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Interplay between superconductivity and magnetism in triangular lattices
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Inspired by recent advances in the fabrication of surface superlattices, and in particular the triangular lattice
made of tin (Sn) atoms on silicon, we study an extended Hubbard model on a triangular lattice. The observations
of magnetism in these systems justify the inclusion of a strong on-site repulsion, and the observation of super-
conductivity suggests including an effective, nearest-neighbor attractive interaction. The attractive interaction
mimics the effect of strong on-site repulsion near half filling, which can be seen in strong-coupling vertex
calculations such as the Eliashberg method. With this extended Hubbard model on a triangular lattice with
its geometrical frustration, we find a rich phase diagram of various magnetic orders and pairing functions,
within the framework of self-consistent mean field theory. We uncover the competition between magnetism
and unconventional superconductivity, and their coexistence for triplet pairings. We follow the Fermi surface of
the system as the system is doped away from half filling and find nesting vectors and a Lifshitz transition, which
provide an intuitive understanding of the phase transitions between the many orders we consider.
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I. INTRODUCTION

Recent theoretical studies of superconductivity in trian-
gular lattice systems have been motivated by a series of
experimental investigations [1–4] where Sn adatoms placed
on the surface of Si(111) form a two-dimensional triangular
lattice, showing some evidence for unconventional chiral d-
wave superconductivity. The magnetic ordering of the same
superlattice system has been intensively studied as well,
both theoretically and experimentally [5–8]. These kinds of
systems combine the geometric frustration of the triangular
lattice with strong electronic correlations and can, at least in
theory, bring about a variety of states of matter such as a
spin liquid, a collinear antiferromagnet, and spiral magnetic
order at half filling as well as several unconventional super-
conducting orders away from half filling. Here, we explore
the competition between magnetism and superconductivity in
a wide range of doping and interaction strengths.

The studies of magnetic order in a triangular lattice de-
scribed in Refs. [9–12] and other works investigate the
possibility of unconventional superconductivity [13–17] and
point to the possibility of both singlet and triplet supercon-
ductors with and without topological numbers. In this paper
we focus on the competition between many order parameters,
both magnetic and superconducting. We do so within the
self-consistent mean field theory, where the on-site Hubbard
U interaction favors magnetic order while pairing on bonds is
favored by an attraction term on nearest-neighbor sites. This
attraction is an effective description of strong correlations; the
result of a Coulomb repulsion and Fermi surface nesting [14].
The tight-binding model in the triangular model comes with
long-range hopping, sharpening the saddle of the dispersion
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relation. We not only confirm the appearance of chiral d-wave
superconductivity and collinear antiferromagnetic ordering as
reported in experiments, but also find triplet pairing and spiral
magnetic ordering at other fillings and interaction strengths.
Crucially, we provide direct and intuitive understanding of
magnetic phases from Fermi surface nesting and can relate the
favored superconducting state to a synergy between the Fermi
surface and the pairing function such that nodes are avoided
and gaps are maximized.

The organization of this paper is the following. In Sec. II
we introduce a model with on-site repulsion and nearest-
neighbor attraction, and then the mean field Hamiltonian
with magnetism and superconductivity is constructed. In
Sec. III we construct the grand potential and derive the
self-consistency relations for multiple order parameters. In
Secs. IV and V we present our results and discuss them.

II. EXTENDED HUBBARD MODEL
ON A TRIANGULAR LATTICE

The kinetic part of our Hamiltonian is composed of tight-
binding hopping parameters tl between the lth neighbors
on the triangular lattice, proposed to match angle-resolved
photoemission spectroscopy (ARPES) data in Ref. [8]. The
parameters were chosen to fit the lowest energy band of the
Sn/Si(111) surface:

Ĥ0 =
6∑

l=1

tl
∑
〈i j〉l

ĉ†
i ĉ j, (1)

where t1 = −52.7 meV and the longer-range hopping ampli-
tudes t2/t1, . . . , t6/t1 are −0.3881, 0.1444, −0.0228, 0, and
−0.0318, respectively. The indices 〈i, j〉l run over all pairs
of lth-nearest-neighbor sites. The Fermi surface is depicted
as a function of filling in Fig. 1(b) along with the density of
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FIG. 1. (a) A triangular lattice with six nearest neighbors of the central atom (in red) marked with different colors. (b) The dispersion
relation E (kx, ky ) and the filling ν = 〈n̂i↑ + n̂i↓〉 ≡ 〈n̂i〉. Energy is given in units of the nearest-neighbor hopping amplitude, |t1| = 52.8 meV.
(c) The relation between filling and energy and between the DoS and energy.

states (DoS) as a function of energy. We include the on-site
and extended Hubbard interaction terms:

Ĥint =
∑

i

U0n̂i↑n̂i↓ +
∑

〈i j〉,σσ ′
U1n̂iσ n̂ jσ ′ , (2)

where we take U0 > 0 (repulsive) and U1 < 0 (attractive)
as an effective description resulting from the spin fluctua-
tion. With regard to the attractive density-density interaction,
Cooper pairing indeed will never arise from repulsive inter-
action in the mean field approach. However, strong repulsive
interactions do lead to superconductivity, especially in the
vicinity of magnetic orders. This has been demonstrated in
models for the cuprates (see, for example, Refs. [18–20]).
Calculating the pairing vertex could be done in the Eliash-
berg formalism but, unfortunately, an effective attraction only
emerges as an intermediate step. However, this approach may
quickly become prohibitively complicated if one would like to
consider magnetic orders as well. We therefore chose a differ-
ent path: including both repulsive and attractive interactions
and treating them both in the mean field. The on-site repulsive
interaction favors magnetism. It is convenient to express the
Hubbard U0 term as (Appendix A)

