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Two-fluid theory of composite bosons and fermions and the quantum Hall proximity effect
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We propose a two-fluid description of fractional quantum Hall systems, in which one component is a conden-
sate of composite bosons and the other is a Fermi liquid formed by composite fermions (or simply electrons).
We employ the theory to model the interface between a fractional quantum Hall liquid and a (composite) Fermi
liquid metal, where we find a penetration of quantum Hall condensate into the metallic region reminiscent of
the proximity effect in superconductor-metal interfaces. We also find a physically reasonable set of gapped
quasielectron and neutral modes in fractional quantum Hall liquids.
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I. INTRODUCTION

The qualitative physics of a ν = 1/q (with q odd) frac-
tional quantum Hall (FQH) fluid is most simply understood
from the analogy with superconductivity provided by the
Chern-Simons-Ginzburg-Landau (CSGL) description of com-
posite bosons (CBs) [1,2], while dissipative states—either
an ordinary metal or a composite fermion (CF) liquid metal
[3–7]—require a fermionic description. An investigation of
the interface between the two—and the extent to which a
quantum Hall (QH) “condensate” can penetrate into a metallic
region—motivates us to develop a two-fluid description of a
two-dimensional electron gas in a spatially varying magnetic
field. To this purpose, we introduce an effective field theory
with two fictitious flavors of electron—one described by a
composite boson field and the other described by a composite
fermion field—coupled to two fluctuating Chern-Simons (CS)
gauge fields.

There is an intrinsic issue with any such two-fluid de-
scriptions stemming from the indistinguishability of electrons.
However, under many circumstances where the dynamical
exchange of different groups of electrons is slow, errors in-
volved in treating them as distinguishable are expected to be
small. In the present treatment, the exchange statistics of each
flavor of electrons is treated exactly through the statistical
CS field. Dynamical terms that exchange flavors involve in-
stanton configurations in which large-scale rearrangements of
the gauge fields in space-time arise, which are argued to be
relatively unimportant in various situations considered here.
At an intuitive level, this is similar to treatments in which the
electrons in a full Landau level (LL) are treated as forming
an incompressible fluid background, over which electrons in
a higher, partially filled Landau level form a distinct quantum
system.

When the system is strictly uniform, and at special fillings
that are well described by one component, the other compo-
nent of the two fluids is clearly redundant. However, novel QH
states can arise when a CB condensate and a CF liquid (CFL)
coexist. Moreover, when the electron density or the magnetic

field strength varies spatially, our mixed theory becomes use-
ful in many circumstances. In particular, we apply it to two
specific problems.

We first use the two-component approach to study point-
like excitations of Laughlin states. While quasiholes are
plausibly describable as simple vortex excitations in the
composite boson condensate, a correspondingly compelling
CSGL description of quasielectrons is lacking [8]. Based
on a saddle-point analysis, we construct a class of soliton
solutions corresponding to quasielectrons and neutral excita-
tions (a version of a Girvin-MacDonald-Platzman mode [9]),
which do not admit a natural representation in terms of a
pure CB picture. We find that depending on the details of
the interactions, properties of the quasiparticles (e.g., energy
and quadrupole moment) can change discontinuously without
any other significant changes in the nature of the QH state
itself.

In the second application, we consider the interface be-
tween a ν = 1/q (odd q) QH region and a metallic regime with
B = 0 or with ν = 1/q′ (even q′). Far from the interface, the
two regions are well described by a CB condensate and a CFL
(which is simply an electron liquid when q′ = 0), respectively.
For simplicity, we consider a situation in which the electron
density is uniform and solve for the saddle-point profile of the
CB condensate. When the magnetic field is slowly varying,
we find that the condensate roughly follows it, allowing it to
extend deep into the predominantly metallic region, which is
reminiscent of the proximity effect in superconductor-metal
interfaces.

In Sec. II we discuss the phenomenological considerations
and the formalism of the proposed two-component effective
field theory. In Sec. III, we briefly discuss the filling fractions
that can potentially be described by the two-fluid picture. In
Sec. IV, we apply our formulation to pointlike excitations
in Laughlin states. In Sec. V, we analyze the saddle-point
solution of a problem with a spatially varying magnetic field
modeling a QH-metal interface. Finally, in Sec. VI we spec-
ulate on the possible implications of these results and further
extensions.
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II. FORMALISM

In this section, we present the two-fluid theory consisting
of CBs described by the complex scalar fields φ and φ�, CFs
described by the Grassmann fields ψ and ψ†, and emergent
dynamical gauge fields a and b in the presence of a back-
ground electromagnetic field A. Throughout this paper, we
will adopt the following convention: Greek letters (μ, ν, . . . )
are used for space-time indices (0,1,2 represent t, x, y), and
Latin letters (i, j, . . . ) are used only for the spatial indices;
the sign convention is such that xμ = (t, x, y) and the metric
gμν = diag(1,−1,−1). We absorb a factor of electron charge
|e| in the definition of A and adopt units such that h̄ = c = 1.
The Lagrangian density of the theory then reads

L = φ�[i∂0 + a0 + A0]φ − 1

2m
|(−i �∇ + �a + �A)φ|2

+ ψ†[i∂0 + b0 + A0]ψ − 1

2m
|(−i �∇ + �b + �A)ψ |2

+ LCS + Lint[|ψ |2, |φ|2], (1)

LCS = − 1

4π

(
a b

)
K−1

(
da
db

)
, (2)

where we have adopted a shorthand notation for exterior
derivatives, e.g., adb = εμνηaμ∂νbη, and

K ≡
(

q q′′
q′′ q′

)
(3)

enforces the flux-attachment constraints according to the
equations of motion of a and b:

εμνσ

(
∂νaσ

∂νbσ

)
= 2πK

(
Jμ
φ

Jμ

ψ

)
, (4)

where J0
φ = ρφ = |φ|2 and J0

ψ = ρψ = |ψ |2 are the densities
of CBs and CFs, and Ji

φ and Ji
ψ are the current vectors.

Lint[|ψ |2, |φ|2] is a potential that represents the interactions
among particles. We divide the interactions into the sum of a
short-range and a long-range piece, the former of which we
effectively treat as a point-contact interaction,

Lint[|φ|2, |ψ |2] = −[V1ρ
2
φ/2 + V2ρφρψ ]

− Vlong-range[|φ|2 + |ψ |2], (5)

where V1 and V2 are effective parameters. We note that due to
Grassmann algebra, |ψ |4 vanishes such that the ψ particles do
not self-interact.

With this flux-attachment structure and φ, ψ being bosonic
and fermionic fields, as illustrated in Fig. 1, one can see
that the self-statistics of φ and ψ particles are fermionic for
odd q and even q′. We will restrict our choices of q and q′
accordingly and regard the two components as two different
flavors of electrons. The mutual statistical angle between the
two flavors is determined by q′′. In principle, this two-fluid
theory should also include terms that can transmute φ and
ψ particles, e.g., φ†ψ , revealing their common underlying
nature—electrons. However, such terms cannot exist on their
own and must be accompanied by monopole operators that
globally rearrange the space-time configuration of the CS
gauge fields a and b. (The nature of such terms is discussed in

FIG. 1. An illustration of the statistical angles between particle-
flux composites introduced by the CS terms in Eq. (2), which
corresponds to q = 3, q′ = 0, and q′′ = 1 in the flux-attachment
matrix.

Appendix A.) Such terms are thus unimportant as long as we
are studying time-independent saddle-point solutions to the
theory.

We expect this theory to effectively describe a single-
component electron fluid in the presence of a background
magnetic field B ≡ −εi j∂iA j . The electron density ρ = ρφ +
ρψ = |φ|2 + |ψ |2 is thus a sum of the densities of the two
artificial species.

