Linear dichroic x-ray absorption response of Ti-Ti dimers along the *c* axis in Ti₂O₃ upon Mg substitution

M. Okawa⁰,^{1,*} D. Takegami⁰,² D. S. Christovam⁰,² M. Ferreira-Carvalho⁰,^{2,3} C.-Y. Kuo⁰,^{2,4,5} C. T. Chen,⁵ T. Miyoshino,¹

K. Takasu,⁶ T. Okuda,⁶ C. F. Chang ⁽¹⁾,² L. H. Tjeng ⁽¹⁾,² and T. Mizokawa^{1,†}

¹Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

²Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany

³Institute of Physics II, University of Cologne, 50937 Cologne, Germany

⁴Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

⁵National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan

⁶Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan

(Received 11 May 2023; revised 14 August 2023; accepted 23 October 2023; published 7 November 2023)

Corundum oxide Ti₂O₃ shows the metal-insulator transition around 400–600 K accompanying the nearest Ti³⁺-Ti³⁺ bond $(a_{1g}a_{1g}$ singlet state) formation along the *c* axis. In order to clarify the hole-doping effect for the $a_{1g}a_{1g}$ singlet bond in Ti₂O₃, we investigated Ti 3*d* orbital anisotropy between corundum-type Ti₂O₃ and ilmenite-type MgTiO₃ using linear dichroism of soft x-ray absorption spectroscopy of the Ti $L_{2,3}$ edge. From the linear dichroic spectral weight in Mg_yTi_{2-y}O₃, we confirmed that the $a_{1g}a_{1g}$ state is dominant not only in y = 0.01 (almost Ti₂O₃), but also in y = 0.29, indicating that the Ti-Ti bond survives against a certain level of hole doping. In y = 0.63 corresponding to 46% hole doping per Ti, the 3*d* orbital symmetry changes from a_{1g} to e_{π}^{π} .

DOI: 10.1103/PhysRevB.108.195108

I. INTRODUCTION

Orbital degrees of freedom frequently play an essential role in the electronic properties of transition-metal oxides [1]. The metal-insulator transitions in rutile-type VO₂, for example, are governed by the bond formation between the V3dorbitals in the edge-sharing VO₆ octahedra [2]. There are also a variety of orbitally assisted bond formations in spinel and hollandite systems, which were studied theoretically [3,4]and experimentally [5-10]. Yet, in corundum-type V₂O₃, the bond formation surprisingly does not occur between the V ions in the face-sharing pairs of VO_6 octahedra along the c axis [11]. In contrast, Ti-Ti molecular orbital formation does occur in Ti₂O₃: The Ti-Ti distance of the pair is gradually shortened in going from 600 to 400 K, and Ti₂O₃ undergoes a metal-to-insulator transition (Fig. 1) [12–15]. As shown in Figs. 1(a) and 1(b), it has theoretically been shown that the Ti 3d a_{1g} orbitals form the molecular orbitals which build up the insulating state [16–21]. The theoretical predictions have been followed by the experimental confirmations by soft x-ray absorption spectroscopy (XAS) [22,23] and photoemission spectroscopy (PES) [23]. In addition to the corundum Ti_2O_3 with d^1 honeycomb layers coupled by the face-sharing TiO₆ pairs, MgVO₃, which is a novel ilmenite system with d^1 configuration, has been found to form V-V dimers in the d^1 honeycomb lattice below 500 K [24]. It is also known that layered Ti trihalides such as TiCl₃ and TiBr₃ harbor the d^1 honeycomb lattice with Ti-Ti dimerization [25,26].

Very recently, the impact of Mg substitution for Ti in the $Mg_yTi_{2-y}O_3$ system, which is also known as $Mg_{1-x}Ti_{1+x}O_3$ with y = 1 - x (hereafter, we use the notation with y), has been studied by Takasu *et al.* [27]. While Ti₂O₃ is the well-studied corundum system, MgTiO₃ is an ilmenite system with Ti⁴⁺ (d^0) configuration. Therefore, $Mg_yTi_{2-y}O_3$ provides a unique opportunity to study evolution from the face-sharing TiO₆ pairs in the d^1 corundum system to the d^0/d^1 mixed valence honeycomb lattice in the ilmenite. It is expected that the Ti 3*d* t_{2g} orbitals play essential roles to control their electronic properties. It has been revealed that the shortened Ti-Ti bonds survive against the hole doping by the Mg²⁺ substitution for Ti³⁺. Here, the interesting question arises whether the Ti 3*d* a_{1g} orbitals are still occupied in the hole-doped system to stabilize the Ti-Ti molecular orbitals.

