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Numerical treatment of two-dimensional strongly-correlated systems is both extremely challenging and of
fundamental importance. Infinite projected entangled-pair states (PEPS), a class of tensor networks, have
demonstrated cutting-edge performance for ground-state calculations, working directly in the thermodynamic
limit. Furthermore, in recent years the application of PEPS has been extended to also low-lying excited states,
using an ansatz that targets quasiparticle states above the ground state with high accuracy. A major technical
challenge for those simulations is the accurate evaluation of summations of two- and three-point correlation
functions with reasonable computational cost. In this paper, we show how a reformulation of n-point functions in
the context of PEPS leads to extra contributions to the results that prove to play an important role. Benchmarks
for the frustrated J1 − J2 Heisenberg model illustrate the improved precision, efficiency, and stability of the
simulations compared to previous approaches. Leveraging automatic differentiation to generate the most tedious
and error-prone parts of the computation, the straightforward implementation presented here is a step towards
broader adoption of the PEPS excitation ansatz in future applications.
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I. INTRODUCTION

For almost 30 years, tensor networks have been used to
study low-dimensional condensed matter physics. The most
well-known variant, matrix product states (MPS) [1–4], is
a one-dimensional ansatz for quantum ground states that is
designed to yield highly accurate results with a computational
complexity that scales merely polynomially in the number
of degrees of freedom in the system. Several orthogonal di-
rections to simulate physics beyond ground states have been
explored, such as the excitation ansatz, real-time evolution
for studying dynamics in one [5–11] and two dimensions
on cylinders [12–14]. However, the application of MPS on
cylinders in two dimensions leads to an exponential cost as
a function of the cylinder width. The straightforward alterna-
tive is the fully two-dimensional PEPS ansatz [15,16], which
treats both dimensions on the same footing and can be ap-
plied directly in the thermodynamic limit [17]. This comes
at a cost: Generally, PEPS algorithms tend to require more
programming effort, complicated by the inability to contract
the networks exactly, and feature computational costs that
scale with large powers of the bond dimension—the refine-
ment parameter that controls the accuracy. Nevertheless, in
particular infinite PEPS methods have been developed at great
pace in recent years and offer a complementary tool to quasi-
two-dimensional MPS-based methods [18], free of finite-size
effects, with applications to a broad range of challenging
problems, see e.g., Refs. [19–37].

Similar to MPS, the two-dimensional PEPS ansätze have
moved beyond their well-established use for ground-state
simulations. The excitation ansatz, originally formed in the
context of MPS, has seen several implementations in recent
years for PEPS, each with improved capabilities as well as
reduced computational cost [38–41]. A major development in

simulating ground states with PEPS has been the introduction
of automatic differentiation (AD) [42], which programmati-
cally connects analytical derivatives by way of the chain rule.
This approach enables a much simpler implementation of op-
timization algorithms, including the simulation of excitations
[41].

At the heart of the excitation-ansatz methods lies the com-
putation of two- and three-point correlation functions. As the
excited states are constructed from local perturbations to the
ground state, the evaluation of their norm is equivalent to
a sum over two-point functions. For their energy also the
Hamiltonian enters the computation, leading to three-point
correlators. Recently, a new formulation for constructing these
correlation functions was introduced in the context of fi-
nite MPS [44]. In this approach, reminiscent of generating
functionals in quantum field theory, one includes all n-point
functions simultaneously, forming again an MPS. Through
differentiation with respect to a dummy variable, or a source
field in continued analogy, two-point functions can be ex-
tracted. This formulation led to an elegant implementation of
the MPS excitation ansatz.

Here we employ a similar idea for PEPS, although we
use a different formulation, demonstrating that extension to
infinite systems in two dimensions is possible. In contrast
to the one-dimensional case the scenario is quite different.
Existing implementations of the PEPS excitation ansatz have
yielded accurate and nontrivial results for both spin and elec-
tronic models [39–41,45]. However, obtaining reliable results
at higher bond dimensions has proven to be difficult [41,46],
both computationally and due to numerical instabilities when
strong frustration is present, signaling the need for improved
schemes. The formulation we present here exposes exactly the
contributions to the two- and three-point correlators, which
were omitted in previous implementations. We show how

2469-9950/2023/108(19)/195111(12) 195111-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1558-2344
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.195111&domain=pdf&date_stamp=2023-11-07
https://doi.org/10.1103/PhysRevB.108.195111


PONSIOEN, HASIK, AND CORBOZ PHYSICAL REVIEW B 108, 195111 (2023)

0 2 4 6

Energy

0

0.05

0.1

S
p
ec

tr
a
l
w

ei
g
h
t

PEPS

VMC

FIG. 1. Cut of the dynamical structure factor of the J1 − J2

Heisenberg model for J2/J1 = 0.3 at k = (π, 0) computed with the
PEPS excitation ansatz at bond dimension D = 4, compared with
variational Monte Carlo (VMC) data of Ref. [43]. The VMC data
was normalized in such a way that the sum of spectral weight is equal
to the static structure factor [computed to be s(π, 0) ≈ 0.186], while
the PEPS data always exactly fulfills this sum rule by construction
[for PEPS we obtain s(π, 0) ≈ 0.182]. Both sets of data were convo-
luted with a Lorentzian with broadening factor η = 0.1.

to include them efficiently and how doing so leads to both
substantial increase in accuracy and stability of the PEPS
excitation ansatz approach.

