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Protecting Hilbert space fragmentation through quantum Zeno dynamics
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Hilbert space fragmentation is an intriguing paradigm of ergodicity breaking in interacting quantum many-
body systems with applications to quantum information technology, but it is usually adversely compromised in
the presence of perturbations. In this work, we demonstrate the protection of constrained dynamics arising due to
a combination of mirror symmetry and Hilbert space fragmentation by employing the concept of quantum Zeno
dynamics. We focus on an Ising spin ladder with carefully chosen quantum fluctuations, which in the ideal case
guarantee a perfect disentanglement under Hamiltonian dynamics for a large class of initial conditions. This is
known to be a consequence of the interplay of Hilbert space fragmentation with a mirror symmetry, and we show
numerically the effect of breaking the latter. To evince the power of this perfect disentanglement, we study the
effect of generic perturbations around the fine-tuned model and show that we can protect against the undesirable
growth of entanglement entropy by using a local Ising interaction on the rungs of the ladder. This allows us to
suppress the entanglement entropy to an arbitrarily small value for an arbitrarily long time by controlling the
strength of the rung interaction. Our work demonstrates the experimentally feasible viability of quantum Zeno
dynamics in the protection of quantum information against thermalization.
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I. INTRODUCTION

One of the most intriguing questions in quantum many-
body physics is the nature of thermalization, or its absence, in
an isolated quantum system [1,2]. Although generic quantum
many-body models satisfying the eigenstate thermalization
hypothesis are expected to thermalize at sufficiently long
times [3–5], examples abound where interacting systems do
not seem to thermalize for all accessible evolution times.
For instance, many-body localization (MBL) has been argued
to exist in the presence of a disorder potential [6–10] or a
sufficiently strong Stark potential in an otherwise translation-
invariant system [11,12]. In the context of gauge theories,
disorder-free localization can arise due to the plethora of
conserved local constraints when the initial state spans an
extensive number of gauge superselection sectors [13–15],
and the presence of such a substructure can be diagnosed
using spectral signatures [16,17]. In certain nonintegrable
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models, initial states prepared in a cold subspace of quantum
many-body scars—nonthermal eigenstates with anomalously
low bipartite entanglement entropy and roughly equal energy
spacing—lead to long-lived oscillations in the dynamics of
local observables persisting beyond all relevant timescales and
avoiding thermalization [18–21].

Recently, an exciting paradigm of ergodicity breaking
known as Hilbert space fragmentation (HSF) has emerged,
first reported for systems with dipole conservation [22,23]
where HSF can be fully characterized by nonlocal integrals
of motion [24]. More generally, it was found that this phe-
nomenon consists of the Hilbert space fragmenting into an
exponentially large number of invariant subspaces resulting
from an exponentially large number of commutant algebras
[25]. HSF has received significant recent attention, with theo-
retical works demonstrating its presence in models with strict
confinement [26,27], including gauge theories with a topolog-
ical θ term [27,28], and it has been the focus of several recent
ultracold-atom experiments [29,30]. A coupling between HSF
and spatial fragmentation [31] can allow for real space frag-
mentation and this can be exploited to control the spread of
entanglement.

The sensitivity of HSF to perturbations has been high-
lighted since its introduction, where terms that violate local
constraints have been shown to lead to eventual thermalization
at sufficiently long times [22,32]. This sensitivity of HSF is
disadvantageous from a fundamental point of view and for
possible applications in quantum technology, and therefore
it is important to investigate means of protecting dynamical
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features of HSF. In this paper, we explore the concept of quan-
tum Zeno dynamics (QZD) [33–36] in extending the lifetime
of HSF-induced phenomena. In particular, we expand on a
recently proposed model [31] which exploits HSF and spatial
symmetry to engineer preservation of a perfectly disentangled
structure for a large class of initial product conditions. This
model is a special case of a quantum compass model [37,38],
and it has been investigated in the one-dimensional (1D) case
using an exact Jordan-Wigner transformation to free fermions
[39], as a realization of MBL physics in a system free of
disorder. This leads to no entanglement developing under
Hamiltonian dynamics for particular spatial regions, which is
a unique aspect of this model not found in general models
exhibiting HSF.

Although the model is fine-tuned, we show here that engi-
neering large energy-scale separations by adding simple local
interaction terms is able to thwart the growth of entanglement
entropy (EE) due to perturbations that would otherwise render
the model generically chaotic. This treatment goes beyond the
particular 1D case studied using a mapping to free fermions
in Ref. [39], as it tackles generic perturbations which break
integrability and is applicable for bilayer lattices in general
dimension with arbitrary connectivity. Our results have impli-
cations in two important ways. First, it illuminates the effect
of a simple symmetry on the avoidance of thermalization.
Second, from a quantum-information perspective, it outlines a
method of protecting against unwanted entanglement buildup
between different spatially separated parts of a quantum cir-
cuit, which can be useful in error mitigation. The crucial
difference with previous attempts [40] to engineer prethermal
behavior using Zeno dynamics is that here we are able to stabi-
lize a “useful” state, i.e., one which has entanglement structure
similar to a product state. This is qualitatively different from
a generic prethermal state which lacks spatial fragmentation.