As shown in the previous XAS studies [22,23], the particular linear dichroism (LD) of the Ti 2p spectrum between the polarization vector (E) perpendicular to and parallel to the c axis played a vital role for clarifying the a_{1g} occupation in the Ti₂O₃ system. In the present work, we report LD-XAS of Mg_yTi_{2-y}O₃ with y = 0.01, 0.29, 0.63, and 1.00 to clarify the hole-doping effect on the $a_{1g}a_{1g}$ singlet bond. Based on the experimental results, we discuss the interplay between orbital symmetry and hole doping.

II. EXPERIMENT AND CALCULATIONS

Single crystals of $Mg_y Ti_{2-y}O_3$ with y = 0.01, 0.29, 0.63, and 1.00 were grown using the floating-zone method, and

^{*}Corresponding author: mokawa@aoni.waseda.jp

[†]Corresponding author: mizokawa@waseda.jp

FIG. 1. (a) Energy diagram of the *d* orbitals in the corundumtype d^1 insulators with formation of d^1-d^1 singlet bond [21]. (b) The Ti-Ti bond formation between honeycomb layers along the *c* axis in Ti₂O₃. The shaded areas are a schematic of Ti 3*d* a_{1g} orbitals.

the compositions y were determined by the energy-dispersive x-ray spectroscopy, whose details were described in the literature by Takasu et al. [27]. The Ti ions in the octahedral coordination are substituted by the Mg ions. The single crystals were mounted on the sample holders ex situ after orientation by the single-crystal x-ray diffraction using a Rigaku R-AXIS RAPID II diffractometer. LD-XAS measurements with the total electron vield method were performed at the NSRRC-MPI TPS 45A1 Submicron Soft X-ray Spectroscopy Beamline [28] at Taiwan Photon Source, National Synchrotron Radiation Research Center (NSRRC). Clean sample surfaces were obtained by cleaving the crystals in situ, with the c axis nearly in-plane of the cleaved surface. LD-XAS data were acquired using a 98% horizontal linear polarized soft x-ray beam, at a geometry close to normal incidence. The LD spectra were obtained by first setting the sample stage to measure with the c axis aligned parallel to the polarization direction, and then rotating the stage in-plane 90° to obtain the geometry with the c axis aligned perpendicular to the polarization. The maximum dichroism at the chosen directions was verified to confirm the correct orientations. The sample temperature was 300 K for all measurements, and an overall energy resolution was ~ 0.25 eV.

In order to extract information about the orbital occupation from the XAS spectra, we have made use of simulations utilizing the well-proven single-site TiO_6 and double-site Ti_2O_9 cluster-model calculations performed by Sato *et al.* [22] and by Chang *et al.* [23], respectively. The method includes the full atomic multiplet theory and the local effects of the solid. It accounts for the intra-atomic Ti 3*d*-Ti 3*d* and Ti 2*p*-Ti 3*d* Coulomb interactions, the atomic Ti 2*p* and Ti 3*d* spin-orbit couplings, the O 2*p*-Ti 3*d* hybridization, and the proper local crystal-field parameters [29].

III. RESULTS AND DISCUSSION

Figure 2(a) shows the linear polarization dependence of the Ti $L_{2,3}$ edges for each y composition. The energy regions of 454–461 and 461–467 eV can be assigned to the L_3 ($2p_{3/2} \rightarrow 3d$) and L_2 ($2p_{1/2} \rightarrow 3d$) absorption edges, respectively, although there is considerable overlap or mixing between the two edges [30,31]. In the compositions of y = 0.63 and 1.00,

FIG. 2. (a) Ti $L_{2.3}$ XAS of Mg_yTi_{2-y}O₃ for y = 0.01, 0.29, 0.63, and 1.00. The XAS intensities obtained with the linear-polarized direction of the incident beam (**E**) parallel to and perpendicular to the *c* axis correspond to red (**E** $\parallel c$) and black (**E** $\perp c$) curves, respectively. LD-XAS spectra obtained by the difference between the **E** $\parallel c$ and **E** $\perp c$ geometries were shown in (b) for y = 0.01 and 0.29, and in (c) for y = 0.83 and 1.00. Dashed lines correspond to zero LD intensity.