In order to demonstrate the capabilities of the im-
proved scheme, we consider the challenging frustrated J1 − J2

Heisenberg model. Figure 1 showcases an example of simu-
lation results, where we combine the excitation energies with
corresponding spectral weights to obtain a cut of the dynam-
ical structure factor, which we compare to recent variational
Monte Carlo VMC data [43].

II. METHODS

A. Improved summations

1. Reformulation

Tensor networks are defined by a collection of tensors and
some particular multiplication structure. This simple linear
structure allows us to express (sums over) expectation values
in terms of derivatives of the network.

Consider the simple example of a three-site MPS, consist-
ing of tensors A1, A2, A3. Suppose we have a function that
computes the norm of this state,

n = (1)

The derivative ∂n
∂A2

, for example, is easy to compute: it is ob-
tained by removing tensor A2 from the contraction, resulting
in

∂n
∂A2

= (2)

We can compute the expectation value of an operator Ô on site
2 by inserting a new tensor [B2]αβγ δ

i ≡ ∑
j Ôi j[A2]αβγ δ

j , which

is the contraction of A2 and Ô along their physical indices,
back in the network. This contraction can be written as

(3)

with B2 the vectorized representation of B2. Note that the
example of an operator is only a subset of the possibilities,
since the space of B tensors is much larger and we could
represent more general perturbation of the MPS.

a. Summations. The example above can be extended to
summations over the possible locations of the operator. In the
case of an MPS with three independent tensors, we could take
the derivative over the parameters in all three tensors ∂n

∂ �A , with
�A = (A1, A2, A3), leading to

∑
i=1,2,3

〈Ôi〉 = ∂n

∂ �A · �B, (4)

where also �B = (�B1, �B2, �B3). Note that the expression ∂n
∂ �A

treats the tensors as separate independent variables, leading to
three individual dD4 tensors, concatenated in one vectorized
representation. This is not equal to removing three tensors
simultaneously, which would result in one (dD4)3-shaped
tensor.

For a state with translational symmetry, including infinite
states, the formulation can be simplified. If we consider an
MPS with full translational symmetry, parametrized by a
single tensor A that is repeated throughout the network, the
summation over expectation values becomes

∑
i

〈Ôi〉 = ∂n

∂A
· B. (5)

Via the product rule of differentiation, all terms are generated
by taking the derivative, and we can insert the operator in all
locations by a single multiplication with �B.

b. Connections. The construction of Eq. (5), which can be
directly applied to PEPS as well, is known as the tangent
space. Many ground-state optimization algorithms originate
from the tangent space, since we can obtain the energy gradi-
ent from the derivative [47,48]. The excitation ansatz, both for
MPS and PEPS, is defined originally as a linear perturbation
within the tangent space, and on the level of the MPS and
PEPS themselves this definition is exactly equivalent to the
summations over the excitation tensor’s locations. However,
since we have to resort to approximate contraction schemes
in the case of PEPS, the tangent-space formulation leads to
crucial new contributions to the derivatives, which yields more
accurate results at lower computational cost.

Summations over n-point functions and their applica-
tion to the calculation of structure factors and excitations

195111-2



IMPROVED SUMMATIONS OF N-POINT CORRELATION … PHYSICAL REVIEW B 108, 195111 (2023)

were recently reformulated in the context of finite MPS in
terms of so-called generating functions [44]. This construc-
tion involves building up summations of all orders, which
can again be simply expressed as an MPS with modified
site tensors, and subsequently taking a derivative in order
to generate the summations over n-point functions, leading
to a formulation that is especially elegant for finite sys-
tems without translational symmetry. Since we work in the
thermodynamic limit with (partial) translational invariance,
we can express n-point functions simply as derivatives of
the ground state directly, without involving such generating
functions.

2. CTM

One of the main methods for contracting PEPS is the cor-
ner transfer matrix renormalization group (CTM) algorithm
[49–52], which has been used extensively and is known to be
generally competitive with other contraction methods based
on boundary MPS [46]. The CTM scheme works by itera-
tively growing a central patch of the system and absorbing the
site tensors into a set of boundary tensors. Simply absorbing
the site tensors would result in an exponential growth of
the boundary tensor sizes, so a truncation step is necessary.
After each iteration, projectors [52] are applied that perform
the important task of selecting the optimal subspace for the
truncation of the boundary tensors to some fixed boundary
bond dimension χ .