Ĥ (on) =
∑

i

U0

[
1

4
n̂in̂i − ŜimŜim

]
, (3)

where n̂i = n̂i↑ + n̂i↓ is the occupancy at site i, with 〈n̂i〉 ∈
[0, 2]. The spin operator at site i in direction m̂ is defined
as Ŝim = 1

2

∑
σσ ′ ĉ†

iσ (	σ · m̂)σσ ′ ĉiσ ′ , where 	σ is the vector of
Pauli matrices. We can therefore define a local spin order
parameter as 	m = 〈Ŝim〉, where the direction of 	m may give
either ferromagnetic (FM) order or antiferromagnetic (AFM)
order with collinear or spiral spin directions as depicted in
Fig. 2(b). The magnitude m = | 	m| represents the strength of

FIG. 2. (a) The phase diagram at U1/U0 = −0.5. (b) Three types
of magnetic orderings. (c) The collinear AFM and spiral AFM ap-
pear from the Fermi surface nesting depicted. The ferromagnetism
appears from the Stoner’s criterion.
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the order. The mean field Hamiltonian is then given by

Ĥ (on)
MF = − U0Nlat

[
1

4
〈n̂i〉2 − | 	m|2

]

+ U0

∑
i

(ĉ†
i↑ ĉ†

i↓)

[
1

2
〈n̂i〉σ0 − 	m · 	σ

](
ĉi,↑
ĉi,↓

)
, (4)

where the first term describes the on-site potential energy cost
of having the magnetic order while the second term provides
a possible energy benefit from a spin splitting. Note that
the band energy shifts by 1

2 〈n̂i〉σ0 due to the mean repulsive
energy from the on-site interaction. To take into account the
collinear and spiral antiferromagnetism, we extended the unit
cell to include two or three atoms with rotated spins in our
calculations.

The attractive interaction U1 < 0 can induce superconduc-
tivity or a charge density wave. We focus on superconductivity
using, BCS-like, the self-consistent mean field:

Ĥ (nn)
MF = − U1

∑
〈i j〉,σσ ′

|� ji,σ ′σ |2

+ U1

∑
〈i j〉,σ,σ ′

[c†
i,σ c†

j,σ ′� ji,σ ′σ + �∗
i j,σσ ′c jσ ′ciσ ]. (5)

The superconducting order parameter � ji,σ ′σ = 〈c jσ ′ciσ 〉 may
describe either singlet or triplet spin pairing with s-, p-, d-, or
f -wave spatial symmetry. We consider superconductivity and
magnetism together to determine which combination of order
parameters yields the lowest grand potential. It is worth noting
that in order to consider superconductivity and magnetism
simultaneously, the Hamiltonian in Eq. (4) needs to be written
in the Bogoliubov–de Gennes (BdG) form with particle-hole
symmetry (PHS; see Appendix B). The mean field Hamilto-
nian is

ĤMF = E0
(
ni, 	m, �̃

(s/t )
ji,σ ′σ

)

+ 1

2

1
2 BZ∑

k

�†

⎛
⎜⎜⎜⎝

Hkk �̃k,−k

H−k,−k �̃−k,k

−�̃∗
k,−k −H∗

kk

−�̃∗
−k,k −H∗

−k−k

⎞
⎟⎟⎟⎠�,

(6)

where �̃k′k′′ = U1�k′k′′ and Hk′k′′ are 2 × 2 matrices
in spin space and 1

2 BZ is half the Brillouin zone.
The BdG Hamiltonian is written in the basis �† =
(c†

k↑, c†
k↓, c†

−k↑, c†
−k↓, ck↑, ck↓, c−k↑, c−k↓). The constant

energy E0(ni, 	m, �̃
(s/t )
ji,σ ′σ ) contains the usual BCS ground state

energy as well as terms resulting from the anticommutation
relation of the operators which compose the magnetic order
parameters:

E0 = − U0Nlat

[
1

4
〈n̂i〉2 − | 	m|2

]

+ 1

2
U0Nlat〈n̂i〉 − U1

∑
〈i j〉,σσ ′

|� ji,σ ′σ |2. (7)

The Hamiltonian written in this structure visibly satisfies
the particle-hole symmetry which is represented by the op-
erator P = Kτx, where K is complex conjugation and the

Pauli matrix τx exchanges particles and holes, such that
PHBdGP−1 = −HBdG (see Appendix B for a discussion of
the PHS in the basis �†). The block-diagonal Hamiltonian in
Eq. (6) is

Hkk = [
ε	k + 1

2U0〈n̂i〉
]
σ0 − 	m · 	σ , (8)

where ε	k is the Fourier transform of Eq. (1) (see Ref. [21]
for its explicit expression). The summation over crystal
momentum is on half of the Brillouin zone because our basis
contains both the |kσ 〉 and |−kσ 〉 states. The BdG Hamil-
tonian (8 × 8) in the full basis is block diagonal with two
4 × 4 blocks with opposite signs of eigenvalues. Note that one
could choose to either work with this 8 × 8 block-diagonal
Hamiltonian and sum over half of the Brillouin zone or work
with only one of the blocks and sum over the entire Brillouin
zone. The pairing potential �k,−k is given by

(�k,−k )σσ ′ =
∑
	δ ji

� ji,σ ′σ e−i	k·	δ ji ,

where the sum is over the six
nearest-neighbor vectors, 	δ ji = 	r j − 	ri ∈
{(1, 0), ( 1

2 ,
√

3
2 ), (− 1

2 ,
√

3
2 ), (−1, 0), (− 1

2 ,−
√

3
2 ), ( 1

2 ,−
√

3
2 )},

with angles θ ji ∈ {0, π
3 , 2π

3 , π, 4π
3 , 5π

3 } relative to the x axis.
The symmetry of the pairing function in real space (odd or
even with respect to exchanging the sites i and j) determines
whether the spins of the Cooper pair are in the singlet or
triplet configuration such that � ji,σσ ′ is antisymmetric to the
exchange of both position and spin.