the sharp peaks at 458 and 460 eV are related (but not equal) to the octahedral crystal-field splitting at the Ti⁴⁺ sites [30]. Ti $L_{2,3}$ LD were obtained as spectral differences between $E \parallel c$ and $E \perp c$ geometries for each y, as shown in Fig. 2(b). In y = 0.01, which is almost Ti₂O₃ composition, the LD-XAS

FIG. 3. (a) Model I, corresponding to a Ti^{3+} - Ti^{3+} pair with occupied a_{1g} - a_{1g} orbitals and Mg²⁺- Ti^{4+} pairs with empty Mg 3*s* and Ti 3*d* orbitals. Their relative populations are 1 - y and *y*, respectively. (b) Model II, corresponding to a Ti^{3+} - Ti^{3+} pair with occupied a_{1g} - a_{1g} orbitals, Mg²⁺- Ti^{3+} pairs with empty Mg 3*s* and occupied Ti $3de_g^{\pi}$ orbitals, and Ti³⁺- Ti^{4+} pairs with occupied Ti 3d a_{1g} and empty Ti 3*d* orbitals. Their relative populations are 1 - 2y, *y*, and *y*, respectively.

spectrum is consistent with the previous reports of Ti₂O₃ at room temperature [22,23]. The LD features in y = 0.01 also appeared in the LD spectrum of y = 0.29 with a small Ti⁴⁺ component, which can be seen at 458 eV. In contrast to y =0.01 and 0.29, Ti $L_{2,3}$ XAS spectra in heavily Mg-substituted y = 0.63 and MgTiO₃ (y = 1.00) have very different line shapes. They are dominated by the Ti⁴⁺ component, as we will show below.

In analyzing the LD spectrum of the y = 0.29 composition, we first tried to construct it from the LD spectra of the y =0.01 and y = 1.00 compositions with weights that follow from the y = 0.29 value. This first model is illustrated in Fig. 3(a), where the y = 0.01 is represented by Ti³⁺-Ti³⁺ pairs with occupied a_{1g} - a_{1g} 3d orbitals and the y = 1.00 by Mg²⁺-Ti⁴⁺ pairs with empty Mg 3s and Ti 3d orbitals, respectively. We then obtained a sum of the LD of the y = 0.01 multiplied by 2(1 - 0.29)/(2 - 0.29) = 0.83 and the LD of the y = 1.00multiplied by 0.29/(2 - 0.29) = 0.17, where we note that the factors 1/(2 - 0.29) account for the fact that the spectra in Fig. 2(a) with different Ti contents were normalized to the integrated intensity. The result is shown in Fig. 4(a) and clearly does not match the measured LD of the y = 0.29. The latter shows mainly the same LD of the y = 0.01, but reduced by about 50%, and very little of the LD of the y = 1.00.

This discrepancy let us to conclude that the substitution of Ti by Mg does not create Mg²⁺-Ti⁴⁺ pairs, but rather Mg²⁺-Ti³⁺ pairs with the Ti⁴⁺ being located somewhere else and thus forming Ti³⁺-Ti⁴⁺ pairs. This conclusion is consistent with the findings of a recent photoemission study which revealed that the holes introduced by the Mg substitution are in the Ti-Ti pairs [32]. We thus arrive at the second model as depicted in Fig. 3(b): the y = 0.29 material is composed of Mg²⁺-Ti³⁺ pairs, with the empty Mg 3s orbital and the singly occupied Ti 3d orbital (of the e_g^{π} type, as we will show later), Ti³⁺-Ti⁴⁺ pairs with the singly occupied 3d orbital (of the a_{1g} type) and the fully unoccupied 3d orbitals, respectively,

FIG. 4. (a) Calculated LD spectra for y = 0.29 using the relative populations of the Ti sites corresponding to models I (red solid curve) and II (blue broken curve), as defined in Figs. 3(a) and 3(b), respectively, and further elaborated in the text, together with the experimental LD (yellow dots). For model I, the calculations for the double-site Ti₂³⁺O₉ cluster are adapted from the work performed by Chang *et al.* [23]. For model II, the calculations for the singlesite Ti³⁺O₆ cluster are reproduced with permission from Ref. [22]. (b) LD spectra of the Ti³⁺ ions (blue dots), obtained from the difference between the LD intensities of $I_{\rm LD}(y = 0.63)$ and $0.75 \times I_{\rm LD}(y =$ 1.00), compared to the TiO₆ cluster-model calculations assuming the a_{1g} (green solid curve) or e_g^{π} (black broken curve) orbital occupied. Here we finely aligned the $I_{\rm LD}(y = 1.00)$ by shifting it 8 meV to prevent derivative artifacts from the Ti⁴⁺ contributions.

