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Caution on Gross-Neveu criticality with a single Dirac cone: Violation of locality and its
consequence of unexpected finite-temperature transition
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Lately there are many SLAC fermion investigations on the (2 + 1)D Gross-Neveu criticality of a single Dirac
cone. While the SLAC fermion construction indeed gives rise to the linear energy-momentum relation for all
lattice momenta at the noninteracting limit, the long-range hopping and its consequent violation of locality on the
Gross-Neveu quantum critical point (GN-QCP)—which a priori requires short-range interaction—has not been
verified. Here we show, by means of large-scale quantum Monte Carlo simulations, that the interaction-driven
antiferromagnetic insulator in this case is fundamentally different from that on a purely local π -flux Hubbard
model on the square lattice. In particular, the antiferromagnetic long-range order has a finite temperature
continuous phase transition, which appears to violate the Mermin-Wagner theorem, and smoothly connects
to the previously determined GN-QCP. The magnetic excitations inside the antiferromagnetic insulator are
gapped without Goldstone mode, even though the state spontaneously breaks continuous SU (2) symmetry. These
unusual results point out the fundamental difference between the QCP in SLAC fermion and that of GN-QCP
with short-range interaction.
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I. INTRODUCTION

Massless Dirac fermions are ubiquitously present as the
low-energy description of many condensed matter systems in-
cluding graphene [1], twisted bilayer graphene [2–5], d-wave
superconductors [6–9], algebraic spin liquid [6,7,10–17], and
the deconfined quantum criticality [18–30]; in high-energy
physics, the dynamical massless Dirac fermions in quantum
chromodynamics and the existence of a deconfined phase in
compact quantum electrodynamics have attracted great atten-
tions and remains unsolved [10,15,31–36]. Nonetheless, it is
generally believed that strong local interactions can generate
a finite mass for the Dirac fermions and spontaneously result
in a quantum phase transition [37–42]. The corresponding
quantum critical points (QCP) are typically described by the
Gross-Neveu (GN) university classes [43,44]. In particular, a
single Dirac cone, realized in the the SLAC fermion model
with long-range hopping in (2 + 1)D [45,46], was found to
give rise to an Ising-type ferromagnetic order that generates a
Z2 symmetry-breaking mass gap [47], or an antiferromagnetic
Mott insulator that breaks the SU (2) spin rotational symmetry
[48]. The associated QCPs from Dirac semimetal (DSM) to
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insulators are believed to belong to the (2 + 1)D chiral Ising
or Heisenberg GN universality classes.

The SLAC fermion construction gives rise to a linear
energy-momentum relation for all lattice momenta at the non-
interacting limit [shown in Fig. 1 (a)], therefore reduces the
finite-size effect suffered by other local cousins such as the
honeycomb and π -flux models where only a small region of
the Brillouin zone (BZ) displays the relativistic behavior at
low energy. The fundamental difference of the SLAC fermion
model compared with its local cousins, i.e., the necessity of
avoiding the Nielsen-Ninomiya theorem [49–51] by violating
locality on finite size lattices and the assumption that the
locality of the Dirac operator is recovered in the thermo-
dynamic limit (TDL), has not be investigated. This means,
with the long-range interactions in the SLAC fermion models
(the bare interaction is on-site but the long-range hopping
mediates long-range interaction), whether the GN transition
and the symmetry-breaking phases obtained thereafter can be
discussed as if they were from a purely local model in the
origin sense of GN-QCP [43,44], are questionable.

This is the problem solved in this article. Here we show,
by means of large-scale QMC simulations, that the phase
diagram of the SLAC fermion model is fundamentally dif-
ferent from that of a purely local π -flux Hubbard model on
the square lattice. In particular, we find the antiferromagnetic
insulator (AFMI) phase in the SLAC fermion model exists
at finite temperatures, which appears to violate the Mermin-
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FIG. 1. The dispersion of (a) SLAC fermion and (c) free π -flux
model in the first BZ. The U -T phase diagram of (b) SLAC fermion
and (d) π -flux Hubbard model obtained from QMC simulation. In
panel (b), the red squares are obtained from the cross of R for differ-
ent L when scanning T at fixed U = 7.5, 8, 9, 10, 12, 14, 16, 20, 22,

and 24. The blue square is obtained from the cross of R for different L
when scanning U at fix T = 1/3. The black star denotes the position
of QCP in Ref. [48]. The red dashed line is a guide to the eye. In panel
(d), the black diamond denotes the position of GN-QCP in Ref. [40].