AD within CTM. In order to compute the derivatives that
appear in expressions similar to Eq. (5), which calculate
summations over operator expectation values, we will need
to differentiate the CTM contraction method. Since the con-
traction uses a limited set of operations, including tensor
multiplication and singular value decomposition (SVD), the
application of AD is possible. This insight has been a valuable
development for PEPS, first used for basic ground-state opti-
mizations [42] and later applied to more complex simulations
[34,41].

We can compare the computational graph that AD gen-
erates for the calculation of a sum over two-point functions
to the existing summation CTM scheme [40,41,53]. The
update step of the left half-row transfer matrix, which
contains the half-infinite row of the double-layer network
to the left of a center site, can be diagrammatically
represented as

← (6)

When we compute the derivative of the new tensor with
respect to A, we obtain several terms: one containing the
A derivative of the previous boundary tensor, one with the
A tensor removed, and two terms containing a derivative of
each of the projectors. Representing the derivative of a ten-
sor by a dot, we obtain the following from differentiating

Eq. (6):

• ← • + •

+

•
+

•
+

••
+

••

(7)

The summation CTM scheme of [40,41] is recovered when we
only include the first two terms, while the projector derivatives
in the green rectangle are new additions. On the level of the
PEPS itself, the relation of the form of Eq. (5) is exact, since
it is the definition of the product rule. However, for the CTM
contraction method there is a difference, and the new terms
turn out to provide significant contributions to the results of
the contraction. Note that these differences will vanish in the
infinite-χ limit, where CTM becomes exact, since the projec-
tors are arbitrary, with pairs of conjugate projectors forming
identities, and therefore their derivatives are always zero. We
will explore the practical effect of the inclusion of projector
derivatives in the results section.

In the asymmetric version of CTM that we use, the projec-
tors are obtained through SVDs of contractions that contain
parts of the system [52]. As such, the dependence of the
projectors on the A tensors and boundaries is highly nontrivial.
The derivative can be computed in a straightforward manner
using AD, where we make use of the standard formulas for
SVD derivatives [54,55], though we discuss possible instabil-
ities in Sec. II A 4.

3. Nonzero momentum

The plain derivative that appears in Eq. (4) is only defined
for sums with momentum k = 0, without any phase factors.
We can generalize this construction also for k �= 0, using a
modification of the unit cell of the state.

a. Unit-cell expansion. Assuming we start from a transla-
tionally invariant ground state, although arbitrary ground-state
unit cells are no more difficult, we could expand the single-
site unit cell and define a vectorized version that contains a
concatenation of the unit-cell tensors,

A → �A = [
A(0,0) . . . A(mx,my )

]
, (8)

where all tensors A j are copies of A. By choosing (mx, my) =
(kx mod 2π, ky mod 2π ), i.e., a unit-cell size that is com-
mensurate with the momentum, the phase factors are equal
for all sites with the same relative position within their unit
cell. Introducing a new object �φk = [eik·(0,0) . . . eik·(mx,my )], a
vector containing the phases for each position in the unit cell,
we can compute the sum for any k by taking the derivative
with respect to all unit-cell tensors simultaneously,

〈Ôk〉 =
∑

n

eik·n〈Ôn〉 = B · �φk · ∂

∂ �A 〈�(A†)|Ô0|�(A)〉. (9)
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As such, the phase factors only appear in the vector B · �φ and
the derivative itself remains a standard ground-state deriva-
tive. Note that B still contains a single vectorized tensor,
since the only difference in each term is the location of the
derivative and the corresponding phase factor.

For example, we could represent an excited state with
momentum k = (π, π ), on top of a translationally symmet-
ric ground state, with a 2 × 2 unit cell, i.e., (mx, my) =
(2, 2). We then set �φk = [eik·(0,0), eik·(1,0), eik·(0,1), eik·(1,1)] =
[1, − 1, − 1, 1], such that Eq. (9) yields four terms with the
checkerboard sign structure.

b. Modified differentiation. In order to reduce notational
clutter, we will define a new operator ðk, carrying the value of
the momentum as an explicit index, which has the following
action on a PEPS:

ð
k
A|�(A)〉 =

∑
n

eik·n ∂

∂An
|�(A)〉 (10)

=
∑

unit cells

∑
j∈unit cell

eik· j ∂

∂A j
|�(A)〉 (11)

=
∑

unit cells

�φk · ∂

∂ �A |�(A)〉. (12)