and Ti³⁺-Ti³⁺ pairs with a_{1g} - a_{1g} . The relative weights of the components are also indicated, namely, *y*, *y*, and 1 - 2y, respectively. The LD spectra of the Ti³⁺ ions in the Mg²⁺-Ti³⁺ and Ti³⁺-Ti⁴⁺ pairs can be estimated from the earlier TiO₆ cluster calculations [22,23], as also shown in Fig. 4(b). Making the sum of the LD spectra from an e_g^{π} Ti³⁺ and an a_{1g} Ti³⁺ cluster plus the LD from the *y* = 0.01 with 0.29, 0.29, and 2(1 - 2 × 0.29) weights, respectively, followed by the 1/(2 - 0.29) multiplication, we obtain a result that is very close to the experimental LD of *y* = 0.29 as displayed in Fig. 4(a). We note that assuming the Ti³⁺ in the Mg²⁺-Ti³⁺ and Ti³⁺-Ti⁴⁺ pairs are all e_g^{π} or all a_{1g} gives less satisfactory results.

Focusing now on the y = 0.63 composition, we observe that the sharpest features of the LD spectrum are given by those of the y = 1.00, i.e., by the Ti⁴⁺ in the Mg²⁺-Ti⁴⁺ pairs. The LD spectra of the y = 0.63 and y = 1.00 are, however, not identical and the difference between them contains

FIG. 5. Whole integrated intensity (450–470 eV) of Ti $L_{2,3}$ LD-XAS as a function of y in Mg_yTi_{2-y}O₃. Inset: The integrated intensity around the pre-edge region (455–457 eV). The negative values in y = 0.01 and 0.29 [i.e., $I_{LD}(E \parallel c) < I_{LD}(E \perp c)$] mean dominating the Ti-Ti singlet bonds. The sign change from negative to positive at y = 0.63 mainly corresponds to the peaks at 456 and 462 eV, shown in Fig. 2(c).

information about the orbital state of the Ti³⁺ in the Mg²⁺-Ti³⁺ and Ti³⁺-Ti⁴⁺ pairs. Figure 4(b) shows this difference spectrum by the dotted curve. We can observe spectral features that matches well with those of the e_g^{π} in the TiO₆ cluster, e.g., the peaks at 455, 459.5, 461.5, 462.5, 463.5, and 465 eV. This supports our conjecture from the y = 0.29 composition in that the Ti³⁺ in the Mg²⁺-Ti³⁺ pair is of the e_g^{π} type. At the same time, we now also see that in this high-Mg-content y = 0.63 composition, the Ti³⁺ of the Ti³⁺-Ti⁴⁺ pairs are partly converted from a_{1g} to e_g^{π} .

To confirm our findings, we also analyzed the integrated intensities of the spectra and their polarization dependence since the use of sum rules gives direct information about the orbital polarization of the ground state [33,34]. Figure 5 shows the integrated intensity of the Ti $L_{2,3}$ LD-XAS spectra for the whole energy region (450-470 eV) and pre-edge region (455–457 eV). In $y \leq 0.29$ samples, integrated LD-XAS intensities are negative, i.e., $I(E \parallel c) < I(E \perp c)$. The a_{1g} orbital spreads along the c axis, while the e_{ρ}^{π} orbitals spread in the *a-b* plane, and thus the negative LD-XAS intensity can be expected by the relatively dominant a_{1g} orbital occupancy, suggesting that the Ti-Ti bonds along the c axis are still robust in y = 0.29. On the other hand, in y = 1.00 (MgTiO₃), the integrated Ti L_{2,3} LD-XAS intensity is almost zero. This is consistent with the Ti⁴⁺ d^0 configuration, where all the t_{2g} and e_g orbitals are unoccupied. As for y = 0.63, the integrated value of Ti $L_{2,3}$ LD-XAS is positive, i.e., $I(E \parallel c) > I(E \perp c)$ c). The positive integrated value is mainly due to the positive LD signals at 456 eV (Ti L_3 pre-edge region) and at 462 eV (Ti L_2 pre-edge region), which are not observed for y = 1.00in Fig. 2(b). As shown in the inset of Fig. 5, the LD signal of the Ti L_3 pre-edge region changes from negative to positive in going from y = 0.29 to y = 0.63. The sign change of the LD signal indicates that symmetry of the unoccupied Ti 3d