The rest of the paper is organized as follows: We begin in
Sec. II by describing the model and the mechanism by which it
prevents spread of entanglement entropy. This is followed by
a discussion of the importance of local conserved quantities
and a spatial mirror symmetry, and we show numerically the
effect of breaking the latter. In Sec. III we discuss simple
perturbations which break the local conservation and intro-
duce a growth of EE, and propose a simple protection scheme
based on QZD to suppress this growth. We justify our choice
by studying the structure of the energy spectrum and show
numerically that its strength controls parametrically the value
and lifetime of a stable and suppressed EE plateau. This leads
to scaling relations between the value of EE, the perturbation
strength, and the coefficient of the protection term, and we
present analytic arguments from perturbation theory to justify
them in Sec. IV. We conclude and discuss future directions in
which our results can be extended in Sec. V.

II. UNPERTURBED MODEL Ĥ0

We shall now discuss one of the simplest manifestations
of the properties we require to prevent the spread of entan-
glement in a quantum many-body system, which is through a
model of coupled Ising spins with Hamiltonian

Ĥ0 = −J
∑

i

(
σ̂ z

i σ̂ z
i+1 + τ̂ z

i τ̂
z
i+1 + σ̂ x

i τ̂ x
i

)
, (1)

σ1 σ2 σ3 σ4 σ5 σ6

τ1 τ2 τ3 τ4 τ5 τ6

FIG. 1. Schematic picture of a spin system hosting two sets of
identical spins (σ and τ ) in a ladder geometry with a Hamiltonian
given by Eq. (1). Vertical dashed line across the center represents the
partition across which entanglement entropy is calculated.

where the spin species are labeled by operators σ̂ a
i and τ̂ a

i
on site i with a = x, y, z, and with eigenvalues σ a

i and τ a
i ,

respectively. The energy scale is set by J = 1. This model was
first discussed in Ref. [31] for general lattices. For ease of nu-
merical investigation, we shall here restrict our system to be a
ladder with open boundary conditions, see Fig. 1. Hamiltonian
(1) conserves σ̂ z

i τ̂ z
i on each rung—[Ĥ0, σ̂

z
i τ̂ z

i ]=0, ∀i—leading
to a fragmentation of the Hilbert space into 2N fragments,
where N is the system size. Let us now restrict ourselves
to one such sector, which can be represented as a particular
assignment for σ z

i τ z
i such as . . . + + + − − + + + + + −

− + − − − − − . . ., where +(−) corresponds to σ z
i τ z

i = ±1,
and we shall denote an eigenvalue σ z

i or τ z
i with a value +(−)

by 1(0) for ease of notation. For a rung, which hosts +(−),
(σ z

i , τ z
i ) can thus be 00(01) or 11(10).

Note that under an exchange of σ̂ a
i ↔ τ̂ a

i , the states in
the (σ̂ z

i , τ̂ z
i ) basis corresponding to σ z

i τ z
i = +1 are invariant,

i.e., 00(11) → 00(11), whereas those for σ z
i τ z

i = −1 are in-
terchanged, i.e., 01(10) → 10(01). Now note that the term
Ĥd = −J

∑
j (σ̂ z

i σ̂ z
i+1 + τ̂ z

i τ̂
z
i+1) of Hamiltonian (1) is diago-

nal in the (σ̂ z
i , τ̂ z

i ) basis and is symmetric under σ̂ a
i ↔ τ̂ a

i . This
is the crucial property that we will exploit, which implies that
our argument should hold for any diagonal operator with this
property. Consider now neighboring rungs i and i + 1 that host
+− as their respective assignment of the conserved quantity.
This would imply that the matrix elements of the inter-
rung diagonal interaction, 〈(00)i(01)i+1|Ĥd |(00)i(01)i+1〉 and
〈(00)i(10)i+1|Ĥd |(00)i(10)i+1〉, are equivalent under σ̂ a

i ↔
τ̂ a

i , which is a symmetry of the full Hamiltonian. This means
that there is effectively no interaction between neighboring
rungs that host different values for σ zτ z. As such, the effec-
tive system within this sector breaks up into smaller spatial
segments given by the corresponding arrangement of σ z

i τ z
i .

The Hamiltonian in this sector can now be written as

Ĥsector = −J
∑

s

[ ∑
〈i, j〉∈s

(
σ̂ z

i σ̂ z
j + τ̂ z

i τ̂
z
j

) +
∑
i∈s

σ̂ x
i τ̂ x

i

]
, (2)

where s labels the different strings into which the sector is
broken. For example, a sector labeled by + − − − + + −−
would be made up of four noninteracting strings with one site,
three sites, two sites, and two sites, respectively. This feature
has already been understood in Ref. [31] and explored as a
special limit of the more general model in Ref. [39].

Furthermore, the spatial decoupling discussed above leads
to a Z2 Ising symmetry associated with each string. This
implies that the sector breaks up further into 2Ns subsectors,
where Ns is the number of strings. One can construct the
conserved quantities associated with these subsectors using
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FIG. 2. Growth of the midchain EE for Ĥ0 for various sectors
labeled by the set of eigenvalues (±1) of σ̂ z

i τ̂ z
i . Sectors with differing

values across the middle develop no entanglement under Hamilto-
nian time evolution (see text). The subscript nm signifies “no mirror,”
i.e., the system without a mirror symmetry, which does not allow for
a protection of information (see text).

the methodology developed in Ref. [25], and these correspond
to products of σ̂ x

i τ̂ x
i on a string and projectors to the domain

wall which forces the +− pattern at the ends of the string of
rungs.