This expression is identical to the product rule of differentia-
tion for k = 0, while for k �= 0 the relevant phase factors are
included in the definition of ðk. With this definition in hand,
we can write Eq. (9) as

〈Ôk〉 = B · ð
k
A〈�(A†)|Ô0|�(A)〉. (13)

c. CTM momentum implementation. A downside of ex-
panding the unit cell is the increased computational cost by
a factor given by the linear size of the cell. On the other hand,
such an expanded unit cell with the appropriate phase factors
can be contracted with CTM with only minor modifications
[51,52]. The only case where the implementation should be
modified is where the momentum is commensurate with a
very large unit cell, much larger than the correlation length.
There, the solution is to perform only a partial contraction of
the unit cell, since all correlations far away will generally de-
cay exponentially, regardless of any phase factors. While this
is reminiscent of the contraction of a finite system, it should
be noted that here we are still working in the thermodynamic
limit and therefore we retain perfect resolution in momentum
space.

Alternatively, one could exploit the relationship between
boundary tensors at different sites. Since the translational
symmetry of the PEPS is only broken one the level of the
phase factors, the boundary tensors corresponding to various
offsets in the unit cell are generally related, which we describe
in Appendix.

4. Additional technicalities

There a a few more subtleties that arise in practical sim-
ulations, especially when extending the above scheme to
higher-order summations, which we will discuss here.

a. Symmetries. An important part of many tensor-network
codes is the option to enforce symmetries on the level of the
individual tensors [56,57]. This generally has two benefits:

(1) the symmetries lead to many zero elements in the tensors
and leaving these out of the computations leads to significant
efficiency gains in time and memory, and (2) restriction of the
state to a specific symmetry sector can be used to target phases
of interest and improve stability. For the study of excitations
in the context of MPS and PEPS, enforcing the symmetries
enables one to single out specific sectors, such as a single-
magnon or single-hole excitations [58].

In theory, symmetric tensors are compatible with the im-
proved scheme, since the various orders of vector-Jacobian
products (vjps) lie in specific symmetry sectors. However,
most existing AD frameworks are ill equipped to handle this
use case, since generally the vector in a vjp is required to
have the same number of parameters as the variable (“primal”)
itself. For many simulations, the excitation tensor B lies in
a different symmetry sector than the ground-state tensor A,
which usually means that their distribution (and number) of
nonzero elements differs.

For this reason, we limit ourselves for now to symmetries
only on the level of the A and B tensors, which enables us
to still target the individual sectors, while using dense tensors
for the CTM environments. The only difference with a fully
symmetric implementation is in the computational efficiency,
but not in the results.

b. Degeneracies. For some time, the technique of AD has
been used to great success for PEPS simulations for ground
states as well as excited states. Compared to the neural
networks that AD is often used for, tensor networks are par-
ticularly simple: the set of operations is very limited due to
the network’s linear structure. One part that has proven to be
slightly more complicated in practice is the SVD that appears
in the computation of the CTM projectors. While the deriva-
tive of an SVD is implemented in all major AD frameworks,
instabilities can occur, in particular when degenerate singular
values appear. This is a special case, which has a virtually
zero chance to occur in arbitrary calculations but appears in
our simulations as a result of underlying symmetries in the
PEPS.

In order to deal with this problem, we can try to remove the
degeneracies without significantly impacting the accuracy of
the CTM contraction. Along the virtual bonds, the boundary
tensors exhibit a gauge freedom. Any pair of invertible χ × χ

matrices XX −1 can be inserted, without changing anything in
the evaluation of the PEPS, and individually absorbed into the
different boundary tensors,

= X X−1

(14)

This operation changes the virtual spaces of the enlarged
corners and therefore the results of the SVD, in particular
the spectrum. One effective and controllable choice for X
would be a diagonal matrix with elements that range from
{1 − η, 1 + η}, evenly spaced. The parameter η then controls
the spacing of the spectrum and thus the splitting of the de-
generate singular values.

Note that changing the CTM gauge affects the selection of
the subspace during the truncation step and potentially lead
to a suboptimal choice. However, there is no apparent reason
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why the modified gauge would lead to worse results and we
have checked numerically that the accuracy of the CTM con-
tractions is not affected in a significant way. In contrast, the
instability of the SVD derivative in the presence of degenerate
singular values is independent of χ and can not be easily
reduced.