orbitals changes between y = 0.29 and y = 0.63. In y = 0.63, the a_{1g} orbital is less occupied and the e_g^{π} orbitals are more occupied than at y = 0.29; thus, the $E \parallel c$ intensity is enhanced by the unoccupied a_{1g} state [Fig. 1(a)]. Therefore, the Ti-Ti bonds along the *c* axis tend to collapse at the hole-doping level for y = 0.63.

The Ti 3*d* orbital occupation changes from a_{1g} to e_g^{π} with the Mg doping. Since the e_g^{π} orbitals are extended along the Ti-Ti bonds in the honeycomb lattice layers, the e_g^{π} electrons can hop in the honeycomb lattice in the y = 0.63 system. Without dimerization, the y = 0.63 system is expected to be more metallic than the y = 0.29 system. On the other hand, while the a_{1g} orbital stabilizes the Ti-Ti bond in the facesharing TiO₆ pairs, the e_g^{π} orbital may favor Ti-Ti dimers in the honeycomb lattice layer, as observed in MgVO₃. It would be interesting to study the y = 0.63 system using extended x-ray absorption fine structure (EXAFS) or pair-distribution function (PDF) experiments in order to detect local Ti-Ti dimers in the honeycomb lattice.

IV. CONCLUSION

We investigated the Mg^{2+} substitution effect to the Ti-Ti bonds along the *c* axis in Ti₂O₃ using LD-XAS measurements.

We found that the substitution of Ti by Mg does not lead to the formation of Mg²⁺-Ti⁴⁺ pairs as previously thought. Instead, it creates Mg²⁺-Ti³⁺ pairs, with the Ti⁴⁺ ions forming Ti³⁺-Ti⁴⁺ pairs elsewhere in the structure. This conclusion was further supported by the observation that the holes introduced by the Mg substitution were found to be in the Ti-Ti pairs. We established a model for the y = 0.29 composition, which consists of Mg²⁺-Ti³⁺ pairs with e_{ρ}^{π} orbital symmetry, $Ti^{3+}-Ti^{4+}$ pairs with a_{1g} orbital symmetry, and $Ti^{3+}-Ti^{3+}$ pairs with a_{1g} - a_{1g} singlet bonds. As the Mg content increased in the y = 0.63 composition, we observed a change in the orbital symmetry of the Ti³⁺ ions in the Ti³⁺-Ti⁴⁺ pairs, with some converting from a_{1g} to e_g^{π} . The Ti-Ti bonds along the c axis tend to collapse at this hole-doping level for y = 0.63, indicating a significant impact of hole doping on the electronic properties. These findings in Mg_vTi_{2-v}O₃ provide valuable insights into the electronic properties of transition-metal oxides and their metal-insulator transitions.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grants No. JP19H00659 and No. JP22H01172. M.F.-C. benefited from the financial support of the German Research Foundation (DFG), Project No. 387555779. The authors used research equipment for Laue measurements (Rigaku R-AXIS RAPID II: Material Characterization Central Laboratory, Waseda University) shared in the MEXT Project for promoting public utilization of advanced research infrastructure (program for supporting construction of core facilities), Grant No. JP-MXS0440500022. The authors also are thankful for support for the crystal sectioning by the Joint Research Center for Environmentally Conscious Technologies in Materials Science, ZAIKEN, Waseda University. The authors acknowledge support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials.