� ji,σσ ′ = χ
(s/t)
σσ ′ ⊗ φ

(even/odd)
ji (9)

and

χ (s) =
(

0 +�s

−�s 0

)
, χ (t) =

(
�↑↑ �t

�t �↓↓

)
. (10)

We label the spatial pairing functions by their angular mo-
mentum; the phase winding number around a central atom
is such that for s-wave symmetry, φ

(s)
ji = 1, and for angular

momentum l a chiral pairing function winds l times and is
given by φ

(l )
j j′ ∝ eilθ j j′ . However, since we do not want to

impose chirality a priori, we minimize the mean field energy
with two pairing functions for each angular momentum,

φ
(px )
ji = cos θ ji, φ

(py )
ji = sin θ ji, (11)

φ
(dx2−y2 )
ji = cos 2θ ji, φ

(dxy )
ji = sin 2θ ji, (12)

φ
( fx(x2−3y2 ) )
ji = cos 3θ ji, φ

( fy(3x2−y2 ) )
ji = sin 3θ ji, (13)

such that the chiral p-, d-, or f -wave superconductivity is
obtained if both pairing functions are non-zero and there is
a π/2 phase difference between them. Otherwise we end up
with a nonchiral state. In the case of f -wave symmetry, the
fy(3x2−y2 ) is zero for nearest-neighbor links in the triangular
lattice, and we therefore end up with a nonchiral, real order
parameter of the form fx(x2−3y2 ). A chiral f -wave order would
require longer-range attraction.
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III. SELF-CONSISTENCY EQUATIONS
FOR ORDER PARAMETERS

The grand potential is obtained from the grand canonical
partition function Z = Tr e−β(ĤMF−μN̂ ) in the diagonal basis.

ĤMF − μN̂ = E0 + 1

2

1
2 BZ∑
k,α

[ζk,αγ̂
†
kα

γ̂kα − ζk,αγ̂kαγ̂
†
kα

], (14)

where α labels the eigenvalues and ζk,α is an eigenvalue of one
sub-block BdG Hamiltonian (6). Due to particle-hole symme-
try, the eigenvalues in the two sub-blocks of the Hamiltonian
each have a pair of identical eigenvalues with opposite sign.
Summing over all (single particle) eigenstates, we obtain the
grand potential:

� = − 1

β
ln Z = E0 − 1

β

1
2 BZ∑
k,α

ln

[
2 cosh

βζk,α

2

]
, (15)

where the temperature β = kBT = 0.1|t1| is taken and the
sum is only over positive ζk,α values [22]. The minimum
of the grand potential is the self-consistent solution for the
order parameters, and we therefore set the grand potential
derivatives with respect to the order parameters to zero. We
write the derivatives as (see Appendix C)

∂�

∂mj
= ∂E0

∂mj
+ ∂

∂mj
[� − E0] = 0, (16)

∂�

∂�∗
ν

= ∂E0

∂�∗
ν

+ ∂

∂�∗
ν

[� − E0] = 0, (17)

where j ∈ {x, y, z} and ν ∈ {s, t,↑↑,↓↓}. We solve the above
conditions through iterations and update all order parameters
at every step. Using the fact that the energy E0 contains∑

j=x,y,z m2
j and �ν�

∗
ν , we can update an order parameter

through iteration. That is,

m(new)
j = m(old)

j

[
1 − η

∂�

∂mj

(
∂E0

∂mj

)−1
]

old

, (18)

�(new)
ν = �(old)

ν

[
1 − η

∂�

∂�∗
ν

(
∂E0

∂�∗
ν

)−1
]

old

, (19)

where the right-hand side is computed using a set of or-
der parameters to be updated. η (� 0.2) controls the rate
of approaching speed toward a convergence over iterations.
When converged, m(new)

j = m(old)
j and ∂mj �|old = 0. The par-

tial differentiation is numerically obtained by computing the
difference of grand potentials, ∂mj � � lim�mj→0 ��/�mj .
The mean field Hamiltonian is also a function of filling ν;
see Eq. (4). Along with other order parameters, the filling is
updated in each iteration by computing

ν = − 1

Nlat

∂�

∂μ
= 〈n̂i↑ + n̂i↓〉. (20)

IV. RESULTS: TOPOLOGICAL SUPERCONDUCTIVITY
AND MAGNETISM

Magnetic orders. The Stoner criterion gives a heuristic rule
for when magnetic order might develop; if the density of
states at the Fermi level exceeds a critical value set by the

on-site repulsive interaction, magnetic order could develop
to reduce the interaction energy. This intuition is indeed in
line with our findings: Fig. 1(c) shows that at filling near
ν = 0.77, 2 the DoS is peaked and this is where we find ferro-
magnetism. Another important factor in determining whether
or not magnetism will appear and the kind of magnetism that
will develop is the shape of the Fermi surface. A magnetic
order which reduces the periodicity is most effective if its
ordering vector connects many states near the Fermi level, i.e.,
opens a gap through nesting.