B. Excitation ansatz

The PEPS excitation ansatz, introduced and extended in
[38–41], has evolved into a powerful method for simulating
low-lying excitations on top of a PEPS ground state. This
ansatz is specifically tailored to quasiparticle-like excitations,
localized in momentum space. We obtain the form of the
excitations by modifying one of the A tensors in the PEPS
ground state

|�0(A)〉 → |�(A, B)n〉, (15)

and transforming into momentum space to obtain

|�(B)k〉 =
∑

n

eik·n|�(B)n〉. (16)

Projecting the time-independent Schrödinger equation into
space spanned by excitations leads to the generalized eigen-
value problem

Hk �B = ωkNk �B, (17)

where the main computational task is to compute the actions
of the effective overlap matrices

�B†Nk �B :=〈�(B)k|�(B)k〉, (18)

�B†Hk �B :=〈�(B)k|H|�(B)k〉. (19)

Due to the presence of modes with exactly zero norm and to
reduce the effect of the approximate contractions, we gener-
ally solve Eq. (17) in a reduced subspace. If we denote the full
space W and the reduced subspace V , and define P : V → W ,
the eigenvalue problem becomes

(P†HkP)�b = ωk(P†NkP)�b, (20)

with �B = P �b. The dependency of the eigenvalues on the
choice of basis size was first discussed in Ref. [41], Ap-
pendix B] and is explored in more detail in later part of the
results.

The simulation of excited states using the PEPS excitation
ansatz benefits greatly from the improved scheme, although
the implementation is slightly more complex. In Ref. [41], the
action of the effective energy overlap matrix was formulated
in terms of a derivative as

Hk �B = ∂

∂B†
〈�(B†)k|H|�(B)k〉

= ∂

∂B†

∑
n,n′, j

eik·(−n+n′ )〈�(B†)n|h j |�(B)n′ 〉. (21)

If we reinterpret the sums over B and B† as product-rule
differentiation, this expression is equivalent to a second-order
derivative. Using our definition of the momentum-equipped
derivative from Eq. (12), we can rewrite the action of H as

Hk �B =
∑

j

ð
k
A†

(
B · ð

k
A〈�(A†)|h j |�(A)〉). (22)

Listing 1. Compute static structure factor Eq. (26).

# A contains the ground-state parameters

# An operator is given and incorporated

# in apply_operator and eval_observable

# Ground-state boundaries

C = ctm(A)

# Operator on physical leg

A_dot = apply_operator(A)

# Start with zero initial boundaries for the

# gradient tracking

C_dot = init_zero_boundaries()

converged = False

while not converged :
C_dot_old = C_dot

# jvp takes function inputs and vectors,

# returns function output and Jacobian-

# vector products, using forward-mode AD

C, C_dot = jvp(ctm_iter, (A, C), (A_dot, C_dot))

converged = (norm(C_dot - C_dot_old) > tol)

# The derivative of the expectation value

# is equal to the static structure factor

_, s = jvp(eval_observable, (A, C), (A_dot, C_dot))

Due to translational symmetry, we are permitted to simplify
the triple summation of Eq. (21) and restrict the summation
over local hamiltonian terms h j to all nonequivalent terms
within a unit cell,

Hk �B ∝
∑

j∈unit cell

ð
k
A†

(
B · ð

k
A〈�(A†)|h j |�(A)〉). (23)

With AD, a second-order derivative such as this can be
implemented most efficiently by a combination of forward and
reverse mode, as described in Listing 2. The full PEPS con-
traction can be viewed as a map from (A, A†) → E , with E the
energy. Since E is a scalar and because we are calculating the
action for one vector �B at a time, the quantity ( ∂

∂A E ) · �B can
be computed via forward-mode AD. The A† derivative should
be performed using reverse-mode AD, since we require the
derivative for all parameters of A† simultaneously.

III. RESULTS

Now, we subject the proposed improved summations to a
stringent benchmark. For this purpose we will focus on the
spin-1/2 antiferromagnetic J1 − J2 model on a square lattice,
a paradigmatic model in the field of frustrated magnetism
or more broadly strongly-correlated systems, defined by the
Hamiltonian

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j, (24)

where 〈., .〉 and 〈〈., .〉〉 denote nearest and next-nearest neigh-
bours respectively. We take both J1 and J2 positive and set
J1 to unity. For J2 = 0 where this model reduces to the
well-understood antiferromagnetic Heisenberg model, the
PEPS excitation ansatz has already been applied with accurate
and consistent results [39,40].
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Listing 2. Compute excitation energy overlap (23)

# A contains the ground-state parameters

# B contains the excited-state parameters

# Ground-state boundaries

C_0 = ctm(A) # Repeats ctm_step until convergence

def run(A, A_dag):

# This function performs a full ctm run

# and evaluates the PEPS energy

# Note: this implementation is simplified -

# in reality one would monitor convergence

# of the ctm derivatives, rather than run

# for a fixed number of steps

C = C_0

for i in range (ctm_max_iter):

C = ctm_step(A, A_dag, C)

energy = eval_energy(A, A_dag, C)

return energy

def run_jvp_ket(A, A_dag, A_dot):