Wagner theorem [52–54]. The AFMI phase emerges from
the high-temperature paramagnetic (PM) phase via a finite-
temperature continuous phase transition, and this continuous
transition line smoothly connects to the previously determined
GN-QCP at the ground state [48]. Contrary to the picture of
the Mermin-Wagner theorem, where the low-energy fluctua-
tion of the gapless Goldstone mode destroys the long-range
order at any finite temperature, we find that the magnetic
excitations inside the AFMI are gapped without Goldstone
mode, although the state spontaneously breaks continuous
SU (2) symmetry.

Our results suggest that the long-range interaction in the
SLAC fermion model has altered the low-energy effective
theory of the interacting Dirac fermions; the QCP of SLAC
fermion model is fundamentally different from that of the
local-interaction ones in this way. We note that examples of
nonlocal interaction stabilizing finite-temperature symmetry-
breaking phases, and giving rise to gapped Goldstone modes
at zero temperature, have also been seen in the 1D Ising and
SLAC fermion model [55,56] and the 2D Heisenberg model
[57–59], and in dissipative systems such as 1D Ohmic spin
chain [60,61] and 2D dissipative quantum XY models [62,63].

II. MODEL AND METHOD

We consider the spin-1/2 SLAC fermion and the π -flux
Hubbard model on the square lattice at half-filling for com-
parison.

The SLAC fermion Hubbard model has the Hamiltonian

HSLAC = − t
∑
i jσ

(Ai jc
†
iaσ c jbσ + H.c.)

+ U

2

∑
i

∑
λ=a,b

(niλ − 1)2, (1)

where we set t = 1 as the energy unit, c†
iaσ and cibσ are the

creation and annihilation operators for an electron at unit cell
i on sublattices a, b with spin σ =↑,↓; niλ = ∑

σ c†
iλσ ciλσ

denotes the local particle number operator at sublattice λ

of unit cell i; Ai j = i (−1)xπ

L sin(xπ/L)δy,0 + (−1)yπ

L sin(yπ/L)δx,0 denotes the
electron hopping amplitude with r ≡ (x, y) = ri − r j stand-
ing for the relative distance between two different unit cells
i and j, x = 1, · · · , L − 1 with L the linear system size. The
kinetic term of HSLAC is known as the SLAC fermion [45], and
the corresponding single particle spectrum is ε(k) = ±|k|,
which results in a single linearly dispersing Dirac cone at mo-
mentum � = (0, 0) point, as shown in Fig. 1(a). We observe
that on finite-size lattices, the corresponding Fermi velocity
is reduced to ±1 in the BZ. However, the fermion velocity
changes sign at the BZ boundary, resulting in a singularity.
The violation of the locality of SLAC fermion represents itself
as singular values at the BZ boundary. Previous works [47,48]
assume the locality of the Dirac operator is recovered at the
TDL.

To make a proper comparison with the local model,
we also simulate the π -flux Hubbard model with the
Hamiltonian

Hπ-Flux = −t
∑
〈i j〉,σ

(Bi jc
†
iσ c jσ + H.c.) + U

2

∑
i

(ni − 1)2,

(2)

where hopping amplitudes Bi,i+�ex = 1 and Bi,i+�ey = (−1)ix .
The position of site i is given as ri = ix�ex + iy�ey; such ar-
rangement bestows a π -flux penetrating each square plaquette
[the dispersion is given in Fig. 1(c)]. It is known that the π -
flux model has a chiral Heisenberg GN-QCP at Uc = 5.65(5)
[39–41,48], and the AFMI at U > Uc, spontaneously breaking
the spin SU (2) symmetry with Goldstone mode located at
M = (π, π ) point [see Fig. 1(d)].