III. UNIFORM STATES

We first analyze the filling fractions that are naturally de-
scribed by this two-fluid theory. To derive those fractions,
we note that the effective magnetic fields seen by φ and ψ

particles in a uniform system are

Bφ = B − 2π (qρφ + q′′ρψ ), (6)

Bψ = B − 2π (q′′ρφ + q′ρψ ). (7)

When Bφ = 0, we expect the CBs to form a condensate, and
when Bψ = 2πρψ/νCF, with νCF being an integer, we expect
CFs to fill |νCF| effective LLs. Thus the four integers q, q′, q′′,
and νCF specify a QH state. Specifically, our hybrid picture
suggests the following wave-function ansatz for the electrons:

�(z) = A

⎡
⎣∏

i< j

(si − s j )
q
∏
k<l

(wk − wl )
q′

×
∏
i,k

(si − wk )q′′
�mix(s, s̄; w, w̄)

⎤
⎦e−∑i |zi|2/2, (8)

where s ≡ (s1, . . . , sNφ
) and w ≡ (w1, . . . ,wNψ

) are the com-
plex coordinates of the CBs and the CFs, respectively, z ≡
(s1, . . . , sNφ

; w1, . . . ,wNψ
) are the collection of all the co-

ordinates, �mix(s, s̄; w, w̄) is a many-body wave function of
the mixture of CBs and CFs, and A represents an antisym-
metrization over all coordinates. In writing the wave function
in this form we have assumed a symmetric gauge for the
background field, and the complex coordinates are defined as
zi = (xi − iyi )/lB, where lB ≡ 1/

√
B is the magnetic length.

Depending on the filling fraction, one may further enforce a
projection of the wave function onto the lowest LL (LLL). For
the current case, �mix(s, s̄; w, w̄) = φ(s, s̄)ψ (w, w̄), where
φ(s, s̄) = 1 is a Bose condensate wave function [2,10] and
ψ (w, w̄) (modulo the final Gaussian factor) is a Slater
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determinant of CFs in |νCF| filled effective LLs. We will call
a state defined in this way the [q, q′, q′′, νCF] state; its filling
fraction is

ν = 2πρ

B
= q + q̃′ − 2q′′

qq̃′ − (q′′)2
(9)

with q̃′ ≡ q′ + 1/νCF, while the density ratio between the two
components is

ρφ/ρψ = (q̃′ − q′′)/(q − q′′). (10)

It is necessary that ν > 0 and ρφ/ρψ � 0; for q′′ = even,
there is an additional issue of whether the state vanishes upon
antisymmetrization, as discussed below.

Clearly, these states include many familiar ones. States
with νCF = 0 are pure CB states that correspond to Laugh-
lin states at ν = 1/q [11]. States with q′′ = q̃′ are pure CF
states, which is possible only if |νCF| = 1 or ∞, given the
integer constraint of q′, q′′, and νCF [12]. For νCF = ∞ they
correspond to a composite Fermi liquid (CFL) with ν = 1/q′,
while for νCF = ±1 they are a CF version of the Laughlin state
at ν = 1/(q′ ± 1).

Turning to multicomponent states (which have been dis-
cussed within pure CB or CF approaches [13–16]), note that
states with νCF = ±1 and q′′ �= q̃′ = q have equal densities of
CFs and CBs and the same filling fraction and Hall responses
as (q, q, q′′) Halperin states [17], the antisymmetrized versions
of which are in turn related to various hierarchical states
[10] and Read-Rezayi states [18]. The simplest example is
[3, 2, 2, 1], which has ν = 2/5 like the (3,3,2) Halperin state.
The identification between these two states is precise if the
CFs are taken to occupy the lowest Landau level. Since, when
q′′ is even, the (q, q, q′′) Halperin states vanish upon antisym-
metrization, so do the corresponding [q, q ∓ 1, q′′,±1] states;
indeed, as pointed out in Ref. [10], in order to give a correct
wave function for this sort of hierarchical state, an additional
degree of freedom—“orbital spin”—should be included in or-
der to differentiate the wave functions of the two components.
Within our framework, this could be conveniently achieved by
considering a state in which the CFs fill the first effective LL
and leave the zeroth effective LL empty, as in the conventional
CF construction.

One of the most interesting possibilities revealed by this
approach is a coexistence of a CB condensate and a CFL
([q, q′, q′′ �= q′, νCF = ∞]). Note that in this case the Fermi
sea volume of the compressible CF state times the spatial area
per flux quantum is not equal to the filling fraction ν, signaling
a deviation from the Luttinger relation [19]. Similar physics
have been proposed in the context of doped spin liquids:
When part of the electrons form a topologically ordered state
while the remaining part forms a Fermi liquid, such a state of
matter has been dubbed a “Fermi liquid∗” (FL∗) [20]. In the
same spirit, we name the coexisting phase of a CB condensate
and a CFL a “composite Fermi liquid∗” (CFL∗). To give an
example, [1, 0, 2,∞] is such a state describing ν = 3/4, in
which 2/3 of the electrons form a condensate while 1/3 of the
electrons form a CFL.

We mention that similar trial uniform wave functions (but
not field theory formalisms) that have coexisting CBs and
CFs have been proposed in Refs. [21,22], where they were

used to describe the transition between a CFL state and a CB
condensate state in a QH bilayer.

IV. QUASIPARTICLE IN LAUGHLIN STATES

In Ref. [1], Zhang, Hansson, and Kivelson described the
Laughlin FQH liquids at ν = 1/q using the CB part of Eq. (1),
i.e., the CSGL theory. In addition to the correct FQH re-
sponse, the saddle-point treatment of this theory provides
natural vortex solutions that describe the fractionally charged
anyonic quasiholes. However, the theory also has deficiencies:
Among other things, it does not simply capture the intra-LL
magnetoroton spectrum at small momentum. Also, the natural
candidate for a quasielectron, namely, a fundamental antivor-
tex, is unappealing in that the charge density vanishes at the
center of the quasiparticle [23]. In this section, we show how
the extension of the CSGL theory to our two-fluid theory al-
lows for more general and physically appealing quasiparticle
solutions (including quasielectrons and neutral excitations),
which are the bound states of vortices of the CB condensate
and several CFs. Exploiting the freedom to choose different
values of q′ and q′′ (as long as q′ is even), we find distinct
soliton solutions of the saddle-point equations having the
lowest energy for different ranges of interaction strength, all
of which have the same charge and orbital spin, but different
quadrupole moments. We present the main results here and
defer the detailed discussion to Appendix B.

A. Formal considerations

We first consider the topological properties of the possible
soliton excitations. In Appendix B 1 we derive that, for a
soliton bound state made from nv vortices and nψ CFs (with
both nv and nψ integers), the charge Q, self-statistical angle
θstat, and orbital spin Sz (for rotationally invariant systems) are
given by

Q = −nψ + nv + q′′nψ

q
, (11)

θstat = qπQ2 mod 2π, (12)

Sz = Lz
ψ + (q′ − q)nψ − qQ

2
, (13)

where Lz
ψ is the angular momentum carried by the CFs. The

self-statistical angle is independent of the sign of the charge
and satisfies a familiar charge-statistics relation.

With these general topological properties of the excita-
tions, we may constrain the composition of the solitons that
are of interest. In this paper, for concreteness, we will inves-
tigate the quasiholes, the quasielectrons, and certain neutral
excitations. On physical grounds, we have only explicitly
considered quasiparticles that satisfy the topological nonrel-
ativistic spin-statistics relation [24]

qQ = −2Sz, (14)

which leads to the constraint

(q − q′)nψ = 2Lz
ψ. (15)
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FIG. 2. For a ν = 1/q = 1/3 FQH state described by a Laughlin state, as functions of the (short-range) interaction strength V = V2 = V1,
we compute the energy E and the quadruple moment Q4 of different soliton solutions with charge Q = 1/3 (quasihole) in (a) and (d), Q = 0
(neutral excitations) in (b) and (e), and Q = −1/3 (quasielectron) in (c) and (f). E , V , and Q4 are measured in units of cyclotron frequency
ωc = B/m, inverse mass 1/m, and squared magnetic length l2

B = 1/B, respectively. The label in each plot shows the values of nv , nψ , and Lz
ψ

(vorticity, CF number, and CF angular momentum), and the corresponding values of q′ and q′′ can be inferred from Eqs. (11) and (15). The
curves are plotted in the range of interaction strength where the solitons are stable. Except for the vortex and the antivortex (1,0,0 and −1, 0, 0),
which were studied in Ref. [23], all other solutions plotted have nψ = 2, i.e., two CFs are bounded to the vortices.