# This function differentiates only with

# respect to the ket (A) argument, so

# we set A_dag_dot = 0

_, E_dot = jvp(run, (A, A_dag), (A_dot, 0))

return E_dot

# grad takes function inputs and returns

# the gradient with respect to the specified

# argument number (zero-based), using

# reverse-mode AD

# Here we differentiate run_jvp_ket with

# respect to the bra (A_dag) argument

overlap = grad(run_jvp_ket, (A, A_dag, B), arg=1)

Here, we demonstrate how the proposed formulation tack-
les the difficulties arising due to frustration when J2 > 0. We
analyze the two- and three-point correlators of the highly-
optimized PEPS obtained in Refs. [46] and [34]. In the latter,
PEPS by construction possess both the point-group symme-
try of the square lattice and the residual U(1) symmetry
of the Néel phase. They form a consistent family rele-
vant for the extrapolations to thermodynamic limit D → ∞,
where the lattice symmetries are expected to be preserved
through the entire Néel phase. Otherwise, within unrestricted
PEPS the spin-nematic order or dimerization tends to form
due to strong finite-D effects at small bond dimensions, which
are computationally accessible.

A. Static structure factors

In Ref. [46] several PEPS contraction methods are com-
pared for both ground-state energies and static structure
factors for various values of J2/J1. Especially the calculation
of the static spin structure factor

sα (k) =
∑

n

eik·n〈�(A)|Sα
0 Sα

n |�(A)〉, (25)

with α = x, y, z, is challenging and requires large values of χ

for convergence. A contraction method was introduced in that
work for evaluating two-point functions, and outperformed
the existing CTM and variational MPS techniques. Here we

will revisit this benchmark case with our improved scheme
and demonstrate that including the projector derivatives leads
to significantly faster convergence with χ .

We reformulate Eq. (25) in terms of a ground-state deriva-
tive as

sα (k) = [A · Sα] · ð
k
A〈�(A†)|Sα

0 |�(A)〉, (26)

with [A · Sα] the vectorized version of the site tensor A con-
tracted with the spin operator along the physical dimension.
Since sα is a scalar quantity, Eq. (26) can be efficiently com-
puted using forward-mode AD, which does not require the
storage of intermediate results, in contrast with reverse-mode
AD. We outline an implementation in Listing 1 for k = 0. As
explained in Sec. II (Methods), the phase factors that appear
when k �= 0 can be included by applying appropriate shifts to
the derivatives during the CTM computation. Here we restrict
the computation to k = (π, π ), for which the shifting scheme
is exact.

In Fig. 2 we plot the results for the various structure factors
at J2 = 0 and 0.5 for fixed bond dimension D = 5, for the
same ground states as in Ref. [46]. The standard summation
CTM scheme (blue circles), without the projector derivatives,
shows convergence only at large values of the boundary bond
dimension χ . Especially difficult is the J2 = 0.5 case, where
the results only converge to O(10−3) around χ ≈ 400 − 500,
which is generally considered very large. On the other hand,
the effect of the projector derivatives (red circles) is excep-
tionally clear, achieving O(10−5) convergence at χ = 100
for J2/J1 = 0 and at χ = 150 for J2/J1 = 0.5. The original
scheme does not reach this level of convergence even at
χ = 500. Let us remark that despite the D = 5 unfrustrated
state (J2 = 0) featuring longer correlation lengths, it is the
highly frustrated case for which the convergence of two-point
functions proves more challenging. We note that a similar
behavior is observed when optimizing PEPS for the ground
state, as higher χ ′s are required with growing J2 to reach the
desired accuracy.

B. Excitations

Before we discuss the full excitation results, we can first
consider a more simple calculation. A well-known formu-
lation of excited states is the single-mode approximation
(SMA), which is formed by applying a local operator to the
ground state. In the transverse channel, we can study the SMA

|SMA+
k 〉 = S+

k |�(A)〉. (27)

Since the excitation tensor [B]αβγ δ
i ≡ ∑

j S+
i j [A]αβγ δ

j is
known explicitly, we can replace the reverse-mode derivative
that appears in Eq. (23) by the more economical forward-
mode derivative, in order to compute the energy of the state.
The norm of the SMA is the static structure factor, and we
plot both quantities for J2/J1 = 0 and 0.25 in Fig. 3. It is clear
from the results that the effects of the finite χ and therefore
the improvements that the projector derivatives bring is much
more pronounced for the energies than the norms. Intuitively,
this can be understood since the omission of the projector
derivatives leads to larger errors for sums over three-point
functions, in which we differentiate to second order, than
for the two-point functions. This SMA comparison gives a
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FIG. 2. Static structure factors sα (π, π ) of D = 5 ground states of the J1 − J2 model obtained with and without projector derivatives. The
ground states and the results without projector derivatives appeared in [46].

indication of the expected improvements for the full excita-
tions method.