We employ the projection QMC (PQMC) [64] method
to study the ground-state and dynamical spin correla-
tion functions, and the finite temperature QMC (FTQMC)
[65,66] method to study the temperature dependence of the
physical observables. These results give rise to a consis-
tent and complementary picture. For the PQMC method,
we can measure a physical observable 〈O〉 according to

〈O〉 = lim�→∞ 〈�T |e− �
2 H Oe− �

2 H |�T 〉
〈�T |e−�H |�T 〉 , where � is the projec-

tion length; |�T 〉 is the trial wave function; and |�0〉 =
lim�→∞ e− θ

2 H |�T 〉 is the ground state wave function. For the
FTQMC method, 〈O〉 can be measured according to 〈O〉 =
Tr[e−βH O]
Tr[e−βH ] , where β = 1/T is the inverse of temperature. We

use discrete � = M�τ (β = M�τ ) and perform a Trotter de-
composition for the PQMC (FTQMC) method, and set �τ =
0.1 and projection time � = 2L + 10 for HSLAC and � =
L + 10 for Hπ-Flux when measuring imaginary-time physical
quantities, and, in the FTQMC method, we set �τ = 0.01
for measurement. With the aid of particle-hole symmetry, the
PQMC and FTQMC for HSLAC and Hπ-Flux models are all
sign-problem free [40,48,64,67,68]. We have simulated the
square lattice system with N = 2L2 sites and the linear size
L = 5, 7, · · · , 19 for HSLAC, while N = L2 sites and the linear
size L = 4, 8, · · · , 32 for Hπ-Flux.
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FIG. 2. Fixing U = 16 and scanning T , we get (a) the cross
and (b) data collapse of correlation ratio R, and (c) data collapse
of magnetic structure factor C(). One can read Tc = 0.34(2) from
panel (a), extract ν = 1.0(1) from panel (b), and extract η = 1.1(1)
from panel (c). Fixing T = 1/3 and scanning U , we get (d) the cross
and (e) data collapse of correlation ratio R, and (f) data collapse of
spin structure factor C(). One can read Uc = 8.4(1) from panel (d),
extract ν = 1.0(1) from panel (e) and extract η = 1.2(1) from panel
(f).

III. RESULTS

We first reveal the finite temperature continuous phase tran-
sition of the AFMI phase in HSLAC, with the phase boundary
determined as shown in Fig. 1(b). Here we use one vertical
scan with fixed U = 16 and varying T, and one horizontal
scan with fixed T = 1/3 and varying U , to demonstrate the
generic behavior. Figure 1(d) are the U -t phase diagram of
π -flux Hubbard model [40]; we notice that there is no finite
temperature phase transition.

Reference [48] investigated the ground state phase diagram
of HSLAC. Following their approach, we define the AFMI spin
structure factor as

C(q) ≡ 1

L2

∑
i j

eiq·(ri−r j )〈Si · S j〉, (3)

where Si = 1
2 c†

iaσ σσσ ′ciaσ ′ − 1
2 c†

ibσ σσσ ′cibσ ′ (Si = 1
2 c†

iσ σσσ ′

ciσ ′ ) is the fermion spin operator at unit cell (site) i for
HSLAC (Hπ−Flux), and σ denotes the Pauli matrices of SU (2)
spin. For HSLAC (Hπ−Flux), the AFMI ordering wave vector
is q = � (q = M). To locate the thermal phase transition
point of HSLAC, we define the renormalization-group invariant
correlation ratio R = 1 − C(q + b1/L + b2/L)/C(q), where
b1,2 are the reciprocal lattice vectors [69].

Figures 2(a) and (d) are the correlation ratio R for the
two scans as a function of T and U , respectively. It is clear

that different system sizes have a crossing point both on
the T and U axes. With the Tc = 0.34(2) at U = 16 and
Uc = 8.4(1) at T = 1/3 obtained, we can further rescale their
x axes as (T/Tc − 1)L1/ν and (U/Uc − 1)L1/ν to have good
data collapses as shown in Figs. 2(b) and 2(e). The collapse
successfully give rise to the correlation length exponent ν =
1.0(1) for data in (b) and (e). With the obtained Tc, Uc, and
ν, we can further collapse the AFMI spin structure factor
C() near Tc, with C()Ld−2+η and d = 2. The results are
shown in Figs. 2(c) and 2(f), and from here we can further
read the anomalous dimension exponent η = 1.1(1) in the T
scan and the 1.2(1) in the U scan of the finite temperature
continuous phase transition between the paramagnetic state
to AFMI state. In fact, the phase boundary in Fig. 1(b), is
obtained in this way. We note, the obtained η and ν are indeed
consistent with the RG results of the 2D Heisenberg model
with 1/r2.9(1) long-range interaction [57].