B. Results

We have carried out explicit calculations with q = 3 (i.e.,
for the ν = 1/3 Laughlin state) and looked for soliton so-
lutions for various compositions and different values of q′
and q′′ consistent with Eq. (15). To be concrete, we have
fixed V1 = V2 = V and (since the solitons are relatively small)
have neglected the long-range part in the effective interac-
tion in Eq. (5). Then, we numerically solve the saddle-point
equations δL

δφ
, δL

δψ
= 0 (see Appendix B 2 for details). For sim-

plicity, we assume rotational symmetry of the soliton, such
that only the radial dependence of the field amplitudes needs
to be accounted for. In order to self-consistently solve these
coupled saddle-point equations, we performed a numerical
calculation with a relaxation algorithm on a radial coordinate
discretized into at least 5000 mesh points for r/lB ∈ [0, 12].
Each solution we obtained was verified to be convergent to
a relative precision of 10−2 in the value of the energy. Due
to limited computational resources, we only considered cases
with “small” soliton solutions, i.e., with |nv| � 5 and nψ � 2.

Indeed, we found multiple solutions for each case of frac-
tional charge Q = ±1/3 and 0. As shown in Fig. 2, those
solutions have distinct energies E and quadruple moments
Q4 ≡ − ∫ d2�rr2[ρ(r) − ρ̄] and are stable in different ranges
of the interaction strengths V . These observations suggest
that, depending on the microscopic details of the interactions,
the nature of the lowest-energy excitations may be entirely
modified without any changes in the ground state properties.

As one may expect, the pure CB vortex solution has
the lowest energy among the solutions for quasiholes. By

contrast, for quasielectrons, there are various composite so-
lutions consisting of CB vortices and CFs which, for an
intermediate range of interaction strengths, have lower ener-
gies than the antivortex solution. These composite solutions
also have more realistic density profiles than the naive an-
tivortex solution: As shown in Fig. 3, the density ρ(r) of
the bare antivortex solution vanishes at the origin and has a
large density modulation extending over a wide range of r. In
contrast, ρ(r) for a composite solution is much smoother.

Especially, we note that, in a wide range around mV ≈ 5,
the most stable quasielectron solution (nv, nψ, Lz

ψ = −1, 2, 1)
is given by a flux-attachment matrix with q′ = 2 and can be
viewed as a bound state of −1 vortices of ν = 1/3 FQH fluids
and two CFs at ν = 1/2. This fact hints at the “naturalness” of
these composite solutions. Eventually, the energetic advantage
of these types of composite solutions in our simplified calcula-
tion (at least for those with positive nv) suggests that in future
serious numerical simulations with realistic setups, one should
consider the more general class of wave functions [Eq. (8)]
with �mix(s, s̄; w, w̄) = φ(s, s̄)ψ (w, w̄), where ψ (w, w̄) is a
few-body fermion wave function to be optimized in subse-
quent variational calculations and φ(s, s̄) =∏i(si − η)nv .

Remarkably, besides quasielectron solutions, we also
found localized neutral excitations that have not yet been
theoretically predicted. It may be an exciting possibility that
these might describe the intra-LL magnetoroton excitations.
We find that, in the regime where such excitation is stabi-
lized, its energy is less than the sum of the energies of a
quasielectron and a quasihole, indicating that this may be a
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FIG. 3. Representative density profiles ρ(r) of quasielectron ex-
citation with Q = −1/3 out of a ν = 1/3 FQH state described by
a Laughlin state, with the antivortex solution (left panel) and the
composite solution with nv, nψ, Lz

ψ = −1, 2, 1 and q, q′, q′′ = 3, 2, 3
(right panel). Both profiles are obtained at mV ≈ 5.5, and the mag-
netic length lB = √

1/B is set to 1. In (b), ψ0 and ψ1 represent the CF
states with angular momentum Lz = 0 and 1, respectively.

Girvin-MacDonald-Platzman mode distinguishable from the
(quasi)particle-hole continuum at zero momentum.

We now compare our proposal with existing descriptions
of the quasielectron. In the CF picture, a quasielectron is an
extra CF in the next effective LL. This is a simple picture,
but it is not immediately evident that this excitation is a frac-
tionally charged anyon. In the CB picture, this is clear since
an effective antivortex has the correct charge and topological
properties. However, as already mentioned, the charge distri-
bution of an elementary antivortex is unphysical, an issue that
does not arise for the energetically favored vortex.

The quantity Sz is a localized orbital angular momentum,
or “orbital spin,” which is unrelated to the fundamental spin
of the electrons. In numerical calculations, the orbital spin
can be deduced from the relation between the number of
particles and the number of flux quanta for the ground state on
a sphere and is consistent with the value predicted by the spin-
charge relation (14). For the Laughlin quasiparticles discussed
here, Sz = ±1/2; so in the CF picture the difference between
the quasihole and the quasielectron is naturally explained
since the latter has a single CF in the first effective LL, which
involves an extra unit of Lz compared with the states in the
LLL. In the CB picture, the orbital spin can be interpreted
as the angular momentum of a charge-vortex bound state,
which is most easily explained in terms of a descendant vertex
operator in a conformal field theory (CFT) [25]. It is quite
pleasing that the preferred quasielectron solution discussed
above naturally fits in the CFT description. Details about this
are given in Appendix B 3. We also note that there are other
approaches to quasielectron wave functions, such as, e.g., that
in Ref. [26]. To summarize, although the composite solutions
for a quasielectron in our formalism seem complicated, we
stress that they require fewer ad hoc assumptions compared
with existing schemes. They do not rely on any concept of the
“effective Landau level” as in CF theories, nor do they rely

on an artificially introduced orbital spin as in an effective CB
theory [10].

V. QH INTERFACES

In this section, we apply our theory to a smooth interface
B(x) between two regions with different magnetic fields. Far
to the left, B(�r) → B− = 2πqρ̄, at which a ν = 1/q FQH
state (with νCF = 0) is stable, while far to the right, B(�r) →
B+, at which there is the compressible state [q, q′, q′′, νCF =
∞] with ν given in Eq. (9). For instance, this includes the case
in which q′′ = q′, B+ = (q′/q)B−, and the state at x → ∞ is
a CFL with ν = 1/q′; for q′′ �= q′ the compressible state is
a CFL∗. In all cases, we assume that we can take a single
value of q, q′, and q′′ in describing the state of the system
for all positions. We further assume that the electron density
is constant, ρ(�r) = ρ̄, when viewing the system at distances
larger than a scale �ρ , which is a presumed consequence of
the presence of long-range Coulomb interactions and the con-
dition of charge neutrality. In our treatment, we will impose
ρ = ρ̄ as a constraint.

We will consider smooth B(�r) profiles, which vary over a
length scale L that is greater than all the microscopic length
scales

L � lB, �ρ, �mf, (16)

where lB is the larger magnetic length for B = B± and �mf is a
CF mean free path discussed below.

Due to disorder broadening, the CF compressibility κ can
be taken to be approximately constant. Therefore we use a
local expression for the CF kinetic energy,

Ekin = ρ2
ψ/(2κ ). (17)

This term thus acts as a potential and effectively provides
a “Fermi degenerate pressure.” Meanwhile, due to disorder
scattering, we assume that the CFs are dissipative and thus
cannot support any persisting current,

Ji
ψ = 0, (18)

when considering phenomena at length scales above the mean
free path �mf of the CFs. We note that both assumptions about
the physics of the CFs can be improved, e.g., by introducing
more sophisticated local response terms.

The goal of this section is to derive the interpolating be-
havior between the two regions and, especially, determine
how the CB component ρφ changes over the interface. A
detailed derivation for a representative case can be found in
Appendix C.