We can now consider a product initial state restricted to
such a sector. On undergoing Hamiltonian dynamics, the
corresponding growth of EE is now going to be limited to
small spatial segments, and genuine volume-law EE can never
develop. We verify this numerically for a six-rung ladder
corresponding to 12 spins, see Fig. 1, by considering random
product states in sectors such as + − + − +− and + + + −
−−, and find that the half-chain (corresponding to a +− wall)
EE to be exactly zero for all times, as shown in Fig. 2. We
generate our random product states, as done in Ref. [41] by
choosing a random (θi, φi ) for rung number i, and initializing
the (σ, τ ) pair on that rung as cos θi|00〉 + sin θieiφi |11〉 if the
sector constraint is σ z

i τ z
i = +1 on that rung or as cos θi|01〉 +

sin θieiφi |10〉 if σ z
i τ z

i = −1.
In contrast, a sector such as + + + + ++ or + + + + −−

develops partial half-chain EE in the long-time limit. For the
rest of this paper, we shall study only the half-chain EE.
To emphasize the importance of the σ̂ a

i ↔ τ̂ a
i (mirror across

rungs) symmetry, we show the dynamics of the EE under
Hamiltonian (1) with the additional −0.1

∑
〈i〉 τ̂ z

i τ̂
z
i+1, which

breaks this mirror symmetry. Using the sector + + + − −−
for our simulation, we find, as shown in Fig. 2, that there
is a growth of EE that was not present for the symmetric
Hamiltonian. As such, the requirement for the σ̂ a

i → τ̂ a
i mir-

ror symmetry is absolute, i.e., if we lose this property, every
sector behaves as a generic many-body system, which builds
volume-law EE in the long-time limit. However, this sim-
ply implies the requirement of a spatial symmetry, which is
generally expected for periodic crystals. Although the results
for the 1D case we have presented above can be understood
as a special case of the spin ladder discussed in Ref. [39],
we emphasize here that the spatial fragmentation holds for
general dimension, and our numerical studies are restricted to
the 1D case purely due to inability of an efficient algorithm

to simulate exact quantum dynamics of a large number of
interacting spins. The results of the current and the follow-
ing sections are applicable to higher dimensional lattices and
should not be considered to be specific to the 1D case, as is
often the case in quantum dynamics.

III. PROTECTION WITH QUANTUM ZENO DYNAMICS

Let us now consider perturbations Ĥ1 that are off-diagonal
in the (σ̂ z, τ̂ z ) basis. These terms do not affect the perfect
mirror symmetry of σ̂ z

i ↔ τ̂ z
i , but destroy the conservation of

σ̂ z
i τ̂ z

i on each rung and thereby enhance the quantum dynamics
and destroy HSF. This occurs due to a loss of sector structure,
and thus a leakage of EE due to a sector with the σ z

i τ z
i as-

signment of the form . . . + − . . . is able to transition to one
with an assignment of . . . + + . . ., where entanglement can
build up between the two relevant sites. In the following, we
will consider two such perturbations, both of which mix all
sectors in such a way, leading to the EE of a random state [42]
in the Hilbert space in the long-time limit.

We can now employ the concept of QZD [33–36] in order
to protect the constrained dynamics arising originally due to
HSF and mirror symmetry in Ĥ0. Although Zeno dynamics
is usually understood in the context of rapid measurement
of the system leading to restricted dynamics due to effective
projection, it can also be understood using a rotating refer-
ence frame, which protects against the effect of perturbations
which are off-resonance [40]. In this case, the high-frequency
rotation acts as a projection into the rotating frame, thus
functionally behaving as a series of rapid measurements. QZD
allows us to project the Hamiltonian dynamics into the sector
of choice, thus negating the effect of the perturbation Ĥ1. This
can be achieved by adding a protection term ĤV diagonal
in the (σ z, τ z ) basis with strength V , which is the largest
energy scale in our Hamiltonian. This term is chosen to have
a spectrum that forms plateaus, such that all the (σ z, τ z ) basis
vectors in a sector generate the same expectation value for
ĤV (spectrum shown in Fig. 3). Note that this implies that
each sector corresponds to only one plateau, but each plateau
can contain many sectors. Now the energy separation between
different plateaus leads to a suppression of inter plateau dy-
namics [35], and thus a suppression of intersector dynamics,
provided the sectors are in different energy plateaus. Note
that the suppression of intersector dynamics is perfect only
for V → ∞, that for any finite value of V we should expect
some small renormalized value for the EE, and that it would
last only up to a finite time, until which point the dynamics
accumulates enough leakage out of the sector and leads to
thermalization. Indeed, from QZD one obtains an effective
Zeno Hamiltonian ĤZ = Ĥ0 + ∑

S P̂SĤ1P̂S that faithfully re-
produces the HSF dynamics up to timescales at the earliest
linear in V , where P̂S is the projector onto the quantum Zeno
subspace S [33]. The Zeno Hamiltonian further reduces to
ĤZ = Ĥ0 + P̂S0 Ĥ1P̂S0 , when the initial state is prepared in a
given Zeno subspace S0.