The AFMI in the HSLAC breaks the spin SU (2) symmetry
at finite temperature; this is clearly against the requirement of
the Mermin-Wagner theorem, which prohibits such transition
for 2D systems. The reason of such violation is the violation
of the locality in HSLAC in the first place. As mentioned, long-
range interaction is responsible for such behavior [55,57–
59,61–63]. With the violation of the locality, many of the
assumed properties in the symmetry-breaking phase, as well
as that of the assumed GN-QCP, have to be reconsidered. In
particular, as we now turn to the dynamic properties of the
AFMI and make comparison between the SLAC fermion and
the π -flux models, we find the AFMI in the HSLAC has no
gapless Goldstone modes, whereas the same phase in Hπ−Flux

has them. This partially explains the apparent violation of
Mermin-Wagner theorem, because the theorem asserts that the
infrared divergence in the low-energy fluctuation of gapless
Goldstone mode destroys the long-range order at any finite
temperature.

The results are shown in Fig. 3, where we have extracted
the spin excitation gap �spin from the dynamic spin correlation
functions obtained in PQMC, C(q, τ ) ∼ exp(−�spin(q)τ ),
via fitting the finite size data in their imaginary time decay.
The raw data of dynamic spin correlation functions and the
fitting procedure are shown in Appendix B. We note since
on finite lattice simulation spin-spin correlation at the AFM
wave vector is a conserved quantity, resulting in �spin(�) = 0
for SLAC and �spin(M) = 0, therefore one shall look for the
asymptotical behavior of �spin(q) as q approaches � or M
[58,59].

Figures 3(a) and (c) compare the obtained spin gap along
the high-symmetry-path of the BZ for HSLAC and Hπ−Flux

at U = 10. It is clear that as the system size increases, the
�spin(q) outlines the converged spin wave dispersion for both
AFMIs. In the HSLAC case, the AFM wave vector is at �; in
the vicinity of �, there is a clear finite energy gap at the scale
of 0.4 from the extrapolation of X → � and M → �. Such
a large energy gap is clearly not a finite size effect which
usually goes as 1/L as one is approaching the AFM wave
vector with increasing L, and it is in sharp contrast with the
data in Fig. 3(c), where in the vicinity of the AFM ordered
wave vector at M, the gap is vanishing (scales as 1/L from
X → M and � → M) and a gapless Goldstone mode with
linear dispersion originated from M is clearly seen. When
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FIG. 3. The spin excitation gap �spin(q) along the high-
symmetry path in the BZ for (a) HSLAC with U = 10, (b) HSLAC with
U = 22, (c) Hπ−Flux with U = 10, and (d) Hπ−Flux with U = 22. The
dashed lines are obtained by the extrapolation with square polyno-
mial fitting of �spin(q) at the adjacent momenta to the corresponding
AFM wave vectors for different system sizes, and the details of
extrapolation could be found in Appendix B. For SLAC, the spin gap
�spin = 0.45t for U = 10, and �spin = 0.26t for U = 22; while for
π -flux, �spin = 0 for both U = 10 and U = 22. It’s clear that there
are no gapless Goldstone modes in (a) and (b) and there are gapless
spin wave spectra in (c) and (d).

we further increase the U to U = 22 for both models, i.e.,
deep inside the AFMI phase, the same contrast still present,
as shown in Figs. 3(b) and 3(d). Therefore, besides the ap-
parent violation of the Mermin-Wagner theorem, the AFMI
phase in the HSLAC also has no Goldstone mode to meet the
requirement of spontaneous continuous symmetry breaking.
And it means the low-energy effective theory of the AFMI is
different between HSLAC and Hπ−Flux.

Besides the dynamic properties, the difference of HSLAC

and Hπ−Flux also manifests in their thermodynamic response
functions; to this end, we compute their magnetic susceptibil-
ities χ as a function of T ,

χ (T, q) = 1

T

⎡
⎣ 1

L2

∑
i, j

eiq·(ri−rj )〈Si · S j〉 −
∑

i

〈Si · Si′ 〉
⎤
⎦,

(4)

where i′ denotes the site which is farthest from site i in
real space, and again we chose q = � (q = M) for HSLAC

(Hπ−Flux), respectively. Here, we use the equal-time suscep-
tibility instead of the zero-frequency susceptibility, because
the former is easier to compute (it has a smaller statistical
error due to a smaller variance in FTQMC simulations). The
two susceptibilities exhibit the same scaling behavior near
the finite-temperature critical point, because the imaginary
fluctuation is irrelevant at the classical critical point. More-
over, we plot T χ (T, q) instead of χ (T, q) because the former
converges to a finite value in the zero-temperature limit. The
T χ (T, q) data are shown in the insets of Fig. 4, where the
two panels are for HSLAC and Hπ−Flux at U = 16, respec-
tively. There is clearly a peak in the inset of panel (a), whose

