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This work investigates the out-of-equilibrium dynamics of dipole and higher-moment-conserving systems
with long-range interactions, drawing inspiration from trapped ion experiments in strongly tilted potentials.
We introduce a hierarchical sequence of multipole-conserving models characterized by power-law decaying
couplings. Although the moments are always globally conserved, adjusting the power-law exponents of the
couplings induces various regimes in which only a subset of multipole moments are effectively locally conserved.
We examine the late-time hydrodynamics analytically and numerically using an effective classical framework,
uncovering a rich dynamical phase diagram that includes subdiffusion, conventional diffusion, and Lévy flights.
Our results are unified in an analytic reciprocal rule that captures the nested hierarchy of hydrodynamics in
multipole conserving systems where only a subset of the moments are locally conserved. Moreover, we extend
our findings to higher dimensions and explore the emergence of long timescales, reminiscent of prethermal
regimes, in systems with low charge density. Lastly, we corroborate our results through state-of-the-art numerical
simulations of a fully quantum long-range dipole-conserving system and discuss their relevance to trapped-ion
experimental setups.
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I. INTRODUCTION

Recent advances in controlled experimental platforms,
such as ultracold atoms in optical lattices [1,2], trapped ions
[3,4], and superconducting qubits [5–7], have sparked consid-
erable interest in the out-of-equilibrium dynamics of isolated
quantum many-body systems. Such systems can display a
wide range of fascinating and unexpected behavior, including
the emergence of new phases of matter ranging from exotic
topological phases to time crystals [8–14].

Generic quantum systems are expected to thermalize,
meaning that their long-time steady states are described by
a finite number of global conserved quantities, such as energy,
particle number, or charge. When such systems evolve, any
nonequilibrium dynamics ultimately lead to an equilibrium
thermal state [15–21]. Indeed, any initial inhomogeneities of
the globally conserved quantities are smoothed out at late
times by nonequilibrium transport. These processes can be
described in an effective classical hydrodynamic framework
that emerges in interacting quantum systems [22–28]. For ex-
ample, the long-time dynamics of a system with U(1) charge
conservation exhibits diffusive relaxation.

Here we are interested in systems that conserve both a
global U(1) charge and one or more of its higher multipole
moments, e.g., dipole or quadrupole moments. Fundamentally
new equilibrium [29–38] and out-of-equilibrium phenomena
[32,39–47] emerge in such systems. For instance, dipole-
conserving systems can exhibit anomalously slow dynamics
due to changes in Fick’s law, which lead to modified diffusion
equations for the charges [32,43]. Indeed, dipole conserva-
tion leads to dynamical constraints reminiscent of fractonic
systems [48–53]. For Hamiltonians having sufficiently short-
range interactions, these dynamical constraints can cause
strong Hilbert space fragmentation, where the Hilbert space

splits into exponentially many disconnected sectors, and
where the number of states in the largest sector is still a
vanishing fraction of the full Hilbert space dimension [40,54–
56]. As a result, any initial charge configuration is constrained
to explore only a small portion of the Hilbert space, preventing
the system from thermalizing.

In comparison, dipole-conserving systems having ex-
tended, but still local, interactions exhibit a weak form of
Hilbert space fragmentation [40,42,47,57], meaning that they
remain ergodic despite the existence of a measure zero sub-
set of nonergodic states, dubbed quantum scars [55,58–63].
For special, fine-tuned initial states, these scar states can
dominate the dynamics, leading to highly nonergodic time
evolution with persistent oscillations. However, for generic
initial states, these systems thermalize under unitary time
evolution, and conserved quantities determine their universal
long-time behavior. Such local Hamiltonians can also be tuned
from weakly to strongly fragmented by changing the charge
density, driving the so-called freezing transition [44,45,47].

In realistic systems, dipole conservation can be effectively
imposed at low energies by a large linear potential [64–66].
The long-time dynamics of dipole-conserving systems can
therefore be explored in quantum platforms with a strong
external “tilt,” and recent experimental realizations include
ultracold atoms [66–69], superconducting qubits [70], and
trapped-ion systems [71]. For example, Refs. [67,68] probed
the strong fragmentation regime of a tilted one-dimensional
Fermi-Hubbard model, while Ref. [66] investigated the
anomalous relaxation of charge in the two-dimensional tilted
Fermi-Hubbard model. In many such platforms, the interac-
tions are long-ranged and decay algebraically with distance,
e.g., the Coulomb potential between trapped ions or the
dipole-dipole interactions in Rydberg atom arrays [72].
However, previous theoretical works on out-of-equilibrium
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FIG. 1. (a) Table summarizing the hierarchy of long-range multipole conserving models. A system can conserve all moments up to the mth
moment globally, but for finite long-range exponents αi, this conservation may not be valid at the local level. Taking the relevant short-range
limit αi → ∞, we recover local conservation. (b) Phase diagram for the long-time dynamics of a dipole-conserving system with general
long-range interactions. Here α1 and α2 are the two exponents controlling the range of interaction between and within dipoles, respectively.
For large α1 we recover dipole subdiffusion typical of the short-range case, and longer-range systems can also exhibit regimes of diffusion,
superdiffusion (including the special case of ballistic transport, marked with a dotted line), and exponential relaxation which indicates a
breakdown of hydrodynamics. (c) An example of a dipole-conserving cellular automaton circuit. Gates are applied with a probability that
decays algebraically with their range, and product states are mapped to product states.

dynamics in the presence of dipole conservation have primar-
ily considered short-range interactions.

In this work, we investigate dipole- and higher-moment-
conserving systems subjected to long-range, algebraically
decaying interactions. This is partially motivated by the afore-
mentioned experimental study of trapped ions in a strong tilted
field [71]. As algebraically decaying interactions are inherent
in such systems, it is natural to ask how the transport of
charges is affected by long-range interactions when multi-
pole moments are conserved. Quantum simulators based on
trapped ions [71–76] also provide an ideal setting to realize
the predictions of our work.

Our work builds upon previous theoretical [77] and
experimental [78] works, which considered hydrodynamic de-
scriptions of trapped-ion setups with U(1) charge conservation
and long-range interactions. In particular, Ref. [77] estab-
lished the existence of three dynamical regimes depending on
the range of the interactions: (i) a universal diffusive transport
regime, (ii) an intermediate regime with emergent nonlocal

hydrodynamics, and (iii) a “super”-long-range regime in
which hydrodynamics breaks down. Building upon these re-
sults, here we establish a sequence of hierarchical models
that conserve higher moments, such as dipole and quadrupole
moments, and we choose the interactions to be algebraically
decaying couplings controlled by a set of exponents {αi}, as il-
lustrated in Fig. 1(a). For instance, the second row of Fig. 1(a)
displays couplings that conserve dipole moment, which we
characterize by two exponents, α1 and α2. The former governs
the typical interaction between dipoles, (+,−) ←→ (−,+),
while the latter modulates the interaction between the con-
stituent charges of each dipole, (+) ←→ (−). For small
values of α1 and α2, the model becomes highly nonlocal,
and neither charge nor dipole moment is locally conserved.
However, as α2 tends to infinity, charge becomes locally con-
served, and compact dipoles (+,−) can propagate over long
distances. Finally, when both α1 and α2 tend towards infinity
we recover the short-range case, where both charge and dipole
moment are locally conserved.
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By iterating this construction, we obtain a sequence of
models that globally conserve all moments up to the mth
multipole moment. Employing both analytical and numerical
techniques, we study the late-time hydrodynamics of these
models using an effective classical description. Our results re-
veal a rich phenomenology, and the out-of-equilibrium phase
diagrams of each model host various dynamical regimes,
including conventional diffusion, Lévy flights, and stable sub-
diffusion. As an example, in Fig. 1(b) we show the phase
diagram for the dipole case with exponents α1 and α2 (we dis-
cuss this in more detail below). In this phase diagram we find
that at large α1 and α2, the system behaves like short-ranged
dipole-conserving systems and exhibits subdiffusion. As we
lower α1, which controls the typical interaction scale between
dipoles, we obtain conventional diffusion, like short-ranged
charge conserving systems. More generally, we find that in
models that globally conserve up to m multipole moments,
we can understand the various dynamical regimes as the dy-
namics of systems where only the subset of s moments, with
s � m, are both globally and locally conserved. For example,
quadrupole-conserving models feature hydrodynamic regimes
that describe locally conserved quadrupoles (and all lower
moments), other regimes where the dynamics is governed by
locally conserved dipoles, and, finally, regimes where only
charge is effectively locally conserved.

We also investigate the hydrodynamics of a system that
has long-range, dipole-conserving interactions that match the
effective interactions of trapped-ion systems subject to strong
tilted fields [66]. Furthermore, we extend our work to higher
dimensions and discuss prethermal-like regimes where the
dynamics is nearly frozen for systems at low particle density.
Finally, we support our results by performing state-of-the-art
numerical modeling of the time evolution of a fully quantum,
long-range dipole-conserving model.

The remainder of our work is organized as follows: In
Sec. II, we define our multipole models and their hierarchical
structure. In Sec. III, we describe the methods used in our
numerical simulations, such as cellular automata circuits and
dynamical probes. Section IV serves as the core of our work,
where we present our analytical derivations for the hydro-
dynamics of long-ranged systems with conserved multipole
moments and support them with clear numerical evidence.
Finally, in Sec. V we discuss the experimental significance
of our results and offer some concluding remarks.

II. MODELS

A. Dipole-conserving model

To study the dynamics of dipole-conserving systems with
long-range couplings, we consider the following model of
local spin-S degrees of freedom in one spatial dimension,

H =
′∑

i, j,n

(
Ji, j,nS+

i S−
i+nS−

j S+
j+n + H.c.