To design a protection term particularly well suited to
prevent the growth of entanglement starting from a specific
sector, we must bias it towards the configuration of σ z

i τ z
i

corresponding to this sector. This can be done by choosing
ĤV = V

∑
i ciσ̂

z
i τ̂ z

i , where ci = ±1, depending on the sector
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FIG. 3. Energy spectrum of 12-site system (L = 6 rungs) with
λ = 0, (a) V = 0, (b) V = 100 with ci ∈ {+1, +1, +1, −1, −1, −1},
and (c) V = 100 with ci ∈ {+1, −1, +1, −1, +1, −1}. The yellow
and blue colors correspond to states in the sectors + + + − −−
and + − + − +−, respectively. For V = 0, it can be clearly seen
that there is no energetic separation between various sectors, and the
dynamics is restricted only by the conserved quantities, whereas for
V 	 J = 1, the large energy separation ensures protection against
perturbations with the correct sequence ci. Note that the spectra
shown in panels (b) and (c) show little difference to the case with
a finite nonzero λ 
 V .

assignment. For example, for an assignment of + + + − −−,
we would have ci ∈ {+1,+1,+1,−1,−1,−1}. This choice
of ci completely energetically isolates the sector—rendering
it a unique Zeno subspace S0—as all other assignments must
necessarily frustrate one of the ci, leading to a shift to a
different plateau. The next closest sector, created by toggling
a single + ↔ −, is thus separated in the spectrum by an
energy gap of 2V . Figure 3 shows the energy spectrum for
Ĥ0 and ĤV , with two different target sectors highlighted. First
consider Fig. 3(a), where the spectrum of Ĥ0 is shown. Here
we see that there is no energy separation between different
sectors and thus sectors are protected against mixing only by
the local conservation of σ z

i τ z
i . The introduction of a large

V leads to a clear separation of the spectrum into plateaus,
with the targeted sector floating to the top of spectrum and
being well separated from all other sectors. However, nontar-
geted sectors remain in the middle of the spectrum, sharing
energy levels with other sectors. These features can be seen
in Figs. 3(b) and 3(c). In this section, we find that such an
energy separation translates dynamically into a prethermal
regime due to projective quantum Zeno dynamics, which can
be seen as a plateau in EE with a tunable value and lifetime.
The prethermal plateau is expected to exist for systems on

general lattices, described by the Hamiltonian discussed
above, as the protection term and the perturbations are both
local and a pattern for conserved charge can be defined thus
in a straightforward manner [31].

In Secs. III A and III B, we consider two different forms for
the perturbation Ĥ1, and numerically investigate their effect
on EE growth in different sectors under specific protection
for these sectors. The numerical results in these subsections
show the occurrence of the EE plateau discussed above. In
Sec. III C, we examine the lifetime of this prethermal plateau
and show that its qualitative dependence on V depends on
the structure of the given sector that we choose to protect.
In Sec. III D, we investigate the degree of protection that a
particular choice of terms can offer to sectors it is not ex-
plicitly designed to protect, and its dependence on the type
of perturbation used. We close this section by discussing our
results in the thermodynamic limit in Sec. III E, where we use
the time-dependent variational principle (TDVP) algorithm
[43–46] to simulate larger system sizes.

A. Transverse-field perturbation

Let us examine the quench dynamics under Ĥ = Ĥ0 +
Ĥ1 + ĤV with a simple global transverse-field perturbation
Ĥ1 = λ

∑
i(σ̂

x
i + τ̂ x

i ), which violates the local conservation of
σ z

i τ z
i by toggling its value on a single rung from + ↔ −. This

allows transitions, e.g., from “insulating” sectors of the type
+ + + − −− to “conducting” ones of type + + + + −−. We
study the suppression of EE for initial product states belong-
ing to the sectors + + + − −− and + − + − +−, both of
which prevent entanglement buildup across the center of the
chain in the ideal case of λ = 0, by implementing protection
terms specific to these sectors as discussed above. The results
for the half-chain EE from exact diagonalization of a 12-spin
(6-rung) system are shown in Figs. 4 and 5 for a range of λ and
V values. Note that we see a plateau with a small value of EE
from intermediate to large values of Jt that scales ∝ λ2/V 2.
This plateau eventually leads to a slow growth of the EE to
the saturation value, which is expected to be proportional to
the system volume [42]. The value of the EE at the plateau
can be clearly seen to decrease quadratically with increasing
values of V/λ. This behavior can be intuitively understood by
considering the V and λ terms to have opposing effects, i.e.,
the perturbation promotes a spread of the wave function into
other sectors, in which entanglement can be built up, whereas
the protection term projects it back into the sector of interest
according to QZD. The insets in Figs. 4 and 5 show a data
collapse by rescaling the EE by (V/λ)2. An analytic under-
standing of this scale is provided by a perturbation theory
analysis in Sec. IV. Note that there is no significant difference
between the behavior of the EE for the sectors + + + − −−
(Fig. 4) and the sector + − + − +− (Fig. 5), as in each case
the protection term is appropriately chosen.