We start our analysis by adopting the dual representation
of the CB part of the theory. To do so, we parametrize Jμ

φ =
εμνσ ∂νhσ /(2π ) with a hydrodynamic field h and rewrite the
CB Lagrangian in (1) as

Lφ[h, a] = 1

2π
(a + A)dh + m �J2

φ

2ρφ

− (∇ρφ )2

8mρφ

. (19)

We note that by rewriting the theory in this form, we have
assumed that the CBs remain condensed and vortices are
expelled so that the quasiparticle current which couples to h
can be neglected.
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Next, we treat the CF part of the theory in an effective
manner. The constraints on the density will be imposed by a
Lagrangian multiplier field η, which can be interpreted as rep-
resenting the effects of the long-ranged interactions. Including
the effective kinetic energy in Eq. (17) and incorporating
the zero-current condition in Eq. (18), we have written the
effective Lagrangian for the CFs as

Lψ,eff[ρψ ; b; η] = ρψ (b0 + A0) − ρ2
ψ

2κ
+ η(ρφ + ρψ − ρ̄ ).

(20)

We will seek steady-state solutions for spatially nonuni-
form magnetic fields B(�r) and with no electric field. We then
pick a static gauge, h(�x, t ) = h(�x), for the hydrodynamic field,
statistical gauge field b, and background field, such that all
terms containing time derivatives can be dropped from the La-
grangian. Finally, we shift b → b + q′′h to obtain an effective
Lagrangian:

Leff[ρψ ; h, b; η]

= ρψ (q′′h0 + b0 + A0) − ρ2
ψ

2κ
+ η(ρφ + ρψ − ρ̄)

− 1

4πq′ bdb − V1

2
ρ2

φ − V2ρφρψ + m(∇h0)2

2(2π )2ρφ

− (∇ρφ )2

8mρφ

+ q

4π
hdh + 1

2π
Adh, (21)

where ρφ = − Bh
2π

≡ 1
2π

(∂1h2 − ∂2h1) should be understood.
We see that b still attaches q′ flux to each CF.

In Appendix C, we investigate the full set of saddle-point
equations, but the ones obtained by varying h and ρψ are
particularly useful,

δL
δh0

: q′′ρ̄ + (q − q′′)ρφ

− B

2π
− m

(2π )2
∇
(

1

ρφ

∇h0

)
= 0, (22)

δL
δhi

: εi j∂ j

{
qh0 + η − V1ρφ − V2ρψ − m2(∇h0)2

2(2π )2ρ2
φ

+ 1

8m

[
2∇
(

1

ρφ

∇ρφ

)
+ (∇ρφ )2

ρ2
φ

]}
= 0, (23)

δL
δρψ

:q′′h0 + η − ρψ/κ − V2ρφ = 0, (24)

where we have used the constant-density constraint as well
as the other equations of motion. The physical meaning of
Eq. (22) is that the local net magnetic field seen by the CBs,
Bφ = B − 2π (qρφ + q′′ρψ ), induces a CB current; Eq. (23)
means that the net potential experienced by CBs modulates
the density profile; and Eq. (24) implies that the net force on
the CFs is zero. From Eqs. (24) and (23), we see that η indeed
can be interpreted as an electric potential seen by both φ and
ψ provided by the long-range interactions.

For simplicity, from here on, we assume that the magnetic
field strength only depends on x, i.e., the interface is along the
y axis.

As already mentioned, we will show that the CB con-
densate extends into the interface. To study this “proximity”
effect, we define

δρ(x) ≡ ρφ (x) − ρB(x), (25)

ρB(x) ≡ [B(x)/2π − q′′ρ̄]

[q − q′′]
. (26)

This parametrization is such that if δρ(x) = 0, the effective
magnetic field seen by the φ particles, Bφ , would vanish.

Integrating Eq. (22), we obtain a formal solution for h0(x)
as a functional of ρφ (x):

h0(x) = (q − q′′)
(2π )2

m

∫ x

−∞
dx′ρφ (x′)

∫ x′

−∞
dx′′δρ(x′′).

(27)

Combining Eqs. (23) and (24) and substituting in the above
formal solution Eq. (27) gives an integrodifferential equation,

(q − q′′)2(2π )2
∫ x

−∞
dx′ρB(x′)

∫ x′′

−∞
dx′′δρ(x′′)

= mṼ [ρ̄ − ρφ (x)] − 1

4

[
ρ̈φ

ρφ

− (ρ̇φ )2

2ρ2
φ

]
x

, (28)

where we define Ṽ ≡ 2V2 − V1 − 1/κ .
This equation is in general hard to solve analytically. How-

ever, an approximate solution (which we will compare with
the exact numerical solution later) can be obtained as follows.

(i) Noting that all the fields should vary at scale L � �B ∼
1/

√
ρ, we drop the terms in Eq. (28) that involve explicit

spatial derivatives.
(ii) Since we already assumed that CB remains condensed

with no quasiparticles, the net field seen by the CBs should be
small compared with the CB density, i.e., |δρ| � ρφ , so we
can approximate explicit factors of ρφ by ρB.

These approximations, which we will more carefully jus-
tify later, allow us to solve for δρ(x) and h0(x) analytically:

δρ(x) ≈ − mṼ

(q − q′′)2(2π )2

d2

dx2
[ln ρB(x)], (29)

h0(x) ≈ Ṽ

(q − q′′)
[ρ̄ − ρB(x)]. (30)

Since Ji
φ = εi j ∂ j h0

2π
, the total current along the interface can be

computed as well:

Iy = h0(−∞) − h0(∞)

2π
= Ṽ (B+ − B−)

[2π (q − q′′)]2
. (31)

Equations (29)–(31) are the central results of this section, and
they suggest that for the setups and assumptions we are taking,
the density profile of the CB condensate, ρφ (x), follows ρB(x);
the deviation δρ(x) is controlled by a phenomenological pa-
rameter mṼ and is small as long as the magnetic field is slowly
varying. This result suggests that the CB condensate may well
“penetrate” into the interface region where it coexists with
the metallic component, which is the QH proximity effect
we alluded to earlier. Heuristically, this effect further leads
to a nearly quantized QH response in an essentially metallic
regime.
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FIG. 4. The density profile ρφ (x)/ρ̄ numerically solved from
Eq. (28) with q = 1 and q′ = q′′ = 0 for magnetic field profile
B(x) = B0(1 − tanh x

L )/2 with L = 5l0, where l0 = 1/
√

B0 and ρ̄ =
B0/(2π ) are the magnetic length deep in the QH regime x → −∞
and the electron density, respectively. The black dashed curve is
B(x)/B0.

We now examine more carefully the justification for the
two approximations used to solve Eq. (28). To safely neglect
the spatial derivatives, it is necessary that |mṼ |(ρ̄ − ρφ ) �
1/L2. In order to safely approximate ρφ with ρB, we need
|δρ| � ρφ , which, according to Eq. (29), implies |mṼ |/L2 �
ρφ . Thus the approximations in obtaining the solution are
justified as long as

1

L2(ρ̄ − ρφ )
� |mṼ | � L2ρφ. (32)

Given L � �B, this is always satisfied as long as ρφ and ρψ =
ρ̄ − ρφ are not too small compared with ρ̄. It breaks down far
enough into the pure CB or CF regime, but for large L it holds
over a broad intermediate range of x on the interface.

To test the qualitative correctness of the solution in
Eq. (29), we numerically solved Eq. (28) for various mṼ with
q = 1, q′′ = q′ = 0, which corresponds to a ν = 1 QH to a
B = 0 metal interface. [In Fig. 5 in Appendix C we show
the analogous results for q = 3.] Indeed, for a magnetic field
configuration with a finite interface width (which in Fig. 4
we have taken to be L = 5l0, where l0 is the magnetic length
deep in the QH regime), we find that ρφ (x) roughly follows
ρB(x) [i.e., the properly scaled magnitude of B(x) in this case]
with a deviation that is roughly proportional to mṼ (which
can be seen by comparing the results with mṼ = 9 and 18).
Moreover, as expected, where the inequality in Eq. (32) is not
satisfied, extra features exist in the numerical solution: (i) Es-
pecially for larger values of mṼ , ρφ decreases toward 0 much
more slowly than does B(x) deep in the metallic regime. How-
ever, it should be noted that there is no reason for our theory
to apply in the regime where ρφ is small, so the tail behavior
is not physically meaningful. (ii) There is a small oscillatory
component visible in the case of a small mṼ = 6 result with an
onset at the edge of the pure CB regime. This piece becomes
progressively more pronounced for still smaller values of mṼ
and is a potentially physically interesting effect that is not
captured by the approximate solution from Eq. (29).