)
, (1)

where S±
i = (Sx

i ± iSy
i )/2 are the raising and lowering oper-

ators for the spin at site i. The primed sum indicates that
the sum is taken over values of i, j, n such that the site
indices on the spin are ascending, (i < i + n < j < j + n �
L), where L is the length of the system, and we use open

boundary conditions. This Hamiltonian conserves both the
charge P(0) = ∑

i Sz
i and the dipole moment P(1) = ∑

i iSz
i .

Since we are dealing with spin systems where the U(1) charge
is the z component of the spin, we use “charge” and “magne-
tization” synonymously. The Ji, j,n term can be viewed as a
dipole hopping term, where the first two operators, S+

i S−
i+n,

create a dipole of length n anchored at site i, and the second
two operators, S−

j S+
j+n, remove a dipole of length n anchored

at site j.
In this work, we consider two forms of Ji, j,n. First,

Ji, j,n = J0

|i − j|α1 |n|α2
, (2)

where J0 is a constant and α1 and α2 are free parameters. We
refer to Eq. (1) with this form of Ji, j,n as the α1, α2 model
[see Fig. 1(a)]. Interpreting Ji, j,n as a dipole hopping term,
α2 controls the length of the dipoles, and α1 controls the
range of the hopping. As with any model with algebraically
long-ranged interactions, the energy becomes superextensive
below some threshold values of the long-range exponents {αi}
where certain integrals diverge as L → ∞ [79]. To avoid
pathological behavior in the thermodynamic limit, we must
correct the Hamiltonian by dividing by a so-called Kac factor
N (L, αi ), which makes the energy extensive. In the case of
the coupling in Eq. (2), the relevant superextensive regimes
are α1 < 1/2 and α1 + α2 < 1, and we henceforth assume that
such a correcting factor is implicitly included when needed.

It will be useful to discuss some important limits of the
α1, α2 model. In the limit where α2 → ∞, the α1, α2 model
becomes

H =
′∑

i, j

(
J0

|i − j|α1
S+

i S−
i+1S−

j S+
j+1 + H.c.

)
, (3)

where the primed sum again indicates that the sum is taken
over i and j such that the site indices on the spins are as-
cending (i < i + 1 < j < j + 1). This Hamiltonian can be
considered as a model of long-range hopping for short dipoles
with a length of one lattice spacing. In the limit where α1 →
∞, the α1, α2 model becomes local,

H =
∑

i

(
J0S+

i S−
i+1S−

i+2S+
i+3 + H.c.

)
, (4)

regardless of the value of α2.1 In the opposite limit, where
α1 → 0, the Hamiltonian is

H =
′∑

i, j,n

(
J0

|n|α2
S+

i S−
i+nS−

j S+
j+n + H.c.

)
. (5)

This Hamiltonian consists of an all-to-all hopping of dipoles,
where the length of the dipoles is still controlled by α2. In
the limit where both α1 → 0 and α2 → 0 the model has an

1In our parametrization of the long-range exponents, α1 is dom-
inant over α2 and controls the overall range of the model. A
more symmetric choice, like Ji, j,n ∼ |i − j + n|−α1 |n|−α2 , yields
independent exponents, but obscures the hierarchical nature of
multipole-conserving hydrodynamics.
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all-to-all form

H =
′∑

i, j,k,l

(J0S+
i S−

j S−
k S+

l δi− j,k−l + H.c.), (6)

which is reminiscent of a four-body, Sachdev-Ye-Kitaev–like
interaction [80,81] with an additional center-of-mass con-
straint.

The second form of Ji, j,n in Eq. (1) that we consider is the
following:

Ji, j,n = J0

|i − j|1+γ |n|1+γ

[
1

|i − j + n|γ − 1

|i − j − n|γ
]
, (7)

where γ is a free parameter. We refer to Eq. (1) with this
form of Ji, j,n as the tilted Hamiltonian since, as we show in
Appendix A, this term appears in the effective Hamiltonian
for a long-range XY spin chain in a tilted potential, analogous
to trapped-ion platforms [71].

Some short-ranged versions of the models we consider
have been shown to exhibit Hilbert space fragmentation and
ergodicity breaking [40,42,82]. The addition of long-range
interactions ensures that even weak fragmentation, where ex-
ponentially many nonthermal eigenstates remain, is avoided.
We nevertheless primarily restrict our attention the Hilbert
space sector with vanishing magnetization and dipole mo-
ment, which is the largest and therefore most typical sector.

B. Quadrupole-conserving model

The dipole-conserving model in Eq. (1) can be generalized
to a quadrupole-conserving model,

H =
′∑

i, j,n1,n2

Qi, j,n1,n2

[
S+

i S−
i+n1

S−
i+n2

S+
i+n1+n2

× S−
j S+

j+n1
S+

j+n2
S−

j+n1+n2
+ H.c.

]
, (8)

where the primed sum again indicates that the sum is
taken such that the site indices on the spins are ascend-
ing (i < i + n1 < i + n2 < i + n1 + n2 < j · · · ). This system
preserves the charge, the dipole moment, and the quadrupole
moment P(2) = ∑

j j2Sz
j . This is not the most general form

of a quadrupole-conserving Hamiltonian, but it is sufficient
to discuss the connections between dipole- and quadrupole-
conserving physics. The Qi, j,n1,n2 term can be considered to
be a quadrupole hopping term where the first four terms
S+

i S−
i+n1

S−
i+n2

S+
i+n1+n2

create a quadrupole anchored at site i
and the second four terms S−

j S+
j+n1

S+
j+n2

S−
j+n1+n2

remove a
quadrupole anchored at site j. These quadrupoles are com-
posed of two oppositely oriented dipoles of length n1 that are
separated by a distance n2.

Analogously to the α1, α2 model, we consider the follow-
ing form of Qi, j,n1,n2 :

Qi, j,n1,n2 = Q0

|i − j|α1 |n1|α2 |n2|α3
. (9)

We refer to Eq. (8) with this form of Q as the α1, α2, α3 model.
If we interpret Qi, j,n1,n2 as a quadrupole hopping term, α1

controls the distance over which the quadrupoles hop. The
value of α2 controls the distance between the dipoles that
make up the quadrupoles, and α3 controls the length of the

constituent dipoles. This should be compared with the dipole-
conserving α1, α2 model, where α1 controls the distance over
which the dipoles hop, and α2 controls the distance between
the charges that make up the dipole. This structure can be
directly extended to an mth-moment-conserving model, where
α1 controls the distance over which m poles hop. The m poles
are composed of two (m − 1) poles separated by a distance
controlled by α2, The (m − 1) poles are composed of two
(m − 2) poles separated by a distances controlled by α3, and
so forth.

Let us now mention some relevant limits of the α1, α2, α3

model. When α1 → ∞, Eq. (8) becomes a local quadrupole-
conserving system,

H =
∑

i

Q0
[
S+

i S−
i+1S−

i+2S+
i+3S−

i+4S+
i+5S+

i+6S−
i+7 + H.c.

]
. (10)

In the limit where α1 → 0, Eq. (8) is

H =
′∑

i, j,n1,n2

Q0

|n1|α2 |n2|α3

[
S+

i S−
i+n1

S−
i+n2

S+
i+n1+n2

× S−
j S+

j+n1
S+

j+n2
S−

j+n1+n2
+ H.c.

]
, (11)

which consists of an all-to-all hoping of quadrupoles. The
quadrupoles are composed of two dipoles (with dipole lengths
controlled by α3) that are separated by a distance controlled
by α2. The interpretation of other limits involving α2 and α3

follows from our previous discussion in Sec. II A.

III. METHODS

To understand the late-time out-of-equilibrium dynamics
governed by the conserved quantities of the underlying sys-
tem, we efficiently simulate time evolution using a classical
cellular automaton that respects the same conservation laws
[24,43,77,83–86] [see Fig. 1(c)]. This approach simplifies
the dynamics such that all unitary time-evolution operators
commute. As a result, cellular automata map product states to
product states and effectively transform the time evolution of a
spin system into a series of spin-flips. Although such spin-flip
gates do not generate state entanglement, they can still capture
operator spreading in chaotic quantum many-body systems
and their hydrodynamics [86]. The main assumption for the
applicability of this approach is that the system is ergodic
and, hence, that it thermalizes. In the ergodic regime, the
long-time dynamics is believed to be dominated by emergent
classical hydrodynamics. More precisely, the scaling behav-
ior of correlation functions is universal and characterized
by the hydrodynamics, while quantum fluctuations enter as
nonuniversal coefficients. We consider an infinite temperature
ensemble of initial quantum states to capture the relaxation of
a localized excitation in a thermal bath. As a result, quantum
fluctuations are effectively washed out, and classical cellular
automaton simulations yield the same hydrodynamics as full
quantum time evolution [43,77,86,87].

Hence, to evolve the system we perform a series of gates
that update the spin configuration at each time step. The up-
date gates are chosen to respect the symmetry of the original
Hamiltonian in Eq. (1), and the transition rate between product
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states is dictated by Fermi’s golden rule:

Ws′,s = |〈s′
1, s′

2, . . .|H |s1, s2, . . .〉|2, (12)

where |s〉 = |s1, s2, · · · 〉 is a product state in the Sz basis, and
si ∈ {−S,−S + 1, . . . , S − 1, S}. For example, in the case of
dipole-conserving models like Eq. (1), an update gate involv-
ing four site indices {i, j, k, l}, such as Ui, j,k,l ∼ S+

i S−
j S−

k S+
l

(Ui, j,k,l ∼ S−
i S+

j S+
k S−

l ), is applied with a probability propor-
tional to the distance between sites, i.e., W ∝ |Ji, j,k,l |2δl−i,k− j .
In Fig. 1(c) we show a schematic example of such a dipole-
conserving circuit architecture.