B. Heisenberg perturbation

For a perturbation of the form Ĥ1 = λ
∑

i(σ̂
x
i σ̂ x

i+1 +
σ̂

y
i σ̂

y
i+1 + τ̂ x

i τ̂ x
i+1 + τ̂

y
i τ̂

y
i+1), we find that the EE behaves in a

manner similar to the case of the transverse-field perturbation,
as demonstrated in Figs. 6 and 7 for initial product states in
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FIG. 4. Entanglement entropy growth for a product initial state
in the + + + − −− sector with ci ∈ {+1,+1, +1, −1, −1, −1} in
the presence of the transverse-field perturbation. (a) Varying λ for
V = 100 or (b) varying V for λ = 0.1 shows a prethermal plateau
in the EE whose value and duration is controlled by (V, λ) leading
to a controllable suppression of the EE. The insets show the EE
rescaled by (V/λ)2, signifying the value of the EE prethermal plateau
∝ λ2/V 2.

the sectors + + + − −− and + − + − +−. This Heisenberg
perturbation term acts by toggling the value of σ z

i τ z
i on neigh-

boring rungs. We show in Figs. 6 and 7 the growth of the EE
for various values of V and λ, where once again we find a
convincing data collapse by rescaling the EE by (V/λ)2. We
therefore see that the protection term ĤV , for an appropriate
sequence ci, will stabilize HSF-induced constrained dynamics
with the EE exhibiting a plateau ∝ λ2/V 2 up to times linear
in V in a worst-case scenario. This shows that the protection
term is able to reliably stabilize the system against different
types of perturbations.

C. Lifetime of prethermal plateau

Let us now take a closer look at the timescales of the EE
plateaus shown in Figs. 4–7. As we have previously men-
tioned, a properly chosen sequence ci allows the protection
term ĤV to induce QZD dynamics that reliably and control-
lably stabilizes the EE into a plateau of value ∝ λ2/V 2 up
to a timescale that is, in the worst-case scenario, linear in
V [33]. By properly rescaling the time axes, Fig. 8 illus-
trates the timescales of the EE plateaus resulting from the
dynamics shown in Figs. 4–7. In the case of the transverse-
field perturbation, we observe that when we target the sector
+ + + − −−, a rescaling of the time axis to λ(J/V )3t

10−8

10−6

10−4

10−2

100

S

+ − + − +−
V = 100

(a)

λ = 0.01
λ = 0.02
λ = 0.04
λ = 0.08
λ = 0.16

10−2 100 102 104 106 108 1010

Jt

10−6

10−4

10−2

100

S

(b) λ = 0.1

V = 10
V = 20
V = 40
V = 80
V = 160

FIG. 5. Entanglement entropy growth for a product initial state
in the sector + − + − +− with ci ∈ {+1, −1, +1, −1, +1, −1} in
the presence of the transverse-field perturbation. (a) Varying λ for
V = 100 or (b) varying V for λ = 0.1 show similar features as Fig. 4.
The insets show the rescaled EE, indicating that the EE settles into a
prethermal plateau ∝ λ2/V 2.

results in a convincing data collapse for the complete range
of (λ,V ) which we have studied, indicating a timescale of the
EE plateau ∝ V 3/(J3λ), which is significantly better than the
linear-in-V worst-case prediction from QZD. For the sector
+ − + − +−, we find that we must modify our scaling to
λ(J/V )2t , leading to a plateau timescale ∝ V 2/(J2λ), also
exceeding the QZD prediction. For the Heisenberg perturba-
tion, the plateau timescale for the initial state in the sector
+ + + − −− is ∝ V 2/(J2λ) and for the initial state in the
sector + − + − +− is V/(Jλ), implying a more adverse ef-
fect of this perturbation than its transverse-field counterpart.
We note that such a difference in the Zeno timescales based
on the type of error has also been reported in the context of
lattice gauge theories [40].

D. Protection of nontargeted sectors

Here we examine the extent to which our protection term
can protect sectors for which it is not specifically designed
to protect. As seen in the spectrum shown in Fig. 3(c), an
example of such a sector would be + − + − +−. We reiterate
that the protection term corresponding to the spectrum here
contains the sequence ci ∈ {+1,+1,+1,−1,−1,−1}, and
thus does not follow the configuration of the sector we wish
to protect. However, it is still possible to prevent a growth of
EE for perturbations that are unable to connect sectors lying
in the same energy plateau. An example of such a perturbation
is the transverse-field term Ĥ1 = λ

∑
i(σ̂

x
i + τ̂ x

i ) discussed in
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FIG. 6. Entanglement entropy growth for a product initial state
in the sector + + + − −− with the Heisenberg perturbation and
with ci ∈ {+1,+1, +1, −1, −1, −1}. (a) Varying λ for V = 100 or
(b) varying V for λ = 0.1, shows a controlled prethermal EE plateau
∝ λ2/V 2. The insets show the rescaled EE.

Sec. III A. The action of this perturbation is to toggle + ↔ −
on a rung i. Under this operation, 〈ĤV 〉 changes by ≈2V ci,
thus accessing a sector which is well separated in energy. This
leads to a suppression due to Zeno dynamics, and a projection
into the initial sector. We verify this numerically in Fig. 9(a),
where we find a plateau at short to intermediate times for
the EE which scales with (λ/V )2. This is consistent with our
results in Secs. III A and III B.

