05 in units of eV.

FIG. 12. Spatial distribution of spin current as a function of the
distance x̃ from the bond to which the pinning field is applied.
(a) 〈 js

aa(x̃)〉 and 〈 js
bb(x̃)〉 for the carrier-doped excitonic insulators

(denoted by red circles) and for the orbital-selective Mott insulators
(denoted by blue circles) in the area enclosed by the blue dot-
ted rectangles in Figs. 1(b) and 3(b), respectively. For comparison,
power-law functions 0.11/x̃ and 0.11/x̃2 are also plotted by the black
dashed and solid lines, respectively. (b) 〈 js(x̃)〉 for the carrier-doped
two-dimensional Mott insulators in the area enclosed by the blue
dotted rectangles in Figs. 7(a)–7(c) for U/t = 4, 6, and 9, respec-
tively. 〈 js(x̃)〉 only for nearest-neighbor bonds along the y direction
is shown. For comparison, a power function 1/x̃ is also plotted by the
black dashed line.
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Fig. 10. We find that indeed a cLC texture emerges at hole
density δ = 0.1, exhibiting staggered flow of charge current,
which is in good accordance with the staggered-flux order
reported in Ref. [33]. The introduction of finite V1 and V2 is
a key ingredient to induce the cLC texture in this system.

APPENDIX B: HYBRIDIZATION INDUCED
BY EXCITON CONDENSATION

In this Appendix, we demonstrate the existence of an exci-
ton condensation in the ETHM defined by the Hamiltonian
HETH [see Eqs. (3) and (4)] on a ladder lattice studied in
Sec. III A. For this purpose, we evaluate the hybridization
average 〈v〉 := 1

L

∑
i,τ 〈c†

i,a,τ ci,b,τ 〉 between orbitals a and b.
Figure 11 shows our DMRG results for U = 4, JH = U/4,
(taa, tbb) = (0.4,−0.2), and tab = tba = 0.05 in units of eV at
electron density n = 1.92. These parameters are the same as
those used in Fig. 1. Our calculations clearly find that 〈v〉 is
nonzero for 3 � � � 3.8, thus including � = 3 for which the
sLC textures emerge, as shown in Fig. 1(b).

APPENDIX C: POWER-LAW BEHAVIOR OF THE SPIN
CURRENT INDUCED BY A PINNING FIELD

To give further insight on the sLC textures, in this Ap-
pendix we show log-log plots of the spatial distribution of the

spin current for the two-orbital Hubbard ladders in Fig. 12(a)
and for the single-orbital Hubbard model on a square lattice
in Fig. 12(b). Red circles in Fig. 12(a) show the spatial distri-
bution of 〈 js

aa(x̃)〉 and 〈 js
bb(x̃)〉 for the carrier-doped excitonic

insulators in the area enclosed by the blue dotted rectangles
in Fig. 1(b). Here, x̃ = x − 10.5 is the distance from the
bond to which the pinning field is applied. Blue circles in
Fig. 12(a) show the spatial distribution of 〈 js

aa(x̃)〉 and 〈 js
bb(x̃)〉

for the carrier-doped orbital-selective Mott insulators in the
area enclosed by the blue dotted rectangles in Fig. 3(b). Apart
from the vicinity of the boundaries of the systems, 〈 js

aa(x̃)〉
and 〈 js

bb(x̃)〉 in Fig. 12(a) appear to closely follow a power-
law behavior, indicated by the black dashed and solid lines.
The power-law decay seems to have the form of x̃−l with
1 � l � 2.

Figure 12(b) shows the spatial distribution of 〈 js(x̃)〉 for
the carrier-doped two-dimensional Mott insulators in the area
enclosed by the blue dotted rectangles in Figs. 7(a)–7(c) for
U/t = 4, 6, and 9, respectively. Here, 〈 js(x̃)〉 is plotted only
for nearest-neighbor bonds along the y direction. x̃ = x + 1
is the distance from the bond to which the pinning field is
applied. Because of the small cluster size, these results pro-
vide only limited information, but we find that 〈 js(x̃)〉 follows
a power-law behavior x̃−l with the exponent l that becomes
closer to 1 as U/t approaches 4.
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