A standard description of out-of-equilibrium dynamics em-
ploys the infinite-temperature, connected spin-spin correlation
function

C(|i − j|, t ) = 〈
Sz

i (t )Sz
j (0)

〉 − 〈
Sz

i (t )〉〈Sz
j (0)

〉
, (13)

where 〈· · · 〉 indicates an average over random initial spin
configurations in the Sz basis. We thus expect that we are
probing the largest and most typical Hilbert space sectors,
i.e., those in which P(m) ≈ 0. From this correlation function
we can consider the dynamical exponent β, which quanti-
fies spin relaxation and determines the long-time asymptotic
behavior of the return probability C(x = 0, t ) ∼ t−β . For
short-ranged systems with only U(1) charge conservation
(i.e., systems with conserved total magnetization

∑
j Sz

j), the
spread of charge is diffusive. In the diffusive regime, the
long-wavelength limit of the correlator is Gaussian: C(x, t ) ∼
e−x2/4Dt/

√
Dt , or in momentum space, C(k, t ) ∼ e−4Dk2t , with

D being the diffusion constant. At equal distances, C(x =
0, t ) ∼ t−1/2, and therefore β = 1/2 [22,77,88].

In a charge-conserving system, diffusion remains stable in
the presence of long-range, algebraically decaying couplings
Ji, j ∼ 1/|i − j|α for α > 3/2, as shown in Ref. [77]. However,
for longer-range interactions the system exhibits superdiffu-
sion and eventually a breakdown of the hydrodynamic picture:

β (m=0)(α) =
⎧⎨
⎩

1/2 α > 3/2
1/(2α − 1) 1/2 � α � 3/2
∞ α < 1/2,

(14)

where we have used the notation β (m=0) to indicate the dy-
namical relaxation exponent in systems that only conserve the
zeroth moment of a U(1) charge. For α < 1/2, hydrodynamics
is no longer applicable and the charge relaxes exponentially
with a characteristic timescale set by the system size through
the (implicit) Kac factor.

In general, diffusion is associated with the existence of a
mean free path �m f , which leads to an effective random-walk
description of the dynamics. Thus, the correlator in Eq. (13)
takes the form of a Gaussian. The stability of the diffusive
phase in U(1) charge conserving systems for α > 3/2 can be
derived by applying the central limit theorem [77,84]. Indeed,
in this regime the second moment of the hopping-rate proba-
bility distribution Wi, j ∼ 1/|i − j|2α is finite, and therefore its
mean free path is as well.

In contrast, the dynamics for 1/2 < α < 3/2 are described
by Lévy flights [89], which are dominated by large fluctua-
tions. As a result, particles typically scatter in short jumps,
but, once in a while, with a rare but finite probability, they

can undergo a macroscopic jump of order L(3−2α)/2. Phe-
nomenologically, this may be interpreted as giving rise to
a time-dependent mean free path. The resulting �m f can be
found by using the “extremal criterion” from extreme value
statistics [84], ∫ ∞

�m f

dr

r2α
∼ 1

Nδt
, (15)

where N is the number of steps taken, and δt is the
unit of time. This criterion gives the expected length of
the largest of N steps, which dominates the dynamics and
therefore gives an estimate of the mean free path: �m f ∼
(Nδt )1/(2α−1). Moreover, the second moment after N steps is
given by N

∫ �m f drr2/r2α ∼ NN
3−2α
2α−1 = N2/(2α−1), and there-

fore C(0, Nδt ) ∼ (Nδt )−1/(2α−1). For the special case of α =
1, the charge undergoes ballistic transport, and the correlator
takes the form of a Lorentzian function C(x, t ) ∼ t/[t2 +
(λx/t )]2. From this analysis, we see that in the regime α <

1/2, the probability rate Wi, j ∼ 1/|i − j|2α is not even nor-
malizable, indicating the breakdown of the hydrodynamics.

Short-range models with higher-moment conservation, i.e.,
P(m) = ∑

j jmSz
j for m � 1, exhibit out-of-equilibrium dy-

namics characterized by anomalously slow transport, e.g.,
C(k, t ) ∼ e−Dk2m+2t . This, in turn, implies subdiffusion of the
underlying U(1) charge, with dynamical exponent β (m) =
1/(2m + 2) [32,43]. One of our aims is to generalize the above
result to the case of long-range interactions and to find the
analogs of Eq. (14) for higher moments.

IV. RESULTS

A. Long-range hydrodynamics with dipole symmetry

At long times, the quantum dynamics of ergodic dipole-
conserving systems becomes mostly insensitive to particu-
larities of the initial state. Instead, the transport of spin is
governed by the symmetries of the underlying Hamiltonian,
giving way to an effectively classical hydrodynamic descrip-
tion. We can therefore model the evolution of spin by using
a classical master equation for the local spin density [77].
Taking spin-1/2 systems for simplicity, we define the spin
density at site i as a non-normalized probability density ρi =
〈Sz

i 〉 + 1/2 ∈ [0, 1].
The master equation then governs the evolution of this

local density in accordance with the dipole-conserving con-
straint, which exclusively allows dipole-exchange processes.
The only place the quantum Hamiltonian (1) enters into this
equation is in the rates of dipole exchange through Fermi’s
golden rule in Eq. (12). The full master equation for long-
range dipole-exchange processes is given by

dρi(t )

dt
=

∑
j =i

|i− j|∑
n=1

[
W +

i, j,n(1 − ρi )ρi+nρ j (1 − ρ j+n)

− W −
i, j,nρi(1 − ρi+n)(1 − ρ j )ρ j+n

− W −
i, j,n(1 − ρi−n)ρiρ j−n(1 − ρ j )

+ W +
i, j,nρi−n(1 − ρi )(1 − ρ j−n)ρ j

]
, (16)
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where the first sum runs over a chain of length L with lattice
constant a = 1. The four terms correspond to the four sets of
dipole-conserving processes that either increase or decrease
the spin at site i, and W ±

i, j,n are the rates of these processes.2

These terms can be viewed as the probability of applying
long-range gates like S+

i S−
i+nS−

j S+
j+n in a cellular automaton

simulation of time evolution like in Fig. 1(c). At infinite
temperature, the rates of opposite processes must be equal to
satisfy detailed balance, and Fermi’s Golden rule gives

W ±
i, j,n ∝ |Ji, j,n|2, (17)

where Ji, j,n is the long-range coupling in the underlying
dipole-conserving Hamiltonian (1).

Even if the initial conditions of the spin chain are extremely
inhomogeneous, the ergodicity of the Hamiltonian ensures
that the spin is spread more and more uniformly as t → ∞,
allowing us to expand the spin density into a static, constant
background and a small fluctuation: ρi(t ) = ρ + δρi(t ). The
fluctuation is independent of the background as long as we
work in a sector with an extensive number of spin excitations,
i.e., near the sector with zero magnetization (ρ = 1/2). To
study the long-time dynamics, we then linearize the master
equation with respect to this fluctuation, effectively describing
the evolution of a localized “lump” of spin in a background
of constant magnetization. The linearized master equation we
find is

∂tρi(t ) = −ρ(1 − ρ)
∑
i = j

|i− j|∑
n=1

|Ji, j,n|2[(ρ j+n − 2ρ j + ρ j−n)

− (ρi+n − 2ρi + ρi−n)], (18)

where we have used the fact that ρ is constant to replace
the density fluctuations δρi with the full density. The prefac-
tor ρ(1 − ρ ) = (1/4 − 〈Sz〉2) is always positive and depends
on the background magnetization. In particular, it vanishes
when the background spin configuration is all up or all down
and is largest for vanishing magnetization. This reflects the
fact that there are no dipole-conserving processes allowed
starting from the fully magnetized configurations, while the
zero-magnetization sector allows many.

Now let us consider the master equation for short-
ranged and long-ranged couplings. First, for short-ranged
Hamiltonians like Eq. (4), where Ji, j,n ∼ δi±1, j , only the
nearest-neighbor terms in Eq. (18) survive, yielding

∂tρi ∝ −(ρi+2 − 4ρi+1 + 6ρi − 4ρi−1 + ρi−2). (19)

Recognizing the right-hand side as a discretization of the
fourth derivative, we can take the continuum limit to recover
the expected subdiffusive decay of the coarse-grained spin
fluctuations [32,43]:

∂tρ(x, t ) = −Dsub∂
4
x ρ(x, t ), (20)

2More precisely, dipole-conserving dynamics are governed by an
infinite tower of coupled master equations where the evolution of
the one-point function ρi = 〈Sz

i 〉 depends on the two, three, and four-
point functions, which in turn depend on higher correlators. Because
we work at infinite temperature, however, we can take the mean field
limit 〈Sz

i Sz
j · · · 〉 ≈ ρiρ j · · · to decouple them

where Dsub is a generalized diffusive constant that depends
quadratically on the background spin density. This gener-
alized Fick’s law is a special case of a rank-2 continuity
equation for dipole conservation, which in d spatial dimen-
sions has the form

∂tρ = −∂a∂bJab, (21)

where Jab is the current density of xa-oriented dipoles moving
in the xb direction [51]. Restricting to d = 1 and taking Jxx =
Dsub∂

2
x ρ, we recover Eq. (20).