In comparison, under the application of the Heisenberg
perturbation, the initial sector + − + − +− can transition
to, e.g., + + − − +−. This is in the same energy plateau,
as our choice of ci ∈ {+1,+1,+1,−1,−1,−1} leads to a
cancellation in the change in 〈ĤV 〉 due to the double toggle.
This can be seen by evaluating

∑
i ciσ

z
i τ z

i for both sectors
and implies that the sector is unprotected. Furthermore, as
the sector + + − − +− has the same value of σ z

i τ z
i on either

side of its center, the growth of EE is unrestricted, leading to
vanilla saturation to an EE proportional to system size, with
no dependence on λ,V . This is clearly seen in Fig. 9(b) for a
range of values of λ. Here we have presented the protection of
nontargeted sectors using a particular initial sector. However,
the results hold for generic sectors as the protection is depen-
dent on the matrix elements of the perturbation and not on
the particular arrangement of the sector. Thus we are free to
choose sectors based on the desired entanglement properties
of the state to be protected.
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FIG. 7. Entanglement entropy growth for a product initial state in
the sector + − + − +− and ci ∈ {+1, −1, +1, −1, +1, −1} in the
presence of a Heisenberg perturbation. (a) Varying λ for V = 100 or
(b) varying V for λ = 0.1 shows a controlled prethermal EE plateau
∝ λ2/V 2. The insets show the rescaled EE.

E. Thermodynamic limit (TDVP results)

For the ladder system studied here, the only perturbations
that can lead to a buildup of entanglement across the middle of
the chain are of the form ±∓ ↔ ++ and ±∓ ↔ −−. Above,
we show that the protection scheme controls the growth of
entanglement entropy for small system sizes, with a clear
scaling of the prethermal plateau and its lifetime. However,
it is important to understand the effect of larger system sizes,
as a larger Hilbert space may lead to a higher entropic pressure
on the barrier to EE growth.

To confirm that our results for the 12-site system carry
over to the thermodynamic limit, we study the dependence
on system size. To this end, we employ the TDVP for matrix
product states [43–46]. In general, it is intractable to study
the long-time evolution of an interacting quantum many-body
system, as it requires a prohibitively large bond dimension that
usually grows exponentially in evolution time [47]. However,
in our case, the protection term leads to constrained dynamics
that requires a much smaller bond dimension, thus allowing
us to access large system sizes. We perform the calculations
for N = 12, 20, and 40 for two different initial states perturbed
by the transverse-field term and with an appropriate protection
term. Figure 10 shows the result with one domain wall in the
middle of the ladder and Fig. 11 shows the results with an
alternating repeating domain wall, similar to the initial states
discussed above. The maximum bond dimension is kept to
D = 200 and maximum fidelity threshold 10−14 for N = 40.
The calculations are performed using ITensor software library
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FIG. 8. Rescaled entanglement entropy growth with appropriate
scaling in the presence of [(a) and (b)] transverse-field perturba-
tion and [(c) and (d)] the Heisenberg perturbation when starting in
[(a) and (c)] the + + + − −− sector or [(b) and (d)] the + − + −
+− sector. The blue and red curves are variations of λ with fixed
V = 100 and variations of V with fixed λ = 0.1, respectively, with
the same values used in Figs. 4–7.

[48]. The results confirm that the entanglement growth in the
middle of chain remains almost unaffected with increasing
system size.

IV. SCALING RELATIONS FROM PERTURBATIVE
ANALYSIS

The numerical results indicate the existence of two univer-
sal scaling relations. The first is the collapse with (λ/V )2 of
the EE plateau developed at intermediate to long times, and
the second is the time at which the EE begins to increase
again, which is seen to scale with the Hamiltonian parameters
as t ∝ V/(Jλ) in a worst-case scenario. Here we only attempt
to understand the first scaling behavior, as it is tractable within
first-order perturbation theory, while the second scaling be-
havior is understood from QZD [36]. The argument that we
build in this section follows broadly the following structure:
At first-order perturbation, there are no contributions from
within the initial sector, and thus all contributing states have
a suppression of O(λ/V ). This translates to a contribution to
the EE of O(λ2/V 2) for the plateau. We argue this in detail
below.

We carry out our analysis by considering the smallest
possible system where we can study this behavior, namely a
two-rung/four-site system. To understand the scaling of the
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FIG. 9. Entanglement entropy growth for a product initial state
in the sector + − + − +− with ci ∈ {+1, +1, +1, −1, −1, −1} for
(a) the transverse-field perturbation and (b) the Heisenberg pertur-
bation with varying λ for V = 100. The insets show the rescaled
EE. This shows that even the “wrong” sequence ci can still ade-
quately suppress EE growth for certain types of perturbations, but
not generically.