FIG. 4. The data collapse of magnetic susceptibilities χ (T, q)
for HSLAC [panel (a)] and Hπ−Flux [panel (b)] at fixed U = 16. In
panel (a), we could collapse magnetic susceptibilities for different
system sizes into a smooth curve in terms of the critical tempera-
ture Tc = 0.34 and critical exponents ν = 1.0 and η = 1.1 that we
extracted from Fig. 2. Inset: The T χ (T,�) as function of T shows a
peak near Tc = 0.34. In panel (b), we could obtain perfect collapse
results according to the renormalized-classical scaling behavior of
the 2D O(3) model, where η = 0 and ν is a nonuniversal exponent.
Inset: The T χ (T, M) as function of T shows that the peaks at finite
size drift towards T = 0.

location converges to Tc = 0.34(2) and amplitude diverges in
the thermodynamical limit, whereas in the case of Hπ−Flux in
panel (b), the peak drifts toward T → 0 as the system size
increases. Indeed, in panel (a), it is shown that the suscepti-
bility in the SLAC model satisfies the universal scaling form
χ (T, q)Lη−2 = f (tL1/ν ), where f is a universal function, and
t = T/Tc − 1 is the reduced temperature. Similarly, in panel
(b), it is shown that the susceptibility in the π -flux model
also satisfies the scaling form χ (T, q)Lη−2 = f (tL1/ν ), where
the reduced temperature is defined as t = e−1/T for this zero-
temperature critical point, and ν is a nonuniversal exponent.
Such a scaling form can be deduced from the renormalized-
classical scaling behavior of the 2D O(3) model [70], and
η = 0 in this case. The peaks and scaling behaviors are con-
sistent with a finite-temperature and a zero-temperature phase
transition, respectively. This again means that the continuous
spin SU (2) symmetry is broken at finite temperature for the
HSLAC and at zero temperature of the Hπ−Flux.

IV. DISCUSSION

It is well-known that the violation of locality in quantum
many-body systems, either in the form of spatial long-
range interaction [55–59] or the dissipative interaction that
introduces the long-range retarded interaction in temporal di-
rection [60–63], will fundamentally change the universalities
of the original short-range models and give rise to different be-
haviors, for example, diverging dynamic exponent [62,63] and
finite temperature order with spontaneous continuous symme-
try breaking [60,61]. Such a general expectation, however, has
not been explicitly shown in the fermionic systems at 2D,
due primarily to the associated computational and analytic
complexities.

Here we take a different angle of the active research on the
SLAC fermion Hubbard model and the assumed GN-QCPs
[47,48]. We find although such an intelligent lattice construc-
tion indeed gives rise to the linear energy-momentum relation
for all lattice momenta at the noninteracting limit—therefore
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FIG. 5. The correlation ratio at U = 16 for HSLAC (a) and Hπ−Flux

(b). The finite temperature transition in the former is shown as the
crossing point at Tc = 0.34(2) [inset of (a)], whereas the zero tem-
perature AFMI phase in the latter is shown as the drift of the finite
size crossing points [inset of (b)].

greatly reduced the notorious finite size effect in QMC simula-
tions, it also introduces unexpected consequences, in that the
interaction-driven AFMI phase in this case is fundamentally
different from that on a purely short-range π -flux Hubbard
model on the square lattice. It not only acquires a finite
temperature continuous phase transition, which appears to vi-
olate the Mermin-Wagner theorem, and the finite temperature
critical line smoothly connects to the previously determined
GN-QCP, but also exhibits gapped magnetic excitations with-
out gapless Goldstone mode and different thermodynamic
responses compared with AFMI in the π -flux Hubbard model.
We believe these are a set of data that explicitly demonstrate
the consequence of the violation of the locality in the cor-
related Dirac fermion systems in 2D, and the low energy
effective theory of AFMI and the QCP in SLAC fermion
model are different from those of GN-QCP with short-range
interactions.
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APPENDIX A: THE COMPARISON OF CORRELATION
RATIO BETWEEN SLAC FERMION AND π-FLUX

HUBBARD MODEL

Here, we compare the SLAC fermion and π -flux Hubbard
model with the correlation ratios obtianed from the spin-
spin correlation functions. The parameter is U = 16 as in
Figs. 2(a), 2(b), and 2(c). The results are shown in Fig. 5. We
note that there is a clearly converged cross point for different
L-s in the HSLAC case with Tc = 0.34(2) [inset of (a)], while,
in the Hπ−Flux case, the cross point is not only at smaller T
for finite sizes but also drifts toward T → 0 as L increases
[inset of (b)], which is consistent with the fact that the AFMI
in Hπ−Flux happens at T = 0.