Around, ν ∼ 1, collinear antiferromagnetism appears. This
order reduces the periodicity by folding the Brillouin zone
in one of three directions; one such spin configuration is
shown in Fig. 2(b). The periodicity of the collinear anti-
ferromagnet (CAFM) in real space is

√
3a, which doubles

the size of the unit cell. Thus the size of the nesting vec-
tor | 	QCAFM| = 2π/

√
3a in momentum space is half of the

shortest reciprocal lattice vector. The possible nesting Fermi
surface lines are indicated in Fig. 2(c). However, since the
CAFM ordering appears only in one direction, the Fermi sur-
face is not fully gapped by this order, and the system remains
metallic.

Right next to the CAFM order, the spiral antiferromagnetic
(SAFM) is the most energetically favorable phase. The fill-
ing is a bit higher, and the corresponding Fermi surface is
marked in green in Fig. 2(c). The size of the nesting vector
is 4π

3a , which is smaller than that in the CAFM case, while the
directions of the three vectors are rotated by π/2. The spiral
AFM gaps the Fermi surface completely, lowering the grand
potential even more than the CAFM.

The development of the three magnetic orderings in a small
doping range can be understood from the density of states
(DoS) and the shape of the Fermi surface of the long-range-
hopping tight-binding model in the triangular lattice model for
filling ν ∈ [0.8, 1.5]. The result of the self-consistent mean
field with multiple order parameters is shown in Fig. 2(a) for
U0/|t1| = 6 and U1/|t1| = −3. The bandwidth of the hopping
model in Eq. (1) (∼10|t1|) as shown in Fig. 1 is larger than the
employed interaction strength. We note that previous authors
[8] found that the CAFM is preferred over the SAFM at half
filling ν = 1 using a more sophisticated numerical method.
When the effective nearest-neighbor attraction U1 increases
further, topological superconductivity appears next to the an-
tiferromagnetic orders.

Superconductivity. The study of superconductivity (SC)
in one-band triangular lattice models was ignited by the ex-
perimental observation of superconductivity in Sn/Si(111)
[1,2]. We therefore set out to find out what kind of super-
conductivity can emerge from our effective nearest-neighbor
attraction while on-site repulsion is present. This approach to
interaction-based unconventional superconductivity provides
an intuitive understanding of how order parameters compete
to balance decreasing the interaction energy while increasing
the kinetic energy through orderings. We therefore minimize
our grand potential by considering both magnetism and super-
conductivity together. Figure 3(a) shows the phase diagram
as a function of filling with U1/U0 = −0.8. The f -wave SC
appears first, and as can be seen in Fig. 3(b), it has three pairs
of line nodes. For filling ν ∈ [0.2, 0.7], the Fermi surface is
located where the nodal lines are avoided, and therefore the
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FIG. 3. (a) The phase diagram at U1/U0 = −0.8. Chiral d-wave
and p-wave superconductivity appears next to the antiferromagnetic
orderings. At lower and higher filling, f -wave and s-wave super-
conductivity appears, respectively. (b) The magnitude of pairing
|�(pairing)

k,−kσσ ′ | is plotted for the orbital symmetries. The overlaid Fermi
surface (blue lines) at fillings ν = 1/3, 1, 5/3 shows that nodal lines
of the pairing are avoided, maximizing the superconducting energy
gap opening.

f -wave pairing fully gaps the system, reducing the interaction
energy which results from U1.

As the filling is increased beyond 0.7, the Fermi surface
undergoes a Lifshitz transition from six pockets to a single
snowflake-shaped surface at the center of the Brillouin zone.
Once the transition has occurred, the f -wave symmetry can-
not fully gap the Fermi surface, and the preferred pairing
changes. The Fermi surface that favors the CAFM order for
reducing the on-site interaction energy favors the chiral d + id
superconductor for reducing the U1 interaction energy. The
competition between the two phases is studied by minimizing
the grand potential with the two orders present, and this yields
the result that a d + id superconductor appears before the
collinear antiferromagnet.

Around ν = 3/4 the spiral antiferromagnet is favored (de-
spite the significant U1), but at higher filling of ν > 1.5
another topological superconductor with p + ip structure is
developed. This order parameter has nodal points which are

avoided by the small Fermi surface around the zone center as
shown in the bottom left panel of Fig. 3(b) such that the Fermi
surface is fully gapped.

Lastly, when every site is nearly fully filled, ν ∼ 2, the
s-wave pairing potential which has a circular line node away
from 	k = 0 is preferred. At high filling, there is a transition
from the ferromagnetic ordering to the s-wave superconduc-
tivity with increasing attractive extended interaction strength
|U1|; see Fig. 4(a).

We note that the order of superconducting phases (chiral
p-wave and f -wave symmetries) we find is inconsistent with
that of Wolf et al. [14,16] but it is consistent with that of Cheng
et al. [13]. While we rely on an effective interaction for our
mean field calculations, we believe that the filling in which we
find the various orders is very plausible since it is compatible
with the intuition provided by the Fermi surface shapes at the
various fillings as discussed above.

From magnetic ordering to superconducting. The phase di-
agram is drawn in Fig. 4(a) for U1/U0 ∈ [−0.2, 1.2]. At small
U1 only magnetic orders appear. For U1/U1 < −0.4, super-
conductivity begins to appear. While the singlet pairing does
not coexist with the magnetic orderings, the triplet pairing
may. We verify the coexistence and also plot the superconduc-
tor and the magnetic order parameters separately in Figs. 4(b)
and 4(c), respectively. In particular, f -wave superconductivity
coexists with ferromagnetism near ν = 0.75, and the CAFM
and SAFM orders give way to p + ip pairing when |U1| is
increased.