For long-range couplings, however, the linearized master
equation is more complicated, and there are different regimes,
each of which corresponds to a different kind of hydrody-
namic transport. Taking the Fourier transform of Eq. (18) we
find

∂tρ(k, t ) = −A(k)ρ(k, t ), (22)

where the momenta k ∈ 2πZ/L are restricted to the first Bril-
louin zone, −π � k < π , and the prefactor is given by

A(k) = 4ρ(1 − ρ )
L∑

y=1

y∑
n=1

|J0,y,n|2(1 − cos ky)(1 − cos kn),

(23)
where we defined y = i − j.

For large system sizes, we can make progress by taking
the continuum limit L → ∞ while fixing a = 1, and hence
replacing the sums with integrals. Concentrating on the long-
wavelength regime k � 1/a, which dominates the late-time
dynamics, we now focus on extracting the different scaling
regimes of the master equation and their dependence on our
choice of long-range couplings J0,y,n. In general, the dominant
long-wavelength behavior will be of the form

∂tρ(k, t ) = −Dkηρ(k, t ), (24)

where D ∼ Kaη is a generalized diffusive constant that de-
pends on an effective dipole-exchange rate K , which is
ultimately set by the underlying Hamiltonian, and the lattice
constant a, whose appearance in the continuum limit is a
consequence of the UV or IR mixing in systems with dipole
symmetry [90,91]. In position space, this becomes a general-
ized Fick’s law with a fractional Laplacian [92]:

∂tρ(x, t ) = −D
(−∂2

x

)η/2
ρ(x, t ), (25)

and we can find the subdiffusion of Eq. (20) at η = 4 or
ordinary diffusion at η = 2.

We can explicitly solve this differential equation in mo-
mentum space to find ρ(k, t ) = ρ(k, 0) exp[−Dkηt]. Choos-
ing an initial condition ρ(x, 0) ∼ δ(x) to model a localized
packet of spin, the density in position space takes the form

ρ(x, t ) ∼
∫

dk

2π
exp [ikx − Dtkη]

= 1

(Dt )1/η
Fη

( |x|
(Dt )1/η

)
,

(26)

where Fη is a scaling function given by

Fη(u) ∝
∫

dk

2π
exp [iku − |k|η]. (27)
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This scaling function yields a symmetric generalized distribu-
tion that reduces to a Gaussian for η = 2 or a Lorentzian for
η = 1. It follows from Eq. (26) and the assumption of infinite
temperature [43] that the equal-distance spin-spin correlator
scales as C(0, t ) ∼ t−1/η, indicating that the exponent of the
dominant term in Eq. (23) determines the dynamical exponent
for spin transport, β = 1/η.

Having described the theory for generic dipole-conserving
couplings, we now consider some specific cases. We begin
with the α1, α2 model of Eq. (2), for which the coupling takes
the form

J0,y,n = J0

|y|α1 |n|α2
. (28)

Before tackling this model in its full generality, it is instructive
to restrict our attention to the α2 → ∞ limit, which describes
long-range interactions between two dipoles of unit length. In
this case, only the n = 1 term of the second sum in Eq. (23)
survives, allowing us to expand the cosine and write the over-
all prefactor as

A(k) ∼ k2
∫ ∞

1
dy

1 − cos ky

|y|2α1
. (29)

This integral is convergent as long as α1 > 1/2 and can be
performed explicitly. However, we are mainly interested in the
long-wavelength (small-k) limit, which can be extracted by
rewriting the integration region as

∫ ∞
1 dy = ∫ ∞

0 dy − ∫ 1
0 dy.

Although extending the lower bound introduces spurious UV
divergences for α1 > 3/2, they cancel between the two terms
and can be safely ignored. In the bounded integral, we can
use the k → 0 limit to expand the cosine in the numerator and
extract a factor of k2, while the unbounded integral scales like
k2α1−1. Combining these two results gives

A(k) ∼ C1k2α1+1 + C2k4, (30)

where C1 = −�(1 − 2α1) sin(πα1), and C2 = 1/(2α1 − 3).
The scaling of the spin fluctuations, C(0, t ) ∼ t−β , is deter-
mined by which of these two terms dominates and depends on
α1. The first term dominates when α1 < 3/2, and the second
term dominates for α1 > 3/2. At α1 = 3/2, the two terms in-
dividually diverge, but their difference remains finite. In short,
the dynamical exponent is given by β−1 = min(2α1 + 1, 4).
Furthermore, each coefficient Ci is positive within its respec-
tive regime of dominance.

In the regime α1 < 1/2, we note that Eq. (29) actually
diverges. To cure this divergence we must replace the infinite
upper bound on the integral by the IR cutoff given by the
system size L. Then the integral simply yields an O(L1−2α1 )
constant that is canceled by the implicit Kac factor, leaving an
overall scaling of A(k) ∼ k2, which implies diffusion.

Collecting all of these results, we find the late-time behav-
ior of the correlator C(0, t ) ∼ t−β as α2 → ∞:

β (m=1)(α1, α2 = ∞) =
⎧⎨
⎩

1/4 α1 � 3/2
1/(2α1 + 1) 1/2 < α1 < 3/2
1/2 α1 � 1/2.

(31)
When α1 � 3/2, dipole subdiffusion prevails, meaning that
C(0, t ) decays with the same dynamical exponent as in the
short-range case. This is tied to the well-defined second

moment of the probability distribution for dipole hopping
when α1 � 3/2, resulting in a random walk of spins with
an additional center of mass constraint. In the intermediate
regime 1/2 < α1 < 3/2, the dynamical exponent is still sub-
diffusive, but smoothly interpolates between ordinary charge
diffusion with β = 1/2 and dipole subdiffusion with β = 1/4.
Remarkably, for even longer-ranged interactions with α �
1/2, the correlator exhibits a stable diffusive regime, which
persists even in the all-to-all connected case of α1 = 0.

The pattern of dynamical exponents in Eq. (31) is very
similar to the analogous relaxation for a long-range charge
conserving model [cf. Eq. (14)]. In fact, the scaling of the
master equation for dipole conservation is identical except for
an additional factor of k2, which serves to slow relaxation,
and hence extend the hydrodynamic picture for the dipole case
even in the presence of arbitrarily long-range couplings. The
similarity can be formalized by the reciprocal rule:

1

β (1)(α1, α2)
= 1

β (0)(α1)
+ 1

β (0)(α2)
, (32)

where for the moment we only consider the limit α2 → ∞
such that β (0)(α2) = 1/2 [from Eq. (14)] and β (0)(α1) =
1/(2α1 − 1). The derivation of this relation is discussed in
Appendix B but essentially is a direct consequence of the
fact that the inverse dynamical exponents are additive in
momentum space [see Eq. (24)]. Furthermore, the reciprocal
rule encapsulates the different types of spin-spin interactions
within a dipole-conserving gate like S+

i S−
i+1S−

j S+
j+1. In partic-

ular, the second term in Eq. (32) arises from the local spin
conservation inherent in independent spin-exchange processes
at sites (i, i + 1) and ( j, j + 1), and reflects an underlying
background of diffusive spin transport. However, these two
spin exchanges are not really independent. The first term in
Eq. (32) thus reflects the nonlocal constraint associated with
the coordinated dipole-hopping between sites i and j, which,
depending on the degree of nonlocal interactions, can further
slow the relaxation of spin.

Conversely, we can also view the spin relaxation in long-
range dipole-conserving systems as a speeding up of the
behavior seen for short-range systems. Although dipole con-
servation remains a valid global symmetry for any α1, only
locally conserved charges govern hydrodynamic transport.
For sufficiently long-ranged interactions, the dipole moment is
no longer effectively conserved locally. Instead, the exchange
of two distant dipoles of unit length locally looks like just a
spin-conserving process [see Fig. 1(a)], resulting in precisely
the diffusive dynamics that arise in cases with ordinary U(1)
symmetry. In the intermediate regime between the β = 1/2
and β = 1/4, the long-range exponent α1 therefore tunes the
“locality” of dipole conservation.

Now let us consider the general case where α1, α2 < ∞.
The momentum dependence of the prefactor A(k) in the
master equation is determined by the following integral [cf.
Eq. (23)]:

A(k) ∼
∫ ∞

1
dy

∫ y

1
dz

(1 − cos ky)(1 − cos kz)

|y|2α1 |z|2α2
, (33)

which converges as long as α1 > 1/2 and α1 + α2 > 1. We
can handle this calculation like the α2 → ∞ case by recasting
the integration into three different intervals: (i) an unbounded
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TABLE I. Reciprocal rule for the dynamical exponent of a
dipole-conserving system in terms of the dynamical exponents of a
charge conserving system. The rows are reciprocal sums of long-
range and short-range charge exponents. The smallest row sum gives
the inverse dipole exponent 1/β (1).

interval in both variables, (ii) an unbounded interval just in
y, and (iii) a bounded interval in both variables. In the case
of a bounded domain, the k → 0 limit allows us to expand
the relevant cosine in the integrand and extract a factor of k2,
while no such expansion is possible for an unbounded domain.
Once again, we treat the divergent cases at low αi separately
by re-inserting the IR cutoff and the Kac factor.

Collecting our results and extracting their k dependence,
we find that the overall prefactor in Eq. (22) is now given by

A(k) =
{

A1k2(α1+α2−1) + A2k2α1+1 + A3k4 α1 � 1/2
B1k2α2−1 + B2k2 α1 < 1/2,

(34)
where the coefficients Ai depend on α1 and α2 and have similar
expressions to those in Eq. (30). Given a choice of α1 and
α2, the dominant term in Eq. (34) for small k determines the
scaling of the spin fluctuations. It is instructive to rewrite the
kernel above as

A(k) =
{

A1kβ̃−1
1 +β̃−1

2 + A2kβ̃−1
1 +2 + A3k2+2 α1 � 1/2

B1kβ̃−1
2 + B2k2 α1 < 1/2,

(35)
where we define the long-range charge-conserving exponents
β̃−1

i = 2αi − 1. From Eq. (35), we can read off a generalized
version of the reciprocal rule in Eq. (32):

(
β (1))−1 =

{
min

(
β̃−1

1 + β̃−1
2 , β̃−1

1 + 2, 2 + 2
)

α1 � 1/2
min

(
β̃−1

2 , 2
)

α1 < 1/2.