Slightly generalizing the theory in this section, the current
formalism may also be used to study QH-QH interfaces at
different filling fractions, which are specified by the same q,
q′, and q′′ but two different integer fillings for CF. One may
further consider an FQH-metal-FQH junction with a relatively
narrow metal region with B not reaching the value correspond-
ing to the metallic state. Then, based on the above analyses,
the CB condensate density ρφ remains finite across the junc-
tion, so that its phase coherence and QH response might be
maintained despite the large variation in the magnetic field
strength across the junction.

VI. DISCUSSION

The physical excitations in the compressible phase of a
half-filled LL (and related phases) are not quite quasiparticles
[27], but there is nonetheless no doubt that the correct starting
description is in terms of Fermi-surface excitations of a CFL.
An FQH liquid can be described either in terms of filled LLs
of CFs or in terms of the CSGL theory of CBs. The latter
provides a more direct description of the essential physics
in terms of a precise correspondence with superconductivity:
The quantized Hall conductance comes from the ability of
the condensate to carry a dissipationless current; the incom-
pressibility comes from the Meissner effect; and the charge
and statistics of the quasiparticles come from flux quantiza-
tion [28]. Conversely, it has been shown that an approach
based on CF wave functions can account, with remarkable
quantitative precision, for much of the low-energy excitation
spectrum—something that is generally beyond the scope of
any field-theoretic approach. In particular, a simple treatment
of the short-scale structure of the quasielectron and of the
collective mode spectrum has been lacking from the CSGL
perspective.

In general, a field theory can only be expected to cap-
ture the long-distance properties of a physical system and,
as such, describe the system close to a critical point if not
elsewhere. A compelling (and at least partially successful)
account of QH plateau transitions in the presence of disorder
has been achieved from the CB perspective by analogy with
the magnetic-field-driven superconductor-to-insulator transi-
tion [29], or from the field theories with a CF perspective
[30,31]. Theoretically, consistent formulations of the QH-
to-QH nematic phase transition based on CSGL [32,33] or
other field theories [34–36] have been constructed, where the
transition is associated with the softening and condensation
of a �q = �0 quadrupolar mode. A similar approach can also
describe the transition from a fractional Chern insulator to a
regular band insulator.

In general, the existence of a “web of dualities” [37]
allows any given problem to be described from multiple
perspectives—some of which involve bosonic fields and some
of which involve fermionic fields. The question of which is
best boils down to which gives a more direct and effective
description of the physically important degrees of freedom.

We have focused here on an analogy with the proximity
effect in the theory of superconductivity. The saddle-point
analysis we have presented suggests (but certainly does not
prove) that the QH condensate can extend deep into an other-
wise metallic region. One might as well attempt a fermionic
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description of this effect [in Fig. 6 in Appendix D we show
the local density of states (LDOS) for noninteracting elec-
trons in the presence of a spatially varying magnetic field
that interpolates between a value corresponding to the ν = 1
QH effect and a zero magnetic field]. By eye, one can see
that a peak in the LDOS that one can associate locally with
the lowest LL remains well articulated relatively far into the
metallic regime. This is suggestive of the same basic physics
we have found from an alternative perspective, but it is not
obvious where to go from this observation. We thus sug-
gest that the observation of the persistence of QH coherence
through a metallic region would constitute a compelling con-
firmation of the existence in a direct physical sense of a QH
condensate.

Indeed, we were initially inspired to undertake this study
by preliminary studies of the Hall response of a two-
dimensional electron gas (2DEG) confined to the surface of
a cylinder and subjected to a magnetic field. The field can
be arranged so that there are regions of QH fluids sepa-
rated by metallic regions, which is precisely the geometry
we have considered in Sec. V. For fields such that there is
a region of QH fluid on the top and bottom, this experimental
geometry is analogous to that of a superconductor–normal-
metal–superconductor (SNS) junction familiar from the study
of superconductivity. It is an ideal geometry for explor-
ing the penetration of a QH condensate into a metallic
region.

It is our belief that the two-component CS field theory we
developed to treat this problem can be of broader utility. In this
context, we have shown that it permits a physically plausible
treatment of the quasielectron and that it may allow an al-
ternative approach to characterizing charge-neutral collective
excitations from the CB perspective.
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APPENDIX A: CB-CF TRANSMUTATION

To describe a current with a component perpendicular to
the interface, there must be processes that convert CBs into
CFs and vice versa. Such processes are also important if we
want to describe how the system responds to a magnetic field
profile that changes in time, and even for fixed profiles the
relative numbers of CBs and CFs will fluctuate. To describe
the CB-CF transmutation, we first recall how the Lagrangian
(1) is derived from a first quantized description.

To go from fermions to the mixed representation, we
divide the particles into two groups {�ri ; i = 1 · · · Nφ} and
{�si ; i = 1 · · · Nψ } and consider fully antisymmetric wave
functions �(�r1 · · · �sNψ

). To illustrate the formalism, we take
(q, q′, q′′) = (1, 0, 1), which is easy to generalize to arbi-
trary (q, q′, q′′) with q odd and q′ even. We define a unitary

transformation

U = exp i

⎡
⎣ Nφ∑

i< j

arg(�ri − �r j ) +
Nφ∑
i

Nψ∑
j

arg(�ri − �s j )

⎤
⎦ (A1)

and note

U †(−i �∇�ri + �A)U = (−i �∇�ri + �a(�ri) + �A), (A2)

where

�a(�r) =
Nφ∑

�r j �=�r
�∇�r arg(�r − �r j ) +

Nψ∑
j

�∇�r arg(�r − �s j ), (A3)

and similarly,

U †(−i �∇�si + �A)U = (−i �∇�si + �b(�si ) + �A), (A4)

where

�b(�s) =
Nφ∑
j

�∇�s arg(�s − �r j ). (A5)

The corresponding statistical magnetic fields are

Bφ (�r) = εi j∂ia j = 2π

Nφ∑
�r j �=�r

δ2(�r − �r j ) + 2π

Nψ∑
j

δ2(�r − �s j )

= 2πρφ (�r) + 2πρψ (�r),

Bψ (�s) = εi j∂ib j = 2π

Nφ∑
j

δ2(�s − �r j ) = 2πρφ (�s), (A6)

where the density is a sum of delta functions at the particle po-
sitions. These are precisely the constraints in (6) obtained by
varying the multiplier fields a0 and b0. Note that the statistical
vector potentials �a and �b have support in the full space.

So far, everything is standard, but we now generalize the
transformation (A1) to be time dependent in such a way that
particle k goes from being a composite boson for t < τk to
being a fermion for t > τk:

U = exp i

⎡
⎣ Nφ∑

i< j

arg(�ri − �r j ) +
Nφ∑
i �=k

Nψ∑
j

arg(�ri − �s j )

+
Nψ∑

j

arg(�rk − �s j )θ (τk − t )

⎤
⎦. (A7)

The corresponding statistical Bφ field is still given by (A6),
except that there is no delta function at position rk , while the
Bψ field is

Bψ (�s) = εi j∂ib j = 2π

Nφ∑
i �=k

δ2(�si − �r j )

+2π δ2(�si − �rk )θ (τk − t ).

So for t < τk we have the old relations (A6), while for t > τk

the CB at �rk has lost its attached unit of b flux. The statistics
are now no longer correct, but this can be fixed if we relabel:
�rk → �sNψ+1, so Nψ → Nψ + 1. Since the newly born CF is
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already attached to an a flux, the net effect of the transmu-
tation is that the kth CB loses its b flux and is transformed
into a CF.