EE plateau, let us consider an initial condition that belongs
to the sector +−. The Hamiltonian in this sector can be
rewritten in terms of broken segments, as defined in Sec. II,
as Ĥ0 = −σ̂ x

1 τ̂ x
1 − σ̂ x

2 τ̂ x
2 . The eigenstates of this Hamiltonian

are simply given by the product states of eigenstates of
σ x

1(2)τ
x
1(2). As the scaling we see in the previous section holds

for generic product states, let us choose the ground state of
this set to be our initial state, i.e., we begin with the state
1
2 (|00〉 + |11〉)1(|01〉 + |10〉)2 in (σ, τ ) language. For conve-
nience, from now on we will concatenate the basis states
and express them as strings, for example the state discussed
above will now be written as 1

2 (|0001〉 + |0010〉 + |1101〉 +
|1110〉). Under the dynamics of just Ĥ0 + ĤV , this state is left
unchanged as it is an eigenstate, and we shall call this as the
initial state |ψI〉. We will also assume that V 	 J, λ, so that
the sectors +−,++,−−,−+ have energies of −2V, 0, 0, 2V
respectively at leading order. Thus the sector under consider-
ation is well separated from the others energetically.

Now let us consider the effect of a simple transverse-
field perturbation Ĥ1 = λ

∑
i(σ̂

x
i + τ̂ x

i ) on our Hamiltonian
dynamics. At first order in λ, the eigenstates can be written
as

|i′〉 = |i〉 + λ
∑
j �=i

1

Ei − Ej
| j〉, (3)
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FIG. 10. Entanglement entropy growth for a product initial state
in the sector . . . + + + − − − . . . in the presence of the transverse-
field perturbation with ci ∈ {+1, +1, +1, −1, −1, −1} for various
system sizes calculated using TDVP. (a) Varying λ for V = 100
or (b) varying V for λ = 0.1, again shows suppression of the EE
to a prethermal plateau ∝ λ2/V 2. Blue, green, and orange curves
correspond to system sizes N = 12, 20, and 40, respectively. The
color shade gets darker with increasing values of λ and V .

where the perturbed (original) basis is denoted by |i′〉(|i〉).
Note that the energy separation in the sector structure as
discussed above renders all | j〉 �= |i〉 contributing to the above
expression to have a coefficient of λ/V , as the perturbation
is sector off-diagonal, i.e., it has no nonzero matrix elements
within the sectors as defined by Ĥ0. For ease of notation, let
us express Eq. (3) as |i′〉 = ∑

i Mi′i|i〉. The relation between
the perturbed and original basis can also be similarly written
using first-order perturbation theory as |i〉 = ∑

i′ M ′
ii′ |i′〉, and

we will make use of both these expression to understand
the EE.

To understand the time evolution of our initial product
state, let us first express e−iĤt |0〉, where Ĥ = Ĥ0 + Ĥ1 + ĤV

and |0〉 now denotes the initial state in the original basis,
as

∑
i′ e−iE ′

i′ t M ′
0i′ |i′〉. As the EE is measured in the original

basis by partitioning the lattice, we replace the dependence
on the perturbed basis and rewrite the time evolved state as∑

i′, j e−iE ′
i′ t M ′

0i′Mi′ j | j〉. At intermediate times, we can con-
sider the phase factor to be sufficiently uncorrelated, and the
dependence on λ/V can be read directly from the M ′

0i′Mi′ j

terms, as no constructive or destructive interference is to be
expected. Of these, the largest coefficient would be M ′

00′M0′0,
which is O(1). To understand the other coefficients, let us
reiterate a key property of both M and M ′, namely that if the
matrix element corresponding to i, i′ (i′, j) is nonzero, then it
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FIG. 11. Entanglement entropy growth for a product initial state
in the sector . . . + − + − + − . . . in the presence of the transverse-
field perturbation with ci ∈ {+1,−1, +1, −1, +1, −1} for various
system sizes. (a) Varying λ for V = 100 or (b) varying V for λ =
0.1 again shows a suppression of the EE into a prethermal plateau
∝ λ2/V 2. Blue, green, and orange curves correspond to system sizes
N = 12, 20, and 40, respectively. The color shade gets darker with
increasing values of λ and V .

is O(1) if i = i′ (i′ = j), and λ/V (to leading order) if not.
This implies that for terms of order λ/V , we only need to con-
sider coefficients from matrix elements M ′

00M0 j and M ′
0i′Mi′i′ .

As M (M ′) can only connect states within the starting sector
to those outside, we can write our resulting state after time
evolution for an intermediate time as |ψI〉 + (λ/V )

∑
α cα|α〉,

where α lists states outside the sector of interest.
The calculation of the half-chain EE of such a state will

first require a reduced density matrix. For the remainder of
this section, we shall use c = λ/V for ease of notation. The
reduced density matrix for the state discussed above can be
expressed (to leading order) as

ρ̂A =

⎛
⎜⎜⎜⎜⎝

0.5 ac ac 0.5

ac bc2 0 ac

ac 0 bc2 ac

0.5 ac ac 0.5

⎞
⎟⎟⎟⎟⎠, (4)

where a and b are prefactors coming from the perturba-
tive expansion, and the rows correspond to the left rung
configurations 00, 01, 10, and 11, respectively. Diago-
nalizing this matrix reduces the von Neumann entropy
−Tr[ρ̂A log(ρ̂A)] to −∑

i Ei log(Ei ). The eigenvalues to O(c2)
are 0, bc2, a′c2, 1 + b′c2, where a′ and b′ are functions of a
and b. For the second and third eigenvalues, Ei log(Ei ) reduces
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FIG. 12. Wave-function coefficients for relevant states as a func-
tion of time for a four-rung system. For the four nonequivalent states
out of sector, we see that a scaling with λ/V leads to data collapse
over a single decade, whereas for in-sector states (only those with
the largest coefficients shown), we clearly see that the scaling is not
sufficient and that we require a higher power of λ/V as expected.
Note that the largest in-sector wave-function coefficients are doubly
degenerate.

to the form bc2[2 log(c) + log(b)], and the scaling with c is
controlled approximately only by c2, as the logarithm function
is insensitive to variations in c for c 
 1. For the last eigen-
value, we can expand around unity, as c 
 1, and this leads
to Ei log(Ei ) ≈ O(c2). Thus we see that the overall scaling of
the von Neumann EE is controlled by c2, i.e., (λ/V )2.