APPENDIX B: DYNAMIC SPIN CORRELATION
FUNCTION AND SPIN EXCITATION GAP

To obtain the spin excitation gap �spin(q), as shown
in Fig. 3 of the main text, we first calculate the dynamic
spin correlation functions C(q, τ ) ≡ 1

L2

∑
i j eiq·(ri−r j )〈Si(τ ) ·

S j (0)〉, and then extract the spin excitation gap as C(q, τ ) ∼
exp(−�spin(q)τ ). Figure 6 shows the exemplary data at three
different momenta for L = 15 and U = 10 [the same data set
of Figs. 3(a) and 3(b) in the main text] for the HSLAC (a)
and Hπ−Flux (b) cases. In both cases, the exponential decay

FIG. 7. (a) C(�)/L2 and (b) R with respect to the time slice
interval �τ . These results are obtained at T = 0.33 near Tc.

195112-5



DA LIAO, XU, MENG, AND QI PHYSICAL REVIEW B 108, 195112 (2023)

FIG. 8. �τ extrapolation of (a) 〈H0〉 and (b) nd . For PQMC, we
set projection time � = 100, while for FTQMC, we set the inverse
of temperature β = 300. The dashed lines are obtained by square
polynomial fitting through the corresponding data.

in the imaginary time is clear and the fitting can be carried out
readily.

APPENDIX C: THE TROTTER ERROR ANALYSIS AND
BENCHMARK WITH ED

As mentioned in the main text, the Trotter decomposition
in the imaginary time in the QMC introduces a systematic
error at the scale of O((�τ )2). Here we show that our choices
of the �τ are small enough such that for the finite size systems
we can access the convergence of the physical observables are
already obtained.

The behavior of the Trotter error as function of �τ is
shown in Fig. 7 for HSLAC with FTQMC method. We show two
physical observables, the square of magnetization C(�)/L2,
and correlation ratio R; their definitions are given in the main
text. We choose parameters U = 16 and T = 0.33 near Tc, and
notice that C(�)/L2 and R are all converged at �τ = 0.01
which is the imaginary time discretization we used. For the
PQMC method used for calculating the dynamic spin corre-
lation function, we set � = 2L + 10 and �τ = 0.1, which is
the same discretization used in Ref. [48]; as shown there, this
value is sufficient to achieve convergent and error controllable
numerical results for HSLAC.

In Fig. 8, we further show the benchmark of kinetic energy
〈H0〉 = 〈−t

∑
i jσ (Ai jc

†
iaσ c jbσ + H.c.)〉 and double occupancy

nd = ∑
iλ〈niλ〉 between exact diagonalization (ED) results

and two different QMC estimates for a six-site (Lx = 3, Ly =

FIG. 9. �spin(q, L) extrapolation of HSLAC at (a) U = 10 and (c)
U = 22, and of Hπ−Flux at (b) U = 10 and (d) U = 22. The dashed
lines are the quadratic fitting.

1) HSLAC system at U = 4 and 8. The extrapolations of the
data to �τ → 0 are consistent with the ED results within error
bars.

APPENDIX D: THE 1/L EXTRAPOLATION OF SPIN
EXCITATION GAP

In Fig. 3 of the main text, we plot the extrapolating lines to
claim there is no Goldstone mode in HSLAC, while there indeed
is in Hπ−Flux. Here, we show the details of extrapolations.
As shown in Fig. 9, we extrapolate the spin excitation gap
�spin(q, L) to thermodynamic limit. For HSLAC, as shown in
Figs. 9(a) and 9(c), we extrapolate �spin(q, L) along momenta
q = (b1/L, 0) (the path of X → �) and (b1/L, b2/L) (the
path of M → �) with quadratic function in 1/L for U = 10
and 22. The results clearly show a finite gap at � point. While,
the same analysis for Hπ−Flux, the gaps go to zero at M point,
as shown in Figs. 9(b) and 9(d), along the paths of X → M
and � → M, respectively.
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