This process is also accompanied by a δ-function pulse of
electric circulation. To see this, note that there will be an extra
potential term in the Schrödinger equation

b̃0 ≡ U †(t )i∂tU (t ) = −
Nψ∑

j

arg(�rk − �s j )δ(t − τk ); (A8)

since we use a static gauge where �b(�r) is time independent,
the electric field comes entirely from b̃0, and all the CFs see a
pulse of the electric field,

Ẽψ (s j ) = −ẑ × �s j − �rk

|�s j − �rk|2 δ(t − τk ), (A9)

which is precisely the amount to reflect the instantaneous
disappearance of one unit of flux at position �rk as seen by the
particles at positions �s j . To see this, note that

�� =
∫ τk−ε

τk−ε

�̇ =
∫ τk+ε

τk−ε

δ(t − τk )
∮
Ck

d�s · ẑ

× �s − �rk

|�s − �rk|2 δ(t − τk )

=
∫
Ck

dθ = 2π, (A10)

where we used Faraday’s law in the second equality and the
contour Ck encircles �rk and is parametrized by the polar angle
θ ; ẑ is the unit vector perpendicular to the plane. For q �= q′′
there would also be a similar instantaneous pulse of electric
Eφ field seen by the remaining CBs. In either case, the correct
commutation relation is retained by transforming the CB to a
CF as already pointed out.

APPENDIX B: DETAILED DISCUSSIONS
OF THE COMPOSITE QUASIPARTICLES

1. Formal consideration

To derive the topological properties of the possible com-
posite soliton solutions, we reparametrize the current of CB,
Jμ
φ = 1

2π
εμνη∂νhη, with a hydrodynamic field h which further

couples to the current of the vortices Jv . In this dual represen-
tation, the terms that are relevant to the topological properties
read

Ltopo = 1

2π

(
a + A + q

2
ω

)
dh + h · Jv

+
(

b + A + q′

2
ω

)
· Jψ + LCS, (B1)

where we used the shorthand notation a · b = aμbμ and intro-
duced the background spin connection of the base manifold,
ω, with the prescription introduced in Ref. [38]. Integrating

out a and defining β ≡ (b − q′′h), it takes the form of the
Wen-Zee theory [39]:

Ltopo = q

4π
hdh + 1

2π
hd

(
q

2
ω + A

)
+ h · (Jv + q′′Jψ )

− 1

4πq′ βdβ +
(

β + q′

2
ω + A

)
· Jψ. (B2)

It thus becomes clear that now we have two decoupled CS
fields, and β simply attaches the q′ flux to each CF.

Integrating out h and β, we get the response action

Ltopo = − 1

4πq

(
q

2
ω + A

)
d

(
q

2
ω + A

)

− π (Jv, Jψ )

[
1
q

q′′
q

q′′
q

q′′2−qq′
q

]
1

d

(
Jv

Jψ

)

+ A ·
[
−1

q
Jv + q − q′′

q
Jψ

]

+ ω ·
[
−1

2
Jv + q′ − q′′

2
Jψ

]
, (B3)

where the symbol 1
d represents the inverse operator of the

exterior derivative.
Now let us assume that we have found a bound state con-

sisting of nv vortices and nψ CFs; then we may rewrite the
response action for the current of these quasiparticles, JQP,
with the substitution Jv = nvJQP and Jψ = nψJQP:

L = − 1

4πq

(
q

2
ω + A

)
d

(
q

2
ω + A

)

+
[

nψ − nv + q′′nψ

q

]
A · JQP

− π

[
(nv + q′′nψ )2

q
− q′n2

ψ

]
JQP

1

d
JQP

+
[

Lz
ψ + q′nψ − (nv + q′′nψ )

2

]
ω · JQP. (B4)

Note that besides the angular momentum carried by the gauge
fields, we also have included the possible angular momentum
Lz

ψ carried by the CF states in such an excitation. Finally,
the charge, statistical phase, and angular momentum of this
excitation can be read off from the effective action, which are

Q = −nψ + nv + q′′nψ

q
, (B5)

θstat = qπQ2 mod 2π, (B6)

Sz = Lz
ψ + q′nψ − (nv + q′′nψ )

2
= Lz

ψ + (q′ − q)nψ − qQ

2
,

(B7)

respectively.
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2. The saddle-point equations

To obtain the composite quasiparticles, we derive the saddle-point equations for φ and ψ :

δL
δφ�

= 0 ⇒ 1

2m
(−i∇ + �a + �A)2φ + V

(
ρφ + ρψ − B̄

2πq

)
φ − a0φ = 0, (B8)

δL
δψ†

= Enψ ⇒ 1

2m
(−i∇ + �b + �A)2ψn + V

(
ρφ − B̄

2πq

)
ψn − b0ψn = Enψn, (B9)

where all En < 0 states are occupied, and the currents are

Ji
φ = −Jφ,i = 1

m
Re[φ�(−i∇ + �a + �A)iφ], (B10)

Ji
ψ = −Jψ,i =

∑
n

1

m
Re[ψ�

n (−i∇ + �b + �A)iψn] (B11)

[remember that Ai = ( �A)i in our convention].
In polar coordinates (r, θ ) of the space, we seek rotationally symmetric solutions by decomposing the φ and ψ fields into an

amplitude part f (r) and a phase part e−imzθ . In this coordinate, the uniform background magnetic field can be characterized by
Aθ ≡ �A · êθ = B̄r

2 (symmetric gauge), and the above equations and the flux-attachment conditions translate into(
aθ (r)
bθ (r)

)
= −2π

r

∫ r

0
dr′ r′K

(
f 2
φ (r′)∑

n f 2
ψn

(r′)

)
, (B12)

(
a0(r)
b0(r)

)
=
∫ ∞

r
dr′ 2π

m
K
(

f 2
φ

[−mz
φ

r + aθ (r′) + Aθ (r′)
]

∑
n f 2

ψn

[−mz
ψn

r′ + bθ (r′) + Aθ (r′)
]
)

, (B13)

0 = −1

2m

(
f ′′
φ + f ′

φ

r

)
+
⎡
⎣ 1

2m

(
−mz

φ

r
+ aθ + Aθ

)2

+ V

(
f 2
φ +

∑
n

f 2
ψ − B̄

2πq

)
− a0

⎤
⎦ fφ, (B14)

En fψn = −1

2m

(
f ′′
ψn

+ f ′
ψn

r

)
+
⎡
⎣ 1

2m

(
−mz

ψn

r
+ bθ + Aθ

)2

+ V

(
f 2
φ − B̄

2πq

)
− b0

⎤
⎦ fψn . (B15)

For each set of (nv, nψ, Lz
ψ ) and thus (q, q′, q′′) that we choose, we constrain the value of mz

φ = nv and
∑nψ

n=1 mz
ψn

= Lz
ψ . Then,

we solve the coupled differential equations by a mixed-iteration method for both fφ and fψn . In each iteration, we first solve fφ
with a relaxation method and then solve fψn by diagonalizing the linear operator (which is, eventually, the Hamiltonian for ψ).
We determine the stability of the solution by inspecting whether the ψ modes we are keeping have negative energy and whether
they are the only ones that do, i.e., that the vortices do trap exactly nψ CFs with angular momentum Lz

ψ .
After obtaining the solution, the total energy of a soliton can be calculated as

E =
∫

d2r
1

2m
(−i �∇ + �a + �A)φ|2 + 1

2m
|(−i �∇ + �a + �A)ψ |2 + V [|ψ |2, |φ|2] (B16)

= π

m

∫ ∞

0
dr r

⎧⎨
⎩
⎡
⎣(d fφ

dr

)2

+ f 2
φ

(
−mz

φ

r
+ aθ + Aθ

)2
⎤
⎦ +

∑
n

⎡
⎣(d fψn

dr

)2

+ f 2
ψn

(
−mz

ψn

r
+ bθ + Aθ

)2
⎤
⎦+ 2mV [ρφ, ρψ ]

⎫⎬
⎭.