- [1] D. I. Khomskii, *Transition Metal Compounds* (Cambridge University Press, Cambridge, 2014).
- [2] M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Streltsov, M. A. Korotin, V. I. Anisimov, H. H. Hsieh, H.-J. Lin, C. T. Chen, D. I. Khomskii, and L. H. Tjeng, Orbital-assisted metal-insulator transition in VO₂, Phys. Rev. Lett. **95**, 196404 (2005).
- [3] D. I. Khomskii and T. Mizokawa, Orbitally induced peierls state in spinels, Phys. Rev. Lett. 94, 156402 (2005).
- [4] D. I. Khomskii and S. V. Streltsov, Orbital effects in solids: Basics, recent progress, and opportunities, Chem. Rev. 121, 2992 (2021).
- [5] M. Isobe and Y. Ueda, Observation of phase transition from metal to spin-singlet insulator in $MgTi_2O_4$ with S = 1/2 pyrochlore lattice, J. Phys. Soc. Jpn. **71**, 1848 (2002).
- [6] M. Schmidt, W. Ratcliff, P. G. Radaelli, K. Refson, N. M. Harrison, and S. W. Cheong, Spin singlet formation in MgTi₂O₄: Evidence of a helical dimerization pattern, Phys. Rev. Lett. **92**, 056402 (2004).
- [7] H. D. Zhou and J. B. Goodenough, Semiconductorsemiconductor transition in Mg[Ti₂]O₄, Phys. Rev. B 72, 045118 (2005).
- [8] M. Isobe, S. Koishi, N. Kouno, J.-I. Yamaura, T. Yamauchi, H. Ueda, H. Gotou, T. Yagi, and Y. Ueda, Observation of metalinsulator transition in hollandite vanadate, K₂V₈O₁₆, J. Phys. Soc. Jpn. **75**, 073801 (2006).
- [9] Y. Ishige, T. Sudayama, Y. Wakisaka, T. Mizokawa, H. Wadati, G. A. Sawatzky, T. Z. Regier, M. Isobe, and Y. Ueda, Interplay between Mott physics and Peierls physics in hollandite-type vanadates with a metal-insulator transition, Phys. Rev. B 83, 125112 (2011).
- [10] T. Yamaguchi, M. Okawa, H. Wadati, T. Z. Regier, T. Saitoh, Y. Takagi, A. Yasui, M. Isobe, Y. Ueda, and T. Mizokawa, Electronic structure of spinel-type MgTi₂O₄: Valence change at surface and effect of Fe substitution for Mg, J. Phys. Soc. Jpn. 91, 074704 (2022).
- [11] J.-H. Park, L. H. Tjeng, A. Tanaka, J. W. Allen, C. T. Chen, P. Metcalf, J. M. Honig, F. M. F. de Groot, and G. A. Sawatzky, Spin and orbital occupation and phase transitions in V₂O₃, Phys. Rev. B 61, 11506 (2000).
- [12] F. J. Morin, Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett. 3, 34 (1959).
- [13] L. L. Van Zandt, J. M. Honig, and J. B. Goodenough, Resistivity and magnetic order in Ti₂O₃, J. Appl. Phys. **39**, 594 (1968).
- [14] W. R. Robinson, The crystal structures of Ti₂O₃, a semiconductor, and (Ti_{0.900}V_{0.100})₂O₃, a semimetal, J. Solid State Chem. 9, 255 (1974).
- [15] C. E. Rice and W. R. Robinson, High-temperature crystal chemistry of Ti_2O_3 : Structural changes accompanying the semiconductor-metal transition, Acta Crystallogr. B **33**, 1342 (1977).
- [16] H. J. Zeiger, Unified model of the insulator-metal transition in Ti₂O₃ and the high-temperature transitions in V₂O₃, Phys. Rev. B 11, 5132 (1975).
- [17] L. F. Mattheiss, Electronic structure of rhombohedral Ti₂O₃, J. Phys.: Condens. Matter 8, 5987 (1996).
- [18] A. Tanaka, On the metal-insulator transitions in VO₂ and Ti₂O₃ from a unified viewpoint, J. Phys. Soc. Jpn. 73, 152 (2004).