As the above analysis is for a two-rung system, and carry-
ing out the same argument for a larger system size quickly
becomes analytically intractable, we would like to confirm
that the assumption about the state at time t , which we have
made above, holds true. This would justify our expectation
that a similar argument extends to the thermodynamic limit.
For ease of understanding, let us assume that we initialize our
state as the ground state in the sector + − +−. This is again
a product state of the symmetric eigenvector of

∑
i σ̂

x
i τ̂ x

i .
Explicitly, our initial state is now

|ψI〉= 1
4 (|00〉+|11〉)1(|01〉+|10〉)2(|00〉+|11〉)3(|01〉+|10〉)4,

(5)

where the subscript denotes the rung number. On expand-
ing the above expression, it is easy to see that this is a
uniform superposition over the 16 basis states making up
the sector + − +−. To ensure that other states within this
sector do not participate in the time evolution, we can plot
the coefficients of the 16 basis states, and if they stay equal
throughout the time evolution for the period of interest, we
can conclude that the other in-sector states can be neglected.
For the states that are connected at first order in perturbation
theory, careful observation of the structure of the Hamiltonian
in state space shows a number of states that have equivalent
dynamic behavior. We choose four nonequivalent states out of
these: |01010001〉, |10010001〉, |00000001〉, and |00110001〉.
We expect to find that the coefficients of these states are
∝ (λ/V ). The results for the coefficients discussed above from
our exact numerics are shown in Fig. 12, and indeed we
find that (i) the coefficients of the 15 in-sector eigenstates of

H0 require a higher power of V/λ to get a scaling collapse,
implying that in-sector states play no role at first order, and (ii)
the four out-of-sector states discussed above have a coefficient
that scales with (λ/V ). Thus we find that the assumptions of
our perturbative analysis are correct and that we can expect
the results to extend to larger system sizes.

V. CONCLUSIONS

We have investigated a fine-tuned many-body spin system,
which behaves as a system of smaller noninteracting subsys-
tems due to a classical degeneracy in intersite interactions
and carefully engineered local conserved quantities. While
the former is expected to occur for generic insulating crystals
due to space group symmetries, the latter severely restricts the
form of quantum fluctuations available to the system. Thus we
have studied the effect of generic perturbations (of strength
λ) that destroy the local conservation and lead to a standard
growth in entanglement with increasing evolution time, as
would be expected for a generic quantum many-body system.

To recover features of our disentangled dynamics, we im-
pose a large energy separation V via a sector protection term
between the sector (indexed by the values of the local con-
served quantities) of interest and the rest of the spectrum.
This effectively isolates our sector dynamically, leading to a
suppression of the effect of the perturbation which couples
various sectors. Numerical investigations show that the entan-
glement developed is effectively controlled by λ/V , where
the entanglement entropy settles into a prethermal plateau
∝ λ2/V 2 up to timescales polynomial in V . We justify this
behavior via a first-order perturbative analysis. Although our
protective term is chosen to be specific to the sector we want
to protect, we also see that there is an accidental protection
of other sectors that have the disentangled structure. This is
specific to the form of the perturbation, which is unable to
mix sectors within the same energy plateau at first order and as
higher-order contributions are suppressed by the energy scale
V . However, we also see that for different forms of the per-
turbation, which are able to transition between sectors in the
same energy plateau, the entanglement reaches its saturation
value in time ∝ system size.

Our approach differs from other studies of prethermal be-
havior, as the generic feature identified in such cases is usually
the deviation from a random state at the same energy density
for a parametrically long time. In addition to this general
feature, the state which our model generates in the prethermal
regime is highly structured and is qualitatively much closer
to a product state, than to a featureless generic prethermal
state. This difference highlights the novel effects of the un-
perturbed Hamiltonian which we are able to preserve even
in the presence of generic perturbations. The example that
we have studied demonstrates the significance of this special
fine-tuned point in parameter space and the extent to which it
can control the dynamics in a perturbative regime. This can
easily be extended to larger systems and geometries in higher
dimensions, as the local conserved quantity acts only on-site.
Given that spin systems are realized in generic insulating crys-
tals, it is also possible to find anisotropic crystals of the XXZ
type which would be proximate to the Hamiltonian discussed
here.
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Finally, let us point out that this mechanism can prove
to be extremely useful for quantum computing setups where
one wishes to eliminate unwanted interactions between qubits.
Thus, future directions include designing gates for this rung
architecture and considering possible experimental platforms
where we may be able to realize such physics.
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