V. CONCLUSIONS

In this paper we explored the possibility of magnetic and
superconducting orders in the extended Hubbard model on
a triangular lattice. Our model includes a repulsive on-site
Hubbard interaction U0 and an effective nearest-neighbor at-
tractive interaction U1. We treat the model with the variational,
self-consistent mean field theory, which considers a large set
of magnetic and superconducting orders together. We map
the phase diagram and find a ferromagnetic phase and two
antiferromagnetic phases when the attractive interaction is
weak. For higher values of the attractive interaction we find
superconducting states with s-, d-, p-, and f -wave symmetry.
The p-wave and d-wave superconducting order parameters are
found to be chiral or topological.

Near filling ν = 1–1.5 the collinear antiferromagnetism
and the spiral magnetism are consistent with previous studies
[8] and are found to coexist with a p + ip triplet topo-
logical superconductivity when the attractive interaction is
significant. Our finding of f -wave and (p + ip)-wave super-
conductivity at low and high filling is also consistent with a
previous study [13], and we find a d + id topological super-
conductor to emerge when long-range hopping is included
in the kinetic energy. The recent observation of the chiral
superconductivity in Sn/Si(111) at half filling [4], the exper-
imental relevance of our study, and Fig. 4 indicate that other
unconventional superconductivity and magnetic orderings are
nearby in the phase diagram.

Our study has been inspired by recent advances in surface
manipulation and, in particular, the creation of a triangular
superlattice of tin atoms on a silicon surface [9–12]. However,
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FIG. 4. (a) The phase diagram as a function of filling ν and the attractive interaction strength U1 for U0 = 6|t1|. (b) and (c) The
corresponding superconducting |�α| and magnetic order parameters |mα| are plotted in the same domain. They show the portion of order
parameters for magnetism coexisting with triplet-pairing superconductivity: (p + ip)-wave and f -wave SC. See Figs. 5 and 6 for complete
information about the grand potential, the order parameters, and their temperature dependence at U1/U0 = −0.8.

we expect these results to hold for other similar compounds. In
particular, our finding of chiral topological superconductivity
could lead to the realization of Majorana zero modes at vortex
cores in these compounds. The proximity of these phases
to other, nontopological phases suggests that the existence
of Majorana modes could be controlled through gating and
external fields.

Lastly, we would like to add a note about temperature. Due
to our limited momentum resolution we could not perform
calculations at a very low temperature and used β = kBT =
0.1|t1| = 5.28 meV, which corresponds to ∼61 K. This meant
that in order to see gaps open, we needed to work with large
interaction values. We therefore believe that at lower tem-
perature, one could see superconductivity with even weaker
interactions.
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APPENDIX A: MEAN FIELD DECOMPOSITION OF THE
HUBBARD INTERACTION

The on-site Hubbard interaction can be written as the den-
sity and spin operators using n̂i↑ = ∑

αβ
1
2 (1 + σz )αβ ĉ†

iα ĉiβ .
More generally, the interaction can be written on the basis of
arbitrary spin direction σl = l̂ · 	σ . Dropping the site index,

n̂↑n̂↓ =
∑
αβγ δ

1

4
(1 + σl )αβ (1 − σl )γ δ ĉ†

α ĉβ ĉ†
γ ĉδ

=
∑
αβγ δ

1

4
(δαβδγ δ − (σl )αβ (σl )γ δ )ĉ†

α ĉβ ĉ†
γ ĉδ,

where from the first line to the second the following relation is
used:

∑
αβγ δ (σl )γ δδαβ ĉ†

α ĉβ ĉ†
γ ĉδ = ∑

αβγ δ (σl )αβδγ δ ĉ†
γ ĉδ ĉ†

α ĉβ .

As a result,

Ĥ (on) = U0

∑
i

[
1

4
n̂in̂i − Ŝil Ŝil

]
, (A1)

where n̂iσ = ĉ†
iσ ĉiσ and Ŝil = 1

2

∑
α,β ĉ†

iα (l̂ · 	σ )αβ ĉiβ . Neglect-
ing the fluctuating part of the interaction, the mean field
approximation is

n̂2
i � 2n̂i〈n̂i〉 − 〈n̂i〉2, (A2)

Ŝ2
il � 2Ŝil〈Ŝil〉 − 〈Ŝil〉2. (A3)

The mean field Hamiltonian (4) is obtained.

APPENDIX B: PARTICLE-HOLE SYMMETRY AND
GRAND POTENTIAL

The BdG Hamiltonian (6) can be written as the sum of two
sub-blocks:

Ĥ − μN̂ = 1

2

1
2 BZ∑

k

(Ĉ†
k Ĉ−k )

(
H̃k,k �̃k,−k

−�̃∗
−k,k −H̃∗

−k,−k

)(
Ĉk

Ĉ†
−k

)

+ 1

2

1
2 BZ∑

k

(Ĉk Ĉ†
−k )

(−H̃k,k −�̃k,−k

�̃∗
−k,k H̃∗

−k,−k

)∗(
Ĉk

Ĉ†
−k

)
,

(B1)

where Ĉ†
k = (c†

k↑ c†
k↓ ) and H̃k,k = Hk,k − μ. The Hermitic-

ity of the sub-block Hamiltonians is guaranteed because �T =
−�. By the diagonalization,(

H̃k,k �̃k,−k

−�̃∗
−k,k −H̃∗

−k,−k

)
= U

(
ζ1 0

0 ζ2

)
U †, (B2)