(B17)

3. Relation to the CFT quasielectron

In the CFT approach, QH wave functions are expressed as
correlators of operators that represent electrons and quasipar-
ticles [40]. In the simplest case, these operators are vertex
operators in a scalar CFT, but in other cases, they can be
combined with Majorana or parafermion operators. With this
in mind, we define the normal-ordered vertex operators,

V (z) = : ei
√

qϕ(z) :, (B18)

H1/q(η) = : e
i√
q ϕ(η) :, (B19)

where the normal ordering symbol “: :” will be suppressed in
the following. The free massless boson field, ϕ, is normalized
so as to have the (holomorphic) two-point function

〈ϕ(z)ϕ(w)〉 = − ln(z − w), (B20)

so that the vertex operators obey the relations

eiαϕ(z)eiβϕ(w) = eiπαβeiβϕ(w)eiαϕ(z) = (z − w)αβeiαϕ(z)+iβϕ(w)

∼ (z − w)αβei(α+β )ϕ(w). (B21)
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With this, the (holomorphic) wave function for N electrons
and n quasiholes can be expressed as a CFT correlator

�L(η1 · · · ηn; zi ) = 〈H 1
q
(η1)H 1

q
(η2) · · · H 1

q
(ηn)V (z1)V (z2)

· · ·V (zN−1)V (zN )〉. (B22)

A natural guess for a quasielectron operator is to just
change the sign in the exponent in the quasihole operator, i.e.,

to use e− i√
q ϕ(η). However, as discussed in the text, such an

antivortex introduces unacceptable singular terms ∼∏i(zi −
η)−1 in the electronic wave function. Inspired by the CF wave
functions, we instead define a quasielectron operator, P1

q
(z),

that will replace one of the original electron operators V (z).
Thus P(z) is a modified electron operator, with a different
amount of vorticity. The excess electric charge associated with
such a modification is the difference between the charges
of the operators V and P1

q
, i.e., �Qel = e((1 − 1/q) − 1) =

−e/q, as appropriate for a quasielectron at ν = 1/q. The
modified electron operator is taken to be

P1/q(z) = ∂ei(
√

q− 1√
q )ϕ(z)

, (B23)

where the derivative is put in by hand in order for the corre-
lators of P1/q(z) with a number of V (zi ) not to vanish under
antisymmetrization. Clearly, one would like to eliminate this
ad hoc assumption.

Let us now specialize to q = 3 and fuse P1/3(z) with an
electron operator using (B21):

P1/q(z)V (zi) ∼ ∂z(z − zi )
2 ei 5√

3
ϕ(zi ). (B24)

The interpretation of this formula is again obtained by com-
paring it with the ground state, where there are two electrons
at z and zi and six associated vortices. The fused operator
has again two electrons, but only five vortices, so there is
effectively −1 vortex. In addition, there is the factor (z − zi)2,
which in the field theory is interpreted as q′ = 2 and one
derivative, which in our calculation amounts to the electron
at z being in a p wave. Thus our fused quasielectron operator
has the same nv , nψ , and LZ as the favored −1, 2, 1 solution
in the text.

APPENDIX C: DETAILS ON THE QH-METAL
INTERFACE PROBLEM

We start our analysis by adopting the dual representation
of φ theory. To do so, we decompose φ = √

ρφe−iϕ and intro-
duce a Hubbard-Stratonovich field �j to rewrite

Lφ[φ�, φ; a] → Lφ[ρφ, ϕ; a]

= ρφ[−∂0ϕ + a0 + A0]− ρφ

2m
(−∇ϕ + �a + �A)2 − (∇ρφ )2

8mρφ

→ Lφ[ρφ, �j, ϕ; a] = ρφ[−∂0ϕ + a0 + A0]

− �j · (−∇ϕ + �a + �A) + m�j2

2ρφ

− (∇ρφ )2

8mρφ

. (C1)

We thus see that (�j)i is nothing but the CB current Ji
φ =

ρφ

m (−∇ϕ + �a + �A)i. Integrating out ϕ yields the continu-
ity equation ∂μJμ

φ = 0 and allows us to further parametrize

Jμ
φ = εμνσ ∂νhσ /(2π ) with a hydrodynamic field h:

Lφ[h, a] = 1

2π
(a + A)dh − m �E2

h

4πBh
+ (∇Bh)2

16πmBh
, (C2)

where we use Bh ≡ −(∂1h2 − ∂2h1) = −2πρφ and ( �Eh)i ≡
−(∂ih0 − ∂0hi ) = 2πεi jJ

j
φ to represent the effective magnetic

and electric fields if viewing h as a gauge field. We note that
by rewriting the theory in this form, we have assumed that
the CBs remain condensed and vortices are expelled, which is
justifiable so long as the effective magnetic field seen by CBs
is small compared with the superfluid density.

Then, with this dual representation, we put everything to-
gether, integrate out a, and shift b → b + q′′h. Finally, we get

L[ψ†, ψ ; h, b] = LCF[ψ†, ψ ; q′′h + b] − 1

4πq′ bdb

− V1B2
h

4π2
+ V2

Bh

2π
|ψ |2 + A0

(
|ψ |2 − Bh

2π

)

− m �E2
h

4πBh
+ (∇Bh)2

16πmBh
+ q

4π
hdh + 1

2π
Adh.

(C3)

We see that b still attaches q′ flux to each CF. Below we will
seek steady-state solutions for spatially nonuniform magnetic
fields B(�r) with no electric field, such that all the time depen-
dence in the Lagrangian can be dropped.

We note that the treatment of the CFs is very difficult and
so the best we can do is to treat LCF effectively. Specifically,
we will make the following key assumptions to simplify the
theory.

(i) The CFs form a dissipative Fermi liquid that cannot host
any persisting current,

Ji
ψ = 0, (C4)

when considering phenomena at length scales above the mean
free path of the CFs, �mf.

(ii) The long-range Coulomb interaction is effectively
keeping the overall electron density fixed to be

ρφ + ρψ = ρ̄, (C5)

when considering phenomena at length scales above a charac-
teristic one, �ρ .

(iii) The kinetic energy density of the CFs is equal to that
of a Fermi liquid with the same density, i.e.,

Ekin = ρ2
ψ/2κ, (C6)

where κ is the compressibility of the CFs. As an estimate, for
a noninteracting fermion gas, κ = m

2π
. We note that this term

takes the form of a potential and effectively provides a “Fermi
degenerate pressure.”

The constant-density constraint, Eq. (C5), can be imposed
by a Lagrangian multiplier η. Then, with those assumptions,
we write down an effective Lagrangian justifiable at a large
length scale:

Leff[Jψ ; h, b; η] = Jψ · (q′′h + b + A) + η(ρφ + ρψ − ρ̄ )

− 1

4πq′ bdb − ρ2
ψ

2κ
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− V1ρ
2
φ/2 − V2ρφρψ + m(∇h0)2

2(2π )2ρφ

− (∇ρφ )2

8mρφ

+ q

4π
hdh + 1

2π
Adh, (C7)

where ρφ = − Bh
2π

≡ 1
2π

(∂1h2 − ∂2h1) should be understood.
We further note that in the absence of a background electric
field, A0 is a constant and can be absorbed into η.

Starting from this effective Lagrangian, we analyze the
saddle-point equations of h, Jψ under the “no φ current” and
“constant density” conditions in Eqs. (C4) and (C5):

δL
δh0

= 0 ⇒ q′′ρψ + qρφ − B

2π
− m

(2π )2
∇
(

1

ρφ

∇h0

)
= 0,

(C8)

δL
δhi

= 0 ⇒ εi j∂ j

{
qh0 + η − V1ρφ − V2ρψ

− m2(∇h0)2

2(2π )2ρ2
φ

+ 1

8m

[
2∇
(

1

ρφ

∇ρφ

)
+ (∇ρφ )2

ρ2
φ

]}
= 0,

(C9)
δL
δρψ

= 0 ⇒ q′′h0 + b0 + η − ρψ/κ − V2ρφ = 0, (C10)

δL
δJi

ψ

= 0 ⇒ q′′hi + bi + Ai = 0, (C11)

δL
δb0

= 0 ⇒ ρψ − 1

2πq′ ε
i j∂ib j = 0, (C12)

δL
δbi

= 0 ⇒ − 1

2πq′ ε
i j∂ jb0 = 0. (C13)

From Eqs. (C10) and (C9), one can see that η0 has the form
of an electric potential seen by both φ and ψ ; in fact, at the
saddle-point level, it can be viewed as the potential provided
by the long-range interaction

η0(�r) = −δVlong-range[ρ]

δρ(�r)
, (C14)

which is presumably too complicated to be treated in an
ab initio way such that we could only impose its consequences
effectively. With this understanding, we see that the CFs see
a constant overall potential, implying that no force is applied
to the ψ and verifying that there is no ψ current due to the
drifting motions.