(36)
As before, the dynamical exponent for a dipole-conserving
system decomposes into a reciprocal sum of two charge-
conserving exponents. Individually, these exponents can be
either β̃i or 1/2, respectively corresponding to long-range or
short-range charge transport inside a dipole-conserving gate.
Because α2 is effectively constrained by the range of dipole
separation set by α1, there is an important asymmetry between
the two exponents. Indeed, when α1 < 1/2 the spin relaxation
becomes independent of α1, and dipoles can hop arbitrarily
long distances. Formally, this corresponds to taking β̃−1

1 = 0
in the first line of Eq. (36).

We can reorganize Eq. (36) in Table I, which we later
generalize for the multipole-conserving case in Sec. IV B. The
rows of the table represent the possible reciprocal sums, where
the smallest row gives the dominant dynamical exponent,
and the columns correspond to the different interactions con-
tributing to those sums. Unlike the special case of α2 → ∞,

the decay of the correlator can be faster than diffusive, and
there are even regimes in which β (m) = 0. In such cases, the
prefactor A(k) is independent of k, and the charge relaxes ex-
ponentially fast, signaling a breakdown of the hydrodynamic
description. Interestingly, we see a hierarchical structure of
the hydrodynamics in the α1 < 1/2 region, where we set
β̃−1

1 = 0 and obtain

(β (1) )−1 = min (2α2 − 1, 2) = [β (0)(α2)]−1. (37)

In this regime, the interactions between dipoles are no longer
local, and the spin relaxes as if only U(1) charge is locally con-
served, i.e., the hydrodynamic description of dipole transport
is reduced to a hydrodynamic description of charge transport.

A phase diagram depicting the various dynamical expo-
nents of the spin-spin correlator for different values of α1 and
α2 is shown in Fig. 1(b). We first concentrate on the region
α2 � 3/2, where only terms independent of α2 dominate the
transport. This region of the phase diagram is qualitatively
identical to the previously studied case of α2 → ∞, with a
crossover between dipole subdiffusion and diffusion. On the
other hand, the spin dynamics are much richer for α2 < 3/2.
For instance, when lowering the long-range exponents along
the line α1 = α2 we obtain regimes of subdiffusion, diffusion,
superdiffusion [including ballistic transport, where C(x, t ) has
a Lorentzian spatial profile], and ultimately the breakdown of
hydrodynamics due to the exponential relaxation of spin. In
all these regions, the specific value of the dynamical exponent
can be extracted from the reciprocal rule in Eq. (36).

As shown in the second row of Fig. 1(a), tuning α1 and
α2 establishes a hierarchy of local conservation laws for gates
that globally conserve dipole moment. For α1, α2 → ∞, the
gates are entirely local, and the dipole moment is locally
conserved, giving rise to dipole subdiffusion. Tuning α1 to
finite values interpolates between local dipole conservation
and local charge conservation, and subsequently tuning α2

to finite values then interpolates between local charge con-
servation and no locally conserved charge at all. Throughout
this hierarchy, the dynamical exponent β (1)(α1, α2) increases
in accordance with the extent of the local conservation laws.
The same pattern can also be seen in Table I: when α1 < 1/2,
the first column of reciprocal exponents vanishes, and the spin
transport is described by a single long-range parameter α2 that
tunes between diffusion and exponential relaxation. This is
identical to the hydrodynamics of charge-conserving systems
[77], meaning that the dipole symmetry no longer affects local
spin transport.

Let us momentarily turn away from the α1, α2 model to
consider the experimentally motivated long-range coupling
arising from trapped ions in a tilted potential, Eq. (7). In this
case, the leading order rate in the master equation is given by

W0,y,n ∝ 1

|y|2(γ+1)|n|2(γ+1)|y − n|2γ
, (38)

where γ � 0 is the long-range exponent of the underlying
trapped-ion XY model [71]. Using the linearized master equa-
tion (18) we obtain

A(k) ∼
∫ ∞

1
dy

∫ y

1
dz

(1 − cos ky)(1 − cos kz)

|y|2γ+2|z|2γ+2|y − z|2γ
, (39)

195106-8



HIERARCHICAL HYDRODYNAMICS IN LONG-RANGE … PHYSICAL REVIEW B 108, 195106 (2023)

which converges for all allowed values of γ . Unlike the previ-
ous case, there are only two regimes as encoded in

A(k) = Ã1k6γ+2 + Ã2k4, (40)

where the first term becomes dominant for γ < 1/3. In prac-
tice, this implies that dipole subdiffusion is extraordinarily
stable to long-range Ising interactions between ions in a tilted
potential. For very long-range systems with γ < 1/3, the
dynamical exponent interpolates between dipole subdiffusion
and diffusion. Even in the case of all-to-all couplings in the
original Hamiltonian (γ = 0), the spin transport remains dif-
fusive, a reflection of the particular constraints arising from
the perturbative expansion of the original model.

B. Long-range hydrodynamics with quadrupole
and higher-multipole symmetry

Now let us consider systems where, in addition to the
charge and dipole moment, the quadrupole moment is also
conserved. We expect the transport of spin to slow down even
further compared with the charge and dipole cases. Here,
we briefly consider the master equation for the long-range,
quadrupole-conserving couplings of the α1, α2, α3 model de-
fined in Eqs. (8) and (9). We recall that the coupling is
represented by

Qi, j,n1,n2 = Q0

|i − j|α1 |n1|α2 |n2|α2
, (41)

where α1 sets the distance between quadrupoles, α2 sets the
distance between their constituent dipoles, and α3 sets the
distance between their respective constituent spins.

In the limit α2, α3 → ∞, the linearized master equation for
the spin density ρi takes the following form:

dρi(t )

dt
= −ρ3(1 − ρ )3

∑
i = j

|Qi, j |2
[
(4)

x ρ j − (4)
x ρi

]
, (42)

where (s)
x is the lattice discretization of the sth spa-

tial derivative. Repeating the same arguments used for the
dipole-conserving case [cf. Eq. (18)], we can extract the long-
wavelength scaling:

A(k) ∼ C1k2α1+3 + C2k6, (43)

where the only difference from Eq. (30) is an additional
overall factor of k2 coming from the higher derivatives in
the master equation. As α1 is lowered, the spin transport
now exhibits a crossover between subdiffusion with β = 1/6,
characteristic of short-range quadrupole-conserving systems,
and dipole subdiffusion with β = 1/4.

Extending this result to noninfinite α2, α3 is straightfor-
ward, one has only to expand the lattice derivatives above
and extend their range by n1 and n2. The result is an integral
expression similar to Eq. (33) that dictates the scaling of
the ensuing hydrodynamic differential equation. Once again,
the dynamical exponent can be essentially captured using the
reciprocal rule:

1

β (2)(α1, α2, α3)
= 1

β (0)(α1)
+ 1

β (0)(α2)
+ 1

β (0)(α3)
, (44)

where, like before, care must be taken to treat the interdepen-
dence of different exponents [see discussion below Eq. (48)
and Appendix B] in regimes where one of them dominates

the spin transport. The resulting phases of spin relaxation
are qualitatively similar to those shown for the dipole case
in Fig. 1(b), although with a greater variety of subdiffusive
exponents and crossovers. Furthermore, there is a parallel
hierarchy of local conservation laws tuned by the long-range
couplings, ranging from local conservation of all globally
conserved moments down to no local conservation of any of
the moments, as shown in the third row of Fig. 1(a).

For completeness, we also briefly sketch the linearized
master equation and dynamical exponents for mth-moment-
conserving systems in one dimension. We consider only
α1, . . . , αm+1 models with a hierarchical separation of spins
into their constituent m-pole hopping terms, like the dipole
and quadrupole couplings we have thus far examined. For
the case of ultralocal m poles undergoing long-range hopping
processes set by a single exponent α1, we find the linearized
master equation

dρi(t )

dt
= −[ρ(1 − ρ )]2m−1

×
∑
i = j

1

|i − j|2α1

[
(2m)

x ρ j − (2m)
x ρi

]
, (45)

which leads to

β (m)(α1, αi = ∞) =
⎧⎨
⎩

1/(2m + 2) α1 � 3/2
1/(2α1 + 2m − 1) 1/2 < α1 < 3/2
1/2m α1 � 1/2.

(46)
It is clear that for α1 � 3/2, we obtain “m-pole subdiffusion”
like the short-range case, while for α1 � 1/2 the system re-
laxes as if only the (m − 1)st moments are locally conserved,
yielding β = 1/[2(m − 1) + 2] = 1/2m.

To obtain the master equation for the full α1, . . . , αm+1

model, where the m poles can be longer, we need to expand
the finite differences in the sum to arbitrarily long range, i.e.,
making the replacement ρi+1, ρi+2, . . . → ρi+n1 , ρi+n1+n2 , . . .

in Eq. (45). Taking the Fourier transform and the continuum
limit, we find long-wavelength hydrodynamics governed by

∂tρ(k, t ) ∼ ρ(k, t )
m+1∑
r=0

Arkγr ,

γr = 2r +
∑

i�m−r+1

(2αi − 1), (47)

where Ar are coefficients that depend on the values of the {αi},
and Eq. (47) holds for αi � 1/2.