While the PEPS excitation ansatz is a very powerful con-
cept and has produced already a number of interesting results,
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FIG. 3. Energies and norms of the single-mode approximation (SMA) S+
k |�(A)〉 evaluated without (blue) and with projector derivatives

(red). [(a),(b)] Energies of SMA at J2/J1 = 0, 0.25 respectively, for bond dimensions D = 3, 4. Note that due to the fast decay of singular
values at these bond dimensions, obtaining accurate results without projector derivatives at very high values of χ is not possible, as numerical
noise becomes significant. (c),(d) Norms of the SMA, equal to the static structure factors in the transverse channel, again for J2/J1 = 0, 0.25.
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it is known to require high precision when contracting the
PEPS. As shown in Ref. [41], inaccuracies manifest them-
selves as instabilities of the generalized eigenvalue problem
and can be visualized by varying the size of the reduced basis
of Eq. (20). We choose the matrix P to project to the sub-
space of the eigenspace of Nk that corresponds to the largest
eigenvalues.

We expect three regimes when varying the subspace size.
Firstly, for small subspace sizes, only a few eigenmodes of Nk

are taken into account and the energy eigenvalues are expected
to show large variance. For large subspace sizes, we expect
numerical inaccuracies to appear, since we are close to the
exact null modes and generally the spectrum of Nk decays
quickly. Between these sectors, we ideally expect an interme-
diate regime in which the eigenvalues converge to some stable
plateaus. However, this is not always the case, and depends
heavily on the application and χ , and we have observed chal-
lenging cases, which require extremely large values of χ to
converge. In practice, we can also consider the norms of the
eigenstates, which we show in the plots in Figs. 4 and 5 by the
opacity of the filling of the circles. We can usually identify
a transition point, after which eigenvalues become unreliable,
by quickly vanishing norms (open circles), which allows us
to still pick results with reasonable accuracy. However, this is
a manual process and limits the accuracy of the final results.
As we show in Fig. 4, the inclusion of projector derivatives
almost completely stabilizes the eigenvalues up to very large
basis sizes, for D = 3, 4 and J2/J1 = 0.25. To show the effect
most clearly, we have focused on the small-χ regime, where
instabilities are largest. Furthermore, in Fig. 5 we show that
this observation holds for general values of J2/J1, across the
ordered phase.

C. Dynamical structure factors

Using the PEPS excitation ansatz, we can obtain not just
the energies of the excited states but a representation of the
wavefunctions themselves. We can therefore compute observ-
ables from our results, including the spectral weight. Since we
have a discrete set of eigenstates with corresponding spectral
weights, we can obtain the dynamical structure factor, given
by

sα (ω, k) =
∑

λ

δ((Eλ − E0) − ω) |〈�(B†
λ)k|Ŝα

k |�0〉|2, (28)

where λ labels the individual excited states and α labels the
chosen spin operator. When the full overlap matrix Nk of
Eq. (19) has been computed, the computation of the dynamical
structure factor is computationally very cheap. It requires only
the multiplication of �B†N[Ŝ · �A], where the part in brackets
is the contraction of the spin operator with a ground-state site
tensor over the physical index, without any CTM contractions.

We show the cut of the dynamical structure factor for
J2/J1 = 0.3 at k = (π, 0) in Fig. 1 and compare our results
to VMC data from Ref. [43]. The VMC calculations are
based on a Gutzwiller projected fermionic wave function
of a mean-field superconducting Hamiltonian, including an
antiferromagnetic field and a spin-spin Jastrow factor. The
approach is not exact, but is expected to capture the main

features of the excitation spectrum (we note that the model
cannot be solved by conventional quantum Monte Carlo due
to the negative sign problem). We find a very good agreement
for the location and height of the low-energy peak at ω =
1.05 between the two approaches. Both results exhibit also
a pronounced second peak at higher energies with reduced
spectral weight, albeit with a small deviation between the two.
Discrepancies in the broader features at higher energies can
be identified, which may be attributed to both the approxima-
tions within the VMC approach, and the fact that the PEPS
excitation ansatz can reproduce continua of excitations only
in a limited way.

IV. DISCUSSION

Computing higher-order correlators of PEPS efficiently
and accurately is a challenging task. Yet, it is crucial for
further advancing tensor networks methods in two dimension,
beyond ground-state simulations. These correlators appear
either as static quantities, i.e., order parameters, or as the
building blocks to compute dynamical structure factors, al-
lowing us to simulate low-lying excitation spectra directly
relevant for scattering experiments.