Combining Eqs. (C8)–(C10) and (C13), one can obtain
the below differential equations for the two independent un-
knowns ρφ (�r) (which derives ρψ = ρ̄ − ρφ) and h0(�r) [which
derives Ji

φ (�r) = εi j ∂ j h0

2π
], for any B(�r) configuration:

m

(2π )2
∇
(

1

ρφ

∇h0

)
= q′′ρ̄ + (q − q′′)ρφ − B

2π
, (C15)

1

4
√

ρφ

∇
(

1√
ρφ

∇ρφ

)

= mṼ (ρ̄ − ρφ ) + (q′′ − q)mh0 + m2(∇h0)2

2(2πρφ )2
, (C16)

where we have defined Ṽ ≡ 2V2 − V1 − 1/κ and fixed an
undetermined constant to make the equations reasonable in
a pure CB region with constant B = 2πqρ̄ and h0 = 0.

Alternatively, the problem can be solved by the minimiza-
tion of energy functional (with all the constraints understood):

E[ρφ, h0] =
(∇ρφ

)2
8mρφ

− m(∇h0)2

2(2π )2ρφ

+ h0

[
B

2π
− q′′ρ̄ − (q − q′′)ρφ

]
− Ṽ

2

(
ρ̄ − ρφ

)2
.

(C17)

The above results apply to general B(�r). Next we consider
an interface problem where B(x, y) is assumed to only depend
on the x coordinate. We assume B → 2πqρ̄ at x → −∞ and
B → 2πq′ρ̄ at x → +∞, such that deep in the x → ∓∞
regimes, the system can be purely described by a CB con-
densate and a CF liquid, respectively.

To find general solutions for ρφ profile in this case, we
consider the limit where the interface is wide, i.e., B(x) varies
slowly at a length scale L that is much greater than all the
microscopic length scales such as the magnetic length �B, the
mean free path of the CFs �mf, and the density fluctuation
length �ρ . For later convenience, we make the decomposition

ρφ (x) = ρB(x) + δρ(x), (C18)

ρB ≡
(

B

2π
− q′′ρ̄

)
/(q − q′′). (C19)

The physical meaning of ρB is that if ρφ strictly follows ρB,
the effective flux seen by the φ particles vanishes.

Integrating Eq. (C15), we can obtain the formal solution of
h0(x) as a functional of ρφ (x):

h0(x) = (q − q′′)(2π )2/m
∫ x

−∞
dx′ρφ (x′)

∫ x′′

−∞
dx′′δρ(x′′)

(C20)

= (q − q′′)(2π )2/m

{∫ x

−∞
dx′ρB(x′)

∫ x′′

−∞
dx′′δρ(x′′)

+1

2

[∫ x

−∞
dx′δρ(x′)

]2
}

. (C21)

Substituting this formal solution into Eq. (C16), we obtain an
integrodifferential equation for ρφ :

1

4

[
ρ̈φ

ρφ

− (ρ̇φ )2

2ρ2
φ

]
= mṼ (ρ̄ − ρφ ) − (q − q′′)2(2π )2

×
∫ x

−∞
dx′ρB(x′)

∫ x′′

−∞
dx′′δρ(x′′).

(C22)

This equation is in general hard to solve, but now we use the
following two approximations to simplify it.

(i) Noting that L � �B ∼ 1/
√

ρ, we drop the terms on the
left-hand side, since they are suppressed by �2

B/L2.
(ii) We recall that we have made the assumption that there

is no vortex in CB condensate, which validates the formalism
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FIG. 5. The density profile ρφ (x) solved from Eqs. (C15) and
(C16) with q = 3, q′ = q′′ = 0 for magnetic field profile B(x) =
B0(1 − tanh x

5l0
)/2, where l0 = 1/

√
B0 and ρ̄ = B0/(2πq) are the

magnetic length and the electron density, respectively, deep in the
FQH regime x → −∞. ρB(x)/ρ̄ = B(x)/B0 is plotted in black as a
reference [see Eq. (C18) for the definition of ρB].

in Eq. (C1). This requires that the magnitude of the effective
flux density seen by CB, which is equal to |(q − q′′)δρ| ∼
|δρ|, is much smaller than ρφ , so that we can approximate ρφ

with ρB. We note that to give the correct asymptotic behavior
ρφ → 0 as B → 2πq′ρ̄ at x → ∞, we necessarily need to
take q′′ = q′.

Those approximations, which we will justify later, reduce
the equation to

mṼ (ρ̄ − ρB) = (q − q′′)2(2π )2
∫ x

−∞
dx′ρB(x′)

∫ x′′

−∞
dx′′δρ(x′′),

(C23)

which is exactly solved by

δρ = − mṼ

(q − q′′)2(2π )2

d2(ln ρB)

(dx)2
, (C24)

which also leads to

h0 ≈ − Ṽ

(q − q′′)
(ρB − ρ̄ ) (C25)

⇒ Jy
φ = − 1

(2π )
∂xh0 = Ṽ ρ̇B

2π (q − q′′)
(C26)

⇒ Iy =
∫ ∞

−∞
dxJy

φ (x) = − Ṽ ρ̄

2π (q − q′′)
. (C27)

We now more rigorously justify the assumptions in obtain-
ing this solution. In order to safely neglect the left-hand side of
Eq. (C22), it is necessary that mṼ (ρ̄ − ρφ ) � 1/L2. In order
to safely approximate ρφ with ρB, we need |δρ| � ρφ , which
implies |mṼ |/L2 � ρφ . Combining these two conditions, we
are able to justify the approximate solution as long as

1

L2(ρ̄ − ρφ )
� |mṼ | � L2ρφ. (C28)

Given L � �B, this is always satisfied as long as ρφ, ρψ are
not too small compared with ρ̄.

To verify the qualitative correctness of the solution in
Eq. (29), we numerically analyze Eq. (28) with q = 3, q′′ =
q′ = 0. Indeed, for a specific magnetic field configuration with
a finite interface width, as illustrated in Fig. 5, we do find that
ρφ (x) roughly follow ρB(x) when Eq. (C28) is satisfied.

APPENDIX D: NONINTERACTING INTERFACE

As a guide to intuition, we have analyzed the structure of
the QH-to-metal interface in the noninteracting limit where
the single-particle states can be computed exactly. In Fig. 6 we
show the numerically computed density profile as well as the
local density of states (LDOS) of a noninteracting system with
a spatially varying magnetic field, which is assumed to have
only x dependence in such a way that the x → −∞ region is
an integer QH state with ν = 1 and the x → ∞ region is a
free metal. As can be seen in Fig. 6(a), the density at fixed
chemical potential (chosen so that the density approaches

FIG. 6. Interface between a ν = 1 integer QH state and a free metal corresponding to the magnetic field profile B(x) = B0[1 − tanh( x
5l0

)]/2

and chemical potential μ = ω0, where l0 = 1/
√

B0 and ω0 = B0/m are the magnetic length and cyclotron energy, respectively, deep in the QH
regime at x → −∞. This choice of chemical potential sets the electron density to be ρ → ρ̄ = 1/(2π l2

0 ) for both x → ±∞ limits. The plots
show (a) the density profile ρ(x)/ρ̄ at fixed μ, with B(x)/B0 shown for comparison as a black dashed curve, and (b) the local density of states
(LDOS), measured in units of 1/(ω0l2

0 ), for energies below μ, with the local cyclotron energy ωc(x)/ω0 ≡ B(x)/B0 again shown in black for
comparison.
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identical limits as x → ±∞) is not strongly modulated across
the interface even before adding any interactions. In Fig. 6(b),
we see that the lowest LL remains identifiable as a peak in

the LDOS far into the region in which there are many higher
occupied LLs, which intuitively justifies our picture of a CB
condensate extending into a metallic region.
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