As we discuss in more detail in Appendix B, the dynamical
exponent for m-pole-conserving hydrodynamics is hierarchi-
cal and can be related to the dynamical exponents for charge
hydrodynamics by a generalized reciprocal rule. More pre-
cisely, we find

1

β (m)({αi})
= min

r∈[0,m+1]
γr, (48)

where the γr are given in Eq. (47) and are sums of a
set of inverse charge exponents 1/β (0)(αi ). These exponents
characterize the various spin-spin couplings within an m-pole-
conserving gate. Their values range from diffusive (1/β (0) =
2) to superdiffusive (1/β (0) = 2αi − 1) based on their associ-
ated long-range strength αi. If any of the γr are negative, then
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TABLE II. Reciprocal rule for the dynamical exponent of an
m-pole-conserving system in terms of the dynamical exponents
of a charge-conserving system, the latter of which we define as
β (m=0)(αi ) ≡ β̃i for simplicity. The rows are reciprocal sums of long-
range and short-range (β−1 = 2) charge relaxation exponents. The
inverse m-pole exponent 1/β (m) is given by the smallest row sum γr .

the hydrodynamic approximation breaks down and charge
relaxes exponentially.

Although the γr in Eq. (47) are only well defined for
αi � 1/2, we can extend our reciprocal rule to αi < 1/2 by
keeping track of which long-range exponents are dominant
over others (see Appendix B). For example, when α1 → ∞
our models become short-ranged, and no other exponents αi>1

affect the spin relaxation. Similarly, when αn → ∞ no subse-
quent exponents αi>n matter. When the dominant exponents
are small, i.e., α j�n < 1/2 for some integer n, then the recipro-
cal rule must be amended by the replacement (2α j − 1) → 0,
as we showed for the dipole-conserving case in Sec. IV A.
This adjustment reflects the fact that the relevant dynamical
exponent for charges, β (0)(α j�n), diverges in Eq. (14).

We summarize the full reciprocal rule in Table II. Much
like the dipole-conserving case (Table I), the reciprocal of
the m-pole dynamical exponent is given by the smallest row
sum in the table (since smaller γr will give a more dominant
exponent). We have discussed how the hierarchical struc-
ture of the hydrodynamics arises because we can decompose
m-pole-conserving dynamics into a combination of lower-
moment-conserving events, and ultimately to its constituent
charge-conserving events. Indeed, it is this phenomenology
that is precisely codified in the reciprocal rule and Table II. For
example, taking α1 < 1/2, and therefore an ultralong-range
coupling between m poles, β̃−1

1 = 0. In this parameter regime
there is no local m-pole-conserving dynamics, although we
can still have local (m − 1)-pole conservation (and so forth).
Since this parameter regime effectively erases the first column
of the table, the reciprocal rule then reduces to the rule for the
case of local (m − 1)-pole conservation,

(β (m) )−1 = min
r∈[0,m]

γr = (β (m−1))−1, α1 < 1/2. (49)

Recursively, we obtain the full hierarchical structure

(β (m) )−1 = min
r∈[0,m+1−r]

γr = (β (m−r) )−1, αi�r < 1/2. (50)

In this sense, the reciprocal rule not only gives the dynam-
ical exponent but also encodes the hierarchy of generalized
diffusion arising from the hierarchy of long-range couplings
between multipoles.

C. Beyond one dimension

We have thus far restricted our analyses to one spatial
dimension, but the master equation approach can be readily
generalized to an arbitrary number of dimensions. A generic
dipole-conserving process involves the exchange of two an-
tiparallel, equal-length dipoles. For example, the α1, α2 model
in d spatial dimensions becomes

H =
′∑

r1,r2,n∈Rd

J0

|r1 − r2|α1 |n|α2

(
S+

r1
S−

r1+nS−
r2

S+
r2+n + H.c.

)
,

(51)
where ri are the positions of two length-n dipoles that
are swapped in a dipole-hopping process, and the prime
over the sum indicates that we take |n| < |r1 − r2| to avoid
overcounting.

The linearized master equation for such dipole-exchange
processes can again be written in the form of Eq. (22) with
coefficient

A(k) ∼
∫

r>1
dd r

∫
1<r′<r

dd r′ (1 − eikr cos θ )(1 − eikr′ cos θ ′
)

r2α1 r′2α2
,

(52)
where k = |k|, and the integral converges if α1 > d/2 and
α1 + α2 > d . Expanding at small k to extract the long-
wavelength behavior, we find that the hydrodynamic equa-
tion scales like

∂t g(k) = [
A(d )

1 k2(α1+α2−d ) + A(d )
2 k2α1+2−d + A(d )

3 k4
]
g(k),

(53)
where the A(d )

i are αi-dependent coefficients that enter as
generalized diffusion constants. It is clear from the scaling
in (53) that the dipole subdiffusive term k4 becomes less
dominant for large d , implying that long-range couplings
have a more dramatic effect on dipole-conserving dynamics
in higher dimensions. Given a dominant term ∂tρ ∼ kηρ, we
can follow Eq. (26) to find the (isotropic) real-space profile of
the resulting spin fluctuations:

ρ(x, t ) ∼ 1

(Dt )d/η
F (d )

η

( |x|
(Dt )1/η

)
, (54)

where the scaling function F (d )
η is given by

F (d )
η (u) ∝

∫
dk kd−1e−kη

∫ π

0
dθ sind−2 (θ ) eiku cos θ . (55)

The full phase diagram in d dimensions is similar to the one-
dimensional case shown in Fig. 1(b), but with subdiffusion
giving way to diffusion and superdiffusion at higher values of
α1 and α2. For example, moving along the line α1 = α2 ≡ α,
we find two hydrodynamic phases:

β
(m=1)
(d ) (α) ∼

{
d/(4α − 2d ) d/2 < α < 1 + d/2
d/4 α � 1 + d/2.

(56)

Below α = d/2, hydrodynamics breaks down and spin relaxes
exponentially fast. We can also consider the limit α2 → ∞, in
which case the crossover between β = d/4 and faster subd-
iffusion is still at α1 = 1 + d/2, but for α � d/2 the system
remains stably diffusive due to the effective local spin con-
servation. The extension of these results to higher-multipole
conserving systems described by additional αi can be carried
out straightforwardly.
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It is clear from Eq. (56) that, in high enough dimensions,
even a weak long-range coupling is enough to destroy dipolar
subdiffusion. Intuitively, this is because lattices in higher di-
mensions have more spins available to participate in dipole
exchanges, weakening the impact of the kinematic dipole
constraint. Indeed, since lattice connectivity increases with
increasing dimensions, it is easier for a dipole to find a partner
to exchange with inside some fixed radius. From an alterna-
tive perspective, decreasing the long-range exponent α also
effectively augments lattice connectivity, and α heuristically
behaves as an inverse dimension in Eqs. (53)–(56). This rela-
tionship between the long-range exponent α and the spatial di-
mension d is a generic feature of long-ranged systems, which
in many cases exhibit the same localization behavior [93]
and phase transitions [72,94] as short-ranged systems in an
effective dimension deff ∼ d/α. As we have seen, the spin re-
laxation in our systems is yet another property where the long-
range strength α can play the role of an inverse dimension.

D. Numerical results

After having established the behavior of C(x, t ) and de-
termined its dynamical exponent β as a function of the
Hamiltonian parameters {αi} and the degree of the highest
conserved moment m, we confirm our results by perform-
ing stochastic dynamics using cellular automata, as described
in Sec. III. For concreteness, we fix S = 1 in the dipole-
conserving case (m = 1) and S = 3 in the quadrupole case
(m = 2).

We begin our numerical analysis with the α1, α2 model,
Eq. (2), by considering α2 → ∞. In this limit, dipoles of
length one can hop by a distance r with a probability ≈r−2α1 .
In Sec. IV A, we analytically established that for α1 > 3/2,
we find subdiffusive dynamics identical to the short-ranged
model with an exponent of β = 1/4; at long times we ex-
pect C(k, t ) ∼ e−Dk4t . For 1/2 < α1 < 3/2, the dynamics is
also subdiffusive, but with an α-dependent exponent β =
1/(2α1 + 1), while for smaller α1 a stable diffusive phase with
β = 1/2 is present.

We show numerical evidence to corroborate our analytic
results in Fig. 2. Explicitly, Fig. 2(a) shows C(0, t ) as a func-
tion of t for several orders of magnitude up to t ≈ 107 and
for several values of α1, with fixed system size L = 3072.
As expected, the relaxation of C(0, t ) is algebraic, faster for
smaller values of α1, and slower for larger values. We extrap-
olate β by performing a fit of C(0, t ) at lat times, as shown
in Fig. 2(b). In agreement with our theoretical prediction,
β ∼ 1/4 for α1 > 3/2. At α1 = 3/2, a logarithmic correction
accounts for the slight deviation from the expected value [77].
For intermediate values, the numerically extrapolated slopes
follow the analytical prediction β ≈ 1/(2α1 + 1) [see dashed
line in Fig. 2(b)].