(−H̃k,k −�̃k,−k

�̃∗
−k,k H̃∗

−k,−k

)∗
= U ∗

(−ζ1 0

0 −ζ2

)
U T , (B3)

which verifies that the BdG Hamiltonian (6) contains pairs of
eigenvalues with the same magnitude and the opposite sign.
Note that in general, ζ1 �= −ζ2 when H̃k,k �= H̃−k,−k . Thus,
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within each sub-block Hamiltonian, there is no particle-hole
symmetry as is sometimes assumed in the literature. The full
spin and particle-hole basis must be employed for a sys-
tem without inversion symmetry. In the eigenstate basis, the
Hamiltonian can be written as

Ĥ − μN̂ = 1

2

1
2 BZ∑

k

(γ̂ †
k,1 γ̂

†
k,2)

(
ζk,1 0

0 ζk,2

)(
γ̂k,1

γ̂k,2

)

+ 1

2

1
2 BZ∑

k

(γ̂k,1 γ̂k,2)

(−ζk,1 0

0 −ζk,2

)(
γ̂

†
k,1

γ̂
†
k,2

)
,

(B4)

where (γ̂ †
k,1 γ̂

†
k,2) = (Ĉ†

k Ĉ−k )U and U ∗ = U †T are used.
This is the mean field Hamiltonian equation (14) used for the
construction of the grand canonical partition function.

Let us deduce the PHS relation that the block Hamiltonian
matrix satisfies. The second term in Eq. (B1) can be written
as

Ĥ − μN̂ = 1

2

1
2 BZ∑

k

(Ĉ†
k Ĉ−k )

(
H̃k,k �̃k,−k

−�̃∗
−k,k −H̃∗

−k,−k

)(
Ĉk

Ĉ†
−k

)

+ 1

2

1
2 BZ∑

k

(Ĉ†
−k Ĉk )τx

(−H̃k,k −�̃k,−k

�̃∗
−k,k H̃∗

−k,−k

)∗

× τx

(
Ĉ†

−k

Ĉk

)
. (B5)

The first term on the right-hand side is the sum over momen-
tum in one-half of the Brillouin zone, and the second term
is over the other half. The Hamiltonian in the second term is
related to the first one by the following relation:

Hbld(−k) = τx

(−H̃k,k −�̃k,−k

�̃∗
−k,k H̃∗

−k,−k

)∗
τx (B6)

= −τxKHbld(k)τxK, (B7)

where the subscript “bld” (for “block diagonal”) indicates the
Hamiltonian matrices in Eq. (B5). Hbld (k) is the Hamiltonian
matrix in the first term on the right-hand side.

Next, let us deduce the PHS relation when the Hamilto-
nian matrix is constructed in the extended basis (also see
the pedagogical note in Ref. [23]) as in Eq. (6). There is a
unitary transformation between creation operators in real and
momentum space:

�k =
( 	Ck

	C†
k

)
=

(
V

V ∗

)( 	Cr

	C†
r

)
, (B8)

where the Fourier transformation (V )i j = 1√
Nlat

e−i	ki ·	r j and

	Ck = (ck1 , . . . , ckN )T , (B9)

	C†
k = (c†

k1
, . . . , c†

kN
)T , (B10)

	Cr = (cr1 , . . . , crN )T , (B11)

	C†
r = (c†

r1
, . . . , c†

rN
)T , (B12)

where spin and sublattice degrees of freedom can be added in

the operator vectors. Let �r = (
	Cr

	C†
r
). Likewise,

�
†
k = �†

r

(
V †

V ∗†

)
. (B13)

Note that �
†
k and �k take the same form as the one used in the

mean field Hamiltonian, Eq. (6). The Hamiltonian operator
is

Ĥ = �
†
k Hk�k = �†

r

(
V †

V ∗†

)
Hk

(
V

V ∗

)
�r (B14)

= −�†
r τxK

(
V †

V ∗†

)
Hk

(
V

V ∗

)
τxK�r (B15)

= −�†
r

(
V †

V ∗†

)
τxKHkτxK

(
V

V ∗

)
�r (B16)

= �
†
k τx(−H∗

k )τx�k, (B17)

where in the second line we used Hr = −τxKHrτxK. In the
third line,

τxK
(

V

V ∗

)
τxK =

(
V

V ∗

)
(B18)

is used. As shown in the last line, the PHS relation in the mo-
mentum space is Hk = −τxKHkKτx. This verifies that when
the Hamiltonian is written in the basis containing the creation
and annihilation operators with the same set of indices as
in �r and �k , the particle-hole symmetry relation is equally
applied in the form of PHrP = −Hr and PHkP = −Hk . Note
the sign difference in momentum compared with Eq. (B6),
which applies to block-diagonal Hamiltonian matrices
in Hk .

APPENDIX C: SELF-CONSISTENCY RELATIONS

The mean field Hamiltonian includes order parameters
whose values are determined self-consistently. We start with
some initial value for each order parameter and update the
values at every iteration step in the following way. With the
“old” set of order parameter values we calculate the mean field
energies, which are then used to calculate the grand potential.
The “new” set of order parameter values are then calculated
from the grand potential, and the process is continued until
conversions, when the values do not change between itera-
tions.