In this paper, we have formulated an accurate scheme based
on CTM and AD to compute such correlators, taking into
account previously omitted contributions coming from the
derivatives of CTM projectors. For the static structure factor,
we demonstrate the improvement due to their inclusion. In
particular, the convergence of the static structure factors with
the environment dimension χ is substantially accelerated.
Similar or better accuracy then in the previous schemes can
be reached while reducing the necessary χ by factor ∼4.
Interestingly, at lower bond dimensions, we find that the same
accuracy of results cannot be attained by previous contraction
scheme due to the limits of numerical precision.

The stability of results obtained from the PEPS excitation
ansatz, simulating quasiparticle-like excitations just above the
ground state, has been a topic of discussion. The attempts
at systematic improvement of the excitations by working
with higher bond dimensions were hampered by instabilities
present in the generalized eigenvalue problem of Eq. (17).
Our benchmark results show that the primary source of this
instability was the inaccurate contraction method, and, by
including the projector derivatives we can obtain stable solu-
tions. Whereas the former scheme would became plagued by
solutions with vanishing norm upon increasing the number of
considered basis states, here the simulated excitations remain
stable even in the presence of high frustration, using only
modest environment dimensions, i.e., χ = 36 for D = 4 PEPS
excitations.

In our view, the significance of these results should influ-
ence the future development of PEPS contraction techniques,
especially within the context of excitations. While we describe
a straightforward implementation of the improved scheme
that can be readily applied in practice, it can be extended to
symmetric and fermionic cases for more general and larger
scale studies.

Note added. Recently, we became aware of
a related work [59] that describes summations
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FIG. 4. Basis size dependency for D = 3, 4 in the small-χ regime at J2/J1 = 0.25. Results on the left (blue) were obtained without projector
derivatives, showing that D = 3, 4 require respectively χ = 48, 84 in order to converge to reliable results. On the right hand side (red),
the results obtained with projector derivatives show the substantial improvements: even at an extremely low χ = 12 we observe complete
convergence of eigenvalues up to the full basis size. The opacity of each marker in the plots corresponds to the norm of the excited state, which
can be used to identify the most stable and relevant solutions.

of correlation functions in PEPS using similar
formulations.
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FIG. 5. Basis size dependency for D = 4 for various values of J2/J1 = 0.25. The left column (blue) shows results without projector
derivatives at χ = 72, which is an intermediate value for which reasonable selection of stable eigenvalues can be made. On the right-hand side
(red) we show the effect of adding the projector derivatives at χ = 36, demonstrating that even at this small value of χ complete convergence
of eigenvalues can be obtained. The opacity of each marker in the plots corresponds to the norm of the excited state, which can be used to
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APPENDIX: SHIFTING OPERATION

There is a way to modify the CTM, which avoids the en-
larged unit cell and associated costs, by relating the boundary
tensors on different positions via a shift in their overall phases.

Generally, an AD framework keeps track of various deriva-
tives of tensors during the computation, which we can group

into combined objects. For example, if we would compute
a single derivative with respect to site tensor A, we would
gather a combined boundary tensor C = (C, ∂

∂AC) at some
point during the process. In the case of a double derivative,
with respect to both A and A†, we will have objects like
C = (C, ∂

∂AC, ∂
∂A† C, ∂2

∂A∂A† C).
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We now define a shift operator sφ by the following action
on such objects:

sφ (T ) =
(

T, eiφ ∂

∂A
C, e−iφ ∂

∂A†
C,

∂2

∂A∂A†
C

)
, (A1)

which applies appropriate phase factors to the individual ten-
sors depending on the type of derivative. The basic tensor T
itself, usually called primal in AD parlance, remains unmod-
ified, while the derivatives with respect to A and A† obtain
conjugate phases. Note that the phases on the second-order
derivative cancel each other out.

Using the shift operators, we can modify the CTM scheme
to include a shift of each boundary tensor after an iteration, in
a similar fashion as in [40,41]. The idea is to always make
sure that each boundary tensor remains at a fixed position
relative to a center site. Whenever expectation values are
computed, the boundary tensors will contain all appropriate
phases when contracted with each other and with the central

site. Consequently, we are able to leave the unit cell of the
ground state intact, without any copies, and compute only the
same amount of boundary tensors as required for contracting
the ground-state PEPS.

There is, however, one important caveat regarding the shift-
ing solution: The shift operation, moving a boundary tensor
by a number of sites by multiplying with a single phase
factor, is only strictly correct when the boundary tensor is
complex linear in terms of the A tensor. Most of the CTM
method preserves this linearity, which is obviously valid for
the PEPS itself, except for the computation of the projec-
tors. The question is then what the magnitude of the error
is when we apply the shifts as if the boundary tensors are
linear. For certain momenta k = (a · π, b · π ), with a, b ∈ Z,
the shift operation is exact, while for other values the error
varies. It turns out that in practice the errors remain small
nonetheless, although closer investigation into improving
this part of the scheme may be useful, and we can com-
pare results to the correct results obtained through unit-cell
expansion.
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