- [19] A. I. Poteryaev, A. I. Lichtenstein, and G. Kotliar, Nonlocal coulomb interactions and metal-insulator transition in Ti₂O₃: A cluster LDA + DMFT approach, Phys. Rev. Lett. 93, 086401 (2004).
- [20] V. Eyert, U. Schwingenschlögl, and U. Eckern, Covalent bonding and hybridization effects in the corundum-type transitionmetal oxides V_2O_3 and Ti_2O_3 , Europhys. Lett. **70**, 782 (2005).
- [21] C. Castellani, C. R. Natoli, and J. Ranninger, Magnetic structure of V₂O₃ in the insulating phase, Phys. Rev. B 18, 4945 (1978).
- [22] H. Sato, A. Tanaka, M. Sawada, F. Iga, K. Tsuji, M. Tsubota, M. Takemura, K. Yaji, M. Nagira, A. Kimura, T. Takabatake, H. Namatame, and M. Taniguchi, Ti 3*d* orbital change across metal-insulator transition in Ti₂O₃: Polarization-dependent soft x-ray absorption spectroscopy at Ti 2*p* edge, J. Phys. Soc. Jpn. **75**, 053702 (2006).
- [23] C. F. Chang, T. C. Koethe, Z. Hu, J. Weinen, S. Agrestini, L. Zhao, J. Gegner, H. Ott, G. Panaccione, H. Wu, M. W. Haverkort, H. Roth, A. C. Komarek, F. Offi, G. Monaco, Y.-F. Liao, K.-D. Tsuei, H.-J. Lin, C. T. Chen, A. Tanaka *et al.*, *c*-axis dimer and its electronic breakup: The insulatorto-metal transition in Ti₂O₃, Phys. Rev. X 8, 021004 (2018).
- [24] H. Yamamoto, S. Kamiyama, I. Yamada, and H. Kimura, Cation dimerization in a 3d¹ honeycomb lattice system, J. Am. Chem. Soc. 144, 1082 (2022).
- [25] S. Ogawa, Magnetic transition in TiCl₃, J. Phys. Soc. Jpn. 15, 1901 (1960).
- [26] S. Pei, J. Tang, C. Liu, J.-W. Mei, Z. Guo, B. Lyu, N. Zhang, Q. Huang, D. Yu, L. Huang, J. Lin, L. Wang, and M. Huang, Orbital-fluctuation freezing and magnetic-nonmagnetic phase transition in α -TiBr₃, Appl. Phys. Lett. **117**, 133103 (2020).
- [27] K. Takasu, M. Arizono, T. Shirasaki, H. Arai, H. Kuwahara, T. Yoshida, T. Katsufuji, and T. Okuda, Crystal growth and magnetic properties of the MgTiO₃-Ti₂O₃ system, JPS Conf. Proc. 38, 011116 (2023).
- [28] H.-M. Tsai, H.-W. Fu, C.-Y. Kuo, L.-J. Huang, C.-S. Lee, C.-Y. Hua, K.-Y. Kao, H.-J. Lin, H.-S. Fung, S.-C. Chung, C.-F. Chang, A. Chainani, L. H. Tjeng, and C.-T. Chen, A submicron soft x-ray active grating monochromator beamline for ultra-high resolution angle-resolved photoemission spectroscopy, AIP Conf. Proc. 2054, 060047 (2019).
- [29] The parameters used in the TiO₆ cluster, in eV, are the following [23]: $U_{dd} = 4.0$, $U_{pd} = 5.5$, $\Delta = 6.5$, $10Dq_{\text{ionic}} = 0.85$, $V_{eg}^{\sigma} = 3.5$, $V_{eg}^{\pi} = 1.2$, $V_{a1g}^{\pi} = 0.9$. $\Delta_{trg} = -0.16$ and 0.16 for the e_g^{π} initial state and a_{1g} initial state calculations, respectively. The Ti₂O₉ clusters use the same parameters, with the addition of the Ti-Ti hopping integral $V_{dd\sigma} = 0.9$.
- [30] F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, $L_{2,3}$ x-ray-absorption edges of d^0 compounds: K⁺, Ca²⁺, Sc³⁺, and Ti⁴⁺ in O_h (octahedral) symmetry, Phys. Rev. B **41**, 928 (1990).
- [31] F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, 2p x-ray absorption of 3D transition-metal compounds: An atomic multiplet description including the crystal field, Phys. Rev. B 42, 5459 (1990).

- [32] T. Miyoshino, D. Takegami, A. Meléndez-Sans, R. Nakamura, M. Yoshimura, K.-D. Tsuei, K. Takasu, T. Okuda, L. H. Tjeng, and T. Mizokawa, Intra *c*-axis dimer hybridization and mixed valency in Mg-doped Ti₂O₃, Phys. Rev. B **107**, 115145 (2023).
- [33] S. I. Csiszar, M. W. Haverkort, Z. Hu, A. Tanaka, H. H. Hsieh, H.-J. Lin, C. T. Chen, T. Hibma, and L. H. Tjeng, Controlling

orbital moment and spin orientation in CoO layers by strain, Phys. Rev. Lett. **95**, 187205 (2005).

[34] M. W. Haverkort, Spin and orbital degrees of freedom in transition metal oxides and oxide thin films studied by soft x-ray absorption spectroscopy, Ph.D. thesis, University of Cologne, 2005.