Calculating the order parameter from the grand potential
can be demonstrated for ferromagnetic order in the z direction,
mz. Differentiating the grand potential by mz gives

∂�

∂mz
= ∂ (� − E0)

∂mz
+ ∂E0

∂mz
, (C1)
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where ∂mz E0 = U0Nlat(2mz ) and

∂ (� − E0)

∂mz
= −β−1 1

Z

∂Z

∂mz

= −U0

Z
Tr

[(∑
i

ĉ†
i↑ĉi↑ − ĉ†

i↓ĉi↓

)
e−β(Ĥ−μN̂ )

]

≡ −U0

〈
Nlat∑

i

ĉ†
i↑ĉi↑ − ĉ†

i↓ĉi↓

〉
. (C2)

Therefore, when the minimum of the grand potential is found,
∂mz� = 0,

mz = 1
2 〈ĉ†

i↑ĉi↑ − ĉ†
i↓ĉi↓〉, (C3)

which is consistent with the way the Ŝiz operator is defined in
Eq. (3). For CAFM and SAFM, we prepare the order parame-
ter in an enlarged unit cell. The relative spin angle within the
unit cell is arranged in such a way that it realizes the desired
spin ordering and the strength of the magnetism is the order
parameter which is found self-consistently.

The self-consistent relation for the superconducting order
parameter similarly follows. Let us begin from the real-space
expression (5).

∂ (� − E0)

∂� ji,σ ′σ
= U1

Z
Tr[(ĉ†

iσ ĉ†
jσ ′ )e−β(Ĥ−μN̂ )] (C4)

= U1〈ĉ†
iσ ĉ†

jσ ′ 〉, (C5)

where we pick a specific site index i, j for the pairing order
parameter; hence there is no summation. Since ∂� ji,σ ′σ E0 =
−U1�

∗
ji,σ ′σ , we arrive at

�∗
ji,σ ′σ = 〈ĉ†

iσ ĉ†
jσ ′ 〉. (C6)

Note the positions of indices, (�†)i j,σσ ′ = �∗
ji,σ ′σ . For a

general search of superconductivity with a certain pairing
symmetry, we transform the Hamiltonian to momentum space
using ĉ†

iσ = 1√
Nlat

∑
k eikri ĉ†

kσ
:

HSC = U1

BZ∑
k,σσ ′δ

�δ,σ ′σ ĉ†
kσ

c†
−kσ ′e−ikδ + H.c., (C7)

where δ goes over the six nearest-neighbor vectors. The sum-
mation in momentum is then divided in half. This is to prepare
the BdG Hamiltonian where the basis � (†) includes both k and
−k.

HSC = U1

1
2 BZ∑

k,σσ ′

(∑
δ

�δ,σ ′σ e−ikδ

)
ĉ†

kσ
c†
−kσ ′

+ U1

1
2 BZ∑

k,σσ ′

(∑
δ

�δ,σ ′σ eikδ

)
ĉ†
−kσ

c†
kσ ′ + H.c., (C8)

where the parentheses in the first and the second terms are
�k−k,σσ ′ and �−kk,σσ ′ in the BdG Hamiltonian equation (6).
The order parameter �δ,σ ′σ = χσ ′σφδ , where the spin config-
uration is in χσ,σ ′ and the desired order parameter structure
is φδ , which encodes a uniform order parameter whose mag-
nitude and phase may depend on the bond direction. The

magnitude of the order parameter is included in χσ ′σ , and we
therefore find it iteratively by performing the differentiation
of the grand potential,

∂ (� − E0)

∂χσ ′σ
= U1

Z
Tr

[(
BZ∑
kδ

φδe−ikδ ĉ†
kσ

ĉ†
−kσ ′

)
e−β(Ĥ−μN̂ )

]

= U1

BZ∑
kδ

φδe−ikδ〈ĉ†
kσ

ĉ†
−kσ ′ 〉 (C9)

= U1

BZ∑
kδ

φδe−ikδ 1

Nlat

〈∑
i

e−ikri ĉ†
iσ

∑
j

eikr j ĉ†
jσ ′

〉
,

(C10)

where in the last line we bring it back to real-space expression
using ĉ†

kσ
= 1√

Nlat

∑
i e−ikri ĉ†

iσ . The summation over momen-
tum yields the delta function δ(r j − ri − δ). As a result,

∂ (� − E0)

∂χσ ′σ
= U1

∑
riδ

φδ〈ĉ†
iσ ĉ†

i+δ′
σ
〉

= U1Nlat

∑
δ

φδ〈�̂†
δ,σσ ′ 〉

= U1Nlat〈χ̂†
σσ ′ 〉

∑
δ

|φδ|2, (C11)

where the summation over momentum is restored to the whole
BZ by combining k and −k terms. The constant energy term
provides

∂χσ ′σ E0 = −U1

∑
i j

∂χσ ′σ |�δ,σ ′σ |2

= −U1χ
∗
σ ′σ Nlat

∑
δ

|φδ|2, (C12)

where �δ,σ ′σ = χσ ′σφδ is used in the first line. Therefore, at
the minimum of the grand potential, when ∂χσ ′σ � = 0 we have

χ∗
σ ′σ = 〈χ̂†

σσ ′ 〉, (C13)

where 〈χ̂†
σσ ′ 〉 = 〈χ̂∗

σ ′σ 〉. Therefore

�
†
δ,σσ ′ = 〈�̂†

δ,σσ ′ 〉. (C14)

This verifies the superconductivity self-consistency relation.