Next, we show the behavior of C(0, t ) for small α1 in
Figs. 2(c) and 2(d). Here the dynamics is universal for α1 <

1/2, and C(0, t ) ∼ t−1/2 [see Fig. 2(c)]. Notably, C(0, t ) ∼
t−1/2 also occurs for systems that conserve locally charge
or magnetization. Such a connection is expected, since for
small values of α1, the dipoles that are created and removed
by the dipole hopping term tend to be very far from each
other. Hence, only the magnetization is conserved over small

(a) (b)

(c) (d)

FIG. 2. (a) Return probability C(x = 0, t ) for the dipole-
conserving case with α2 → ∞ for several values of α1. (b) Dy-
namical exponent β, where C(0, t ) ∼ t−β , as a function of α1. For
α1 > 3/2, we have β ∼ 1/4 as in short-range models, and the dashed
line represents the analytical prediction. (c) Behavior of the return
probability for small values of α1. The black dashed line represents
diffusive relaxation and serves as a guide for the eye. (d) C(0, t ) for
several system sizes L with α1 = 0.35. The time is rescaled by the
Kac factor.

length scales [see the second row of the table in Fig. 1(a)].
It is important to point out that, in this regime, the timescale
depends on the system size because the energy is superex-
tensive. To obtain L-independent dynamics, we renormalize
the time in Fig. 2(d) by the relevant Kac factor, Nα1,α2 =
(
∑L

n1=1 n1
−2α1

∑n1
n2=1 n−2α2

2 )1/2, which in the limit α2 → ∞ is
of order L(1−2α1 )/2.

Returning to the general case, we also test our results
regarding the behavior of β in Eq. (34) for α2 < ∞. In par-
ticular, in Figs. 3(a) and 3(b) we show the results of tuning

(a) (b)

FIG. 3. (a) C(0, t ) for the dipole-conserving case with α1 = 1
for several values of α2. (b) The dynamical exponent β extracted
from C(0, t ) in panel (a). For α2 > 3/2, we have β ≈ 1/3 (horizontal
black dashed line), while the blue dashed line represents the analyti-
cal prediction for α2 < 3/2.
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FIG. 4. The full spatial profile C(x, t ) for several times. Each
panel represents a different α2, with fixed α1 = 1 and m = 1. The
axes have been rescaled to collapse the curves. The black dashed
lines in panels (a) and (b) are Lorentzian (α2 = 1/2) and Gaussian
(α2 = 1) profiles, respectively.

α2 while keeping α1 = 1 fixed. We find that the numerics
confirm our prediction based on the reciprocal rule 1/β =
1/β (0)(α1) + 1/β (0)(α2) = 1/2α2 for α2 < 3/2 [see dashed
line in Fig. 3(b)]. Thus, there are different regimes: subdif-
fusion for α2 > 1, superdiffusion for α2 < 1 (Lévy flights),
and ballistic behavior at α2 = 1/2. For larger α2 > 3/2, the
relaxation is subdiffusive with β = 1/3, highlighted by the
dashed line in Fig. 3(b).

For the sake of completeness, we analyze the full shape
of C(x, t ) for two interesting cases, (α1, α2) = (1, 1/2) and
(1,1), in Figs. 4(a) and 4(b), respectively. In Figs. 4(a) and
4(b), we show C(x, t ) as a function of x for several chosen
target times. Crucially, we collapse our observables by rescal-
ing both the x axis and the magnitude of C(x, t ) by t−β . In
Sec. IV A, we showed that rescaled two-point correlator func-
tion takes a universal shape given by Eq. (27). In particular,
for α2 = 1/2, we are in the Lévy flight regime, the transport is
ballistic, and F1(y) in Eq. (27) takes the form of a Lorentzian.
In comparison, for α2 = 1 the system is diffusive, and the
universal function is a Gaussian (see the black dashed lines
in Fig. 4).

Having confirmed our conjectures on the behavior of β for
the dipole case, we now turn to the quadrupole case. The con-
servation of quadrupole moment, assuming that both dipole
moment and charge conservation are also conserved, imposes
even stronger constraints and leads to slower dynamics than
the dipole case. For example, short-range models are char-
acterized by anomalous diffusion with β = 1/6. Such slow
dynamics require many time steps in numerical simulations to
extract the dynamical exponent β, which negatively impacts
the numerical performance. To this end, we focus on the case
S = 2 to increase the system’s mobility level, and we consider
the limiting case α2, α3 → ∞ in Eq. (9). In this limit, compact
(length-three) quadrupoles at positions i and j experience al-
gebraically decaying interactions 1/|i − j|α1 . Analytically, we
previously found that (i) for α1 > 3/2 the dynamical exponent
is β = 1/6, (ii) in the regime 1/2 < α1 < 3/2 the exponent
grows as β = 1/(2α1 + 2m − 1) = 1/(2α1 + 3), and (iii) for
α1 < 1/2 the dynamics is universal with β ∼ 1/4 and is dom-
inated by the locally conserved dipole moment [see the third
row of the table in Fig. 1(a)]. In Fig. 5(a), we show C(x = 0, t )
for several α1 at a fixed system size L = 3072. The dark blue

(a) (b)

FIG. 5. (a) C(0, t ) for the quadrupole-conserving case with
α2 → ∞ and several values of α1. The dark blue and black guidelines
correspond to the limiting cases: dipole subdiffusion, ≈t−1/4, for
small α1, and quadrupole subdiffusive, ≈t−1/6, for large α1. The inset
illustrates C(0, t ) ∼ t−1/4 for small α1 < 1/2. (b) We parametrize
the time to show C(0, t ) ∼ t−β with β given by the theoretical
prediction.

and black guide lines in Fig. 5(a) indicate the two limiting
cases, C(0, t ) ∼ t−1/4 and ≈t−1/6, for small and large values
of α1, respectively. The inset in Fig. 5(a) provides evidence
that the dynamics is universal for α1 < 1/2 where C(0, t ) ∼
t−1/4, as discussed. To support our analytical predictions and
to avoid fitting, we plot C−1(0, t ) as a function of tβ . As one
can observe in Fig. 5(b), C−1(0, t ) is, to good approximation
(after early time transient behavior), directly proportional to
tβ , providing further evidence in support of our predictions in
Sec. IV B.

Now, we turn to the question of how the dynamical ex-
ponent changes in dimensions higher than one (d � 2). In
Sec. IV C, we derived an expression for β in arbitrary dimen-
sion d for the dipole-conserving case. To test our prediction,
we consider the two-dimensional case, and take the interaction
between spins to algebraically decay with exponent α1 = α2

in Eq. (56). We fix S = 1 and consider the most generic gates
that act on four spins and conserve P(1), see Fig. 6(a). In
Fig. 6(b), we show C(0, t ) as a function of time for a few
values of α1, calculated for a two-dimensional square lattice

(a) (b)

FIG. 6. (a) Schematic illustration of two-dimensional dipole-
conserving gates applied within a single time step, where the
probability to apply the gate decays algebraically with dipole
separation. (b) Two-point correlator C(0, t ) calculated with two-
dimensional cellular automata gates for α1 = α2. The blue line
represents dipole subdiffusion with β = d/4, while the black lines
indicate faster relaxation with β in Eq. (56) (upper and lower lines
correspond to α = 1.75 and α = 1.5, respectively).
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of size 1024 × 1024. As expected, we observe an algebraic
relaxation C(0, t ) ∼ t−β and the exponents β(α) are in rel-
atively in good agreement with our theoretical prediction in
Eq. (56) [see black and blue lines in Fig. 6(b)].

E. Away from zero magnetization

So far, we have always computed the correlator by aver-
aging over random initial configurations, effectively probing
the zero-charge sector P(m) = 0, i.e., the largest sector in the
Hilbert space. In this section, we extend our results beyond
the zero charge sector for a representative example. We fo-
cus on the dipole-conserving case with S = 1 and α2 → ∞
in Eq. (2). For simplicity, we define the variable ni = Sz

i +
1 ∈ {0, 1, 2}. In terms of this new variable, the system is
equivalent to particles hopping on a lattice with the con-
straint that no more than two particles can occupy a single
site. As demonstrated in Refs. [44,47], dipole-conserving sys-
tems with short-range (k-local) interactions exhibit a freezing
transition driven by particle density that separates a weakly
fragmented Hilbert space phase from a strongly fragmented
Hilbert space phase. Moving away from half filling, ρ =
〈ni〉/2 = 1/2, frozen bubbles of high or low charge density
emerge and prevent particles from moving through the system.
In the spin language, these bubbles are contiguous regions
of spins that are “stuck” because of dipole conservation.
Heuristically, the freezing transition occurs when the typical
length of these frozen bubbles, �frozen, exceeds the range of
interactions. Because our interactions have power-law decay,
there is always the possibility (perhaps with low probability)
that a spin inside a frozen bubble can flip by coupling to a very
distant spin. Eventually, this will always happen, but there can
be a long timescale before the freezing transition is washed
out by the long-range interactions. Such emergent timescales
are similar to prethermal regimes, and slow, nearly frozen dy-
namics are observed for a long time before relaxation begins,
i.e., when C(0, t ) ∼ t−β .