APPENDIX D: FURTHER NUMERICAL DETAILS: GRAND
POTENTIAL, ORDER PARAMETERS, AND

TEMPERATURE

In this Appendix we provide further numerical details
in obtaining the phase diagrams in Figs. 3(a) and 4(a).
Different choices of order parameters for magnetism and su-
perconductivity are used to compute the grand potential in a
self-consistent manner. The phase for a given filling is deter-
mined by the order parameter (�α, mα ) that yields the lowest
�. Figures 5(a) and 5(b) show � and � − 〈�〉, respectively,
for U1/U0 = −0.8 at kBT = 0. From them we can fix the
phases as the filling per site of the system increases from 0
to 2. These phases are visualized in Figs. 3 and 4 (for the
dependence on the temperature, see our discussion below).
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FIG. 5. (a) Grand potential � at U1/U0 = −0.8 is plotted for different choices of order parameters (�α, mα ) indicated in the legend.
(b) � − 〈�〉 provides the magnified view of the grand potential for the same set of the order parameters (�α, mα ). The legend in (a) is shared
in the other panels. The order parameters with the lowest � for a given ν make the phase diagram that is shown in Fig. 3(a). (c) and (d) The
magnitude of the magnetism (superconductivity) order parameters mα (�α) is plotted. The computation is performed at kBT = 0.

Figures 5(c) and 5(d) show the order parameter of magnetism
and that of superconductivity, respectively. The color indi-
cates choices of order parameters, sharing the same legend
as in Fig. 5(a). The appearance of a large order parameter
for a given filling implies the existence of a preferred phase.
For example, the order parameters of CAFM and SAFM
are peaked, and in Fig. 5(c) we can spot that CAFM and
SAFM with p + ip superconductivity have the lowest � in
ν ∈ [1, 1.5] in turn. Figure 5(d) verifies that f -wave, (d + id )-
wave, and (p + ip)-wave superconductivity order parameters
take large values from low to high filling. Near ν = 2, how-
ever, the s-wave superconductivity is dominantly preferred
even though its order parameter is smaller than others. As
shown in Fig. 4(b), not only the magnitude of the converged
order parameter but also the position of the Fermi surface and
the location of nodes of the order parameter play critical roles

in lowering the grand potential. Lastly, notice that the legend
of Fig. 4(a) is different from that of Fig. 5(a). The latter always
comes with one magnetic and one superconductivity order
parameter, while the former has phases with only one of them,
such as the “s-wave,” “d + id ,” “p + ip,” and “FM” phases.
This is because in Figs. 5(c) and 5(d) some order parameters
converge to zero, thus showing no corresponding order. For
example, the phase “s-wave, FM” near ν = 2 has no magnetic
order. The phase “d + id , FM” has zero magnetism at ν �
0.9. The phases “p + ip, FM,” “p + ip, CAFM,” and “p + ip,
SAFM” have zero magnetic order in ν ∈ [1.5, 1.75]. Figure 6
shows the temperature dependence of the superconductivity
(top row) and magnetism (bottom row) order parameters for
U1/U0 = −0.8. We have six combinations of the two order
parameters indicated in Fig. 5(a). Our formalism introduced in
Sec. III is applicable to a finite temperature, and Fig. 6 directly

FIG. 6. The order parameters are shown for different temperatures, kBT/|t1| ∈ [0.05, 4]. The zero-temperature values are shown in
Figs. 5(c) and 5(d). The top (bottom) row shows the superconductivity (magnetism) order parameters for the six different choices indicated
in Fig. 5(a). The peaks of the superconductivity order parameters �α do not overlap with the peaks of the magnetic order parameters mα

for singlet-pairing cases [s-wave and (d + id )-wave symmetries], while the coexistence of superconductivity and magnetism is shown for
triplet-pairing cases [(p + ip)-wave and f -wave symmetries].
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FIG. 7. (a) The phase diagram for U0 = 4|t1|. (b) and (c) The same set of superconducting and magnetism phases appear in the domain of
attractive interaction U1 and filling ν. Near the half filling ν � 1, the two types of antiferromagnetism (CAFM and SAFM) are positioned, and
the superconducting order parameters increase with |U1|. From low to high filling, f -wave, (d + id )-wave, (p + ip)-wave, and s-wave pairings
are preferred in a similar manner to U0 = 6|t1| in Fig. 4. Due to its reduced on-site repulsive interaction, CAFM is preferred to ferromagnetism
right below ν = 1.

shows the suppression of the order parameters with increas-
ing temperature. Note that singlet superconducting pairing
[s-wave and (d + id )-wave symmetries] does not prefer the
coexistence with magnetism (FM), while the triplet pairing
[(p + ip)-wave and f -wave symmetries] shows a finite over-
lap with magnetism (ferromagnetism, CAFM, and SAFM).
All the numerical results presented so far are for repulsive
on-site interaction U0 = 6|t1|, which is about half of the band-
width. Figure 7(a) shows the phase diagram at U0 = 4|t1|.
It shares overall generic features with the phase diagram in
Fig. 4, and the same set of magnetism and superconducting

phases appear with varying filling ν and attractive interaction
strength U1. The two types of antiferromagnetism (CAFM
and SAFM) appear in ν ∈ [1, 1.5], and the ferromagnetism
appears near ν = 2. Due to the reduced repulsive interaction,
the ferromagnetism is not developed at half filling in this case.
At |U1/U0| > 0.5, superconducting phases [ f -wave, (d + id )-
wave, (p + ip)-wave, and s-wave symmetries] take place. For
f -wave and (p + ip)-wave triplet-spin-pairing superconduct-
ing phases, ferromagnetism and SAFM phases are found to
coexist [see overlapping regimes of nonzero order parameters
in Figs. 7(b) and 7(c)].
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is not favored for the comparison of the total energies of
phases with different order parameters for a given filling.
To remove this issue, we choose the temperature kBT/|t1| =
0.1, which is about three times larger than the mean level
spacing.

[23] TUDelft OpenCourseWare, https://ocw.tudelft.nl/course-
readings/particle-hole-symmetry/.
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