To understand how this prethermal timescale arises, it is
useful to consider the limiting case in which the particle
density is almost maximal (minimal), and frozen bubbles are
regions of contiguous sites with the same spin. In this limit,
ρ → 1 (ρ → 0), and the mean length of a frozen bubble
is �frozen ∼ 1/[ρ(1 − ρ )]. We note that W (�frozen) ∼ �

−2α1
frozen is

the probability of moving active particles across a frozen
region of length �frozen set by Fermi’s golden rule, since �frozen

is the shortest distance over which a dipole exchange pro-
cess can occur. Hence, for timescales given by t�(α1, ρ ) ∼
W −1(�frozen), we expect a prethermal regime characterized
by slow propagation. However, at asymptotically large times,
t � t�, spins can undergo multiple long-range jumps across
frozen regions, and we anticipate that the dynamical exponent
β becomes independent of the particle density, which only
enters as a prefactor in the diffusive constant, much like the
usual Einstein relation for Brownian motion. Indeed, from
our master equation analysis in Eq. (18), we can deduce
that C(0, t ) ∼ [ρ(1 − ρ)/t]β . To test the emergence of the
timescale t�, we perform stochastic automaton simulations for
several values of the average particle density ρ, as shown in
Fig. 7. To analyze the behavior of C(0, t ), we first rescale it
by its asymptotic behavior [ρ(1 − ρ )/t]β , so that at long times

FIG. 7. The rescaled two-point correlator C(0, t ) for several val-
ues of the density ρ = (〈Sz

i 〉 + S)/2, taking overall spin S = 1, for
(a) α1 = 1 and (b) α1 = 2. The time has been rescaled by t � ∼
1/[ρ(1 − ρ)]2α1 , and C(0, t ) has been rescaled by its long-time be-
havior ∼[ρ(1 − ρ )/t]β (which is asymptotically exact in the limit of
high or low density). The insets in panels (a) and (b) depict C(0, t )tβ

without rescaling time by t �.

the curves approach a plateau. We identify the timescale t� as
the point where C(0, t�)/[ρ(1 − ρ )/t�]β reaches its maximum
value, as shown in Fig. 7 and its insets. After that, we rescale
the time by our prediction for t� ∼ �

2α1
frozen to align the maxima.

In agreement with our heuristic scaling for t�, in Fig. 7 we
see a good collapse of the curves, and especially an alignment
of their maxima. Thus, for t < t�, C(0, t ) decays slower than
t−β , while for larger times, we start to approach relaxation
with C(0, t ) ∼ t−β . Importantly, this timescale diverges in the
limit of trivially frozen dynamics ρ → 0, 1. Therefore, for
any fixed α1, we can tune ρ to obtain parametrically large
timescales in which the dynamics are almost frozen.

F. Numerical results for quantum dipole-conserving model

After investigating the dynamics of long-range systems
with conserved higher moments through classical cellu-
lar automaton simulations, we now focus on examining
the robustness of our findings in the truly quantum sce-
nario. Investigating the complete quantum evolution presents
significant obstacles because the Hilbert space grows expo-
nentially as the system size increases. Consequently, we are
restricted to relatively small system sizes and timescales,
making it challenging to access the anticipated hydrodynamic
regime [23].

To reduce possible finite-size effects and increase the maxi-
mal extent L of our one-dimensional system, we focus on only
the dipole-conserving case (m = 1), spin-1/2, and α2 → ∞
in Eq. (2). Furthermore, to increase the level of ergodicity for
finite system sizes, we slightly modify our Hamiltonian

HQ = 1

Nα1

∑
i, j>i+1

(
γi, j

S+
i S−

i+1S−
j S+

j+1

|i − j − 1|α1
+ H.c.

)
+

∑
i

hiS
z
i ,

(57)
where γi, j = γ j,i are random-sign random variables, and hi ∈
[−1, 1] are small random fields. We use open boundary con-
ditions and take the Kac factor Nα1 = (

∑
n1

n−2α1
1 )1/2, which,

as mentioned above, makes the energy extensive in system
size instead of superextensive. The Hamiltonian conserves
both charges (magnetization) and dipole moment, and we
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(a) (b)

FIG. 8. (a) Level spacing probability distribution for energies
located in the middle of the spectrum, E ≈ 0, of Eq. (57). The
black dashed line represents the Wigner surmise of chaotic systems,
while the inset in (a) illustrates the many-body density of states
ρ(E ). (b) Half-partition entanglement entropy SL/2 as a function of
energy for L = 16 and 20, for one random configuration of HQ. The
dashed lines indicate the mean value of SL/2 for random states having
P(0) = P(1) = 0.

focus our analysis on the largest Hilbert space sector given
by

∑
j Sz

j = ∑
j jSz

j = 0.
For completeness, we briefly demonstrate the ergodicity

of our Hamiltonian for our system sizes. We first exam-
ine the probability distribution of nearby energy levels as
a probe. In chaotic systems, adjacent energy levels exhibit
level repulsion. For our model at α1 = 0, we find that the
probability distribution of s = (En+1 − En)/〈En+1 − En〉 as-
sumes the form of the Wigner surmise: p(s) = πs

2 e−πs2/4, as
shown in Fig. 8(a) for energy levels in the middle of the
spectrum of Eq. (57). Levels obeying this distribution exhibit
level repulsion. Furthermore, we investigate the behavior of
the half-system von Neumann entanglement entropy, SL/2 =
−Tr[ρL/2 log ρL/2], where ρL/2 is the reduced density matrix
for an eigenstate of HQ. As shown in Fig. 8(b), SL/2 exhibits
the typical rainbow shape as a function of energy E charac-
teristic of chaotic quantum systems. Furthermore, at infinite
temperature (in the middle of the spectrum with E ≈ 0),
SL/2 approaches its ergodic values, shown as horizontal black
dashed lines in Figs. 8(b). To summarize, we can assume that
for the system sizes we consider, HQ in Eq. (57) shows a good
degree of chaoticity.

Now, we turn to the out-of-equilibrium dynamics of HQ

and inspect the two-point correlator C(0, t ). For the quantum
case, the average 〈· · · 〉 in Eq. (13) should be interpreted as
the normalized trace over the full Hilbert space. We per-
form the quantum time evolution using Chebyshev integration
techniques and perform the Hilbert space trace stochastically
using the concept of quantum typicality [95]. The results
for C(0, t ) are shown in Fig. 9. Despite being limited to a
maximum system size of L = 24, we observe an algebraic
relaxation C(0, t ) ∼ t−β , where the dynamical exponent β, to
some approximation, respects the bounds β ≈ 1/2 for small
values α1 � 1/2, and tends to β ≈ 1/4 for larger ones.

V. DISCUSSION

In this work, we examined the interplay between mul-
tipole conservation and long-range, algebraically decaying
couplings. Our primary interest was the long-time dynam-
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FIG. 9. (a) Quantum calculation of C(0, t ) as a function of time
for L = 24 and for several values of α1. The straight blue and orange
lines correspond to the two limiting cases: diffusive, ≈t−1/2 (blue),
and dipole subdiffusive, ≈t−1/4 (orange), respectively. (b) C(0, t ) for
fixed α1 and several system sizes L. The straight blue line corre-
sponds to diffusive behavior.

ics, which are believed to be dominated by the underlying
conserved charge moments, giving rise to an emergent hy-
drodynamic description. Using this approach, we described
a hierarchical sequence of models that globally conserve up
to m-multipole moments but locally perhaps conserve only
a subset of them. Within the hydrodynamic framework, the
nature of the long-time transport reflects conservation laws on
a local scale, so tuning the range of the interactions generates
a variety of subdiffusive, diffusive, and superdiffusive regimes
of spin or charge relaxation.

Despite the breadth of transport phenomena observed for
different choices of the algebraically decaying interactions, in
all cases, there is a stable region of subdiffusion that exactly
matches the dynamics of short-range models that conserve
the mth moment, i.e., C(0, t ) ∼ t−1/(2m+2). In practice, this
implies that experimental efforts to detect signatures of frac-
tonic behavior through anomalously slow thermalization can
succeed even when the underlying platforms, like cold atoms
and trapped ions, exhibit power-law (Coulomb) interactions.
In fact, we showed that the spin relaxation of a long-range XY
model in a strong tilted potential is captured by a long-range
dipole-conserving model that exhibits quite stable subdiffu-
sion, with a dynamical exponent of β = 1/4 that persists up
to inverse cube root interactions V (r) ∼ r−1/3. Furthermore,
ordinary diffusion in such systems arises only in the all-to-all
connected limit.

Fundamentally, subdiffusion is stable because when α �
3/2 the probability distribution for dipole exchange has a
finite second moment, and therefore the individual charges
undergo an ordinary random walk (with a dipole constraint)
like in the short-range case. In passing, we note that this
also implies that subdiffusion with β = 1/4 is even more
stable than suggested by the heuristic scaling argument in
Ref. [32], since the long-range hopping probability mimics a
short-ranged one as soon as its second moment is finite.3

3The authors of Ref. [32] argue that when α > d/2 + 2, long-range
interactions do not destroy dipole subdiffusion, but (depending on
which α1, α2 we consider) the true bound for subdiffusion can be
much lower in αi [see Fig. 1(b)].

195106-14



HIERARCHICAL HYDRODYNAMICS IN LONG-RANGE … PHYSICAL REVIEW B 108, 195106 (2023)

Throughout this work, we have considered long-time, in-
finite temperature regimes where the quantum dynamics are
well approximated by classical hydrodynamics. It would be
interesting to understand how quantum measures of com-
plexity, like entanglement, propagate in dipole-conserving
systems. In a similar vein, it would also be useful to compare
the spread of different types of multipole operators in the
presence of long-range interactions. Even within the classical
hydrodynamic picture we have not treated nonlinear regimes
of the master equation that describe stronger fluctuations in
spin density. In the short-range case, these effects are de-
scribed by a nonlinear subdiffusive equation for the density of
the form ∂tρ ∼ −∂4

x ρ − (∂2
x ρ)2, and the additional term can

give rise to a range of localization and scaling phenomena [96]
that would be interesting to tune with a long-range exponent.

Additionally, our work has focused on dynamics at infinite
temperature. Still, it may also be extended to finite tempera-
ture, where a new energy-time scale emerges that can make
relaxation even slower. On a different front, long-range inter-
actions may also significantly alter the equilibrium phases of
multipole-conserving systems. In particular, because tuning
the long-range exponents α can change the effective spatial
dimension, a richer pattern of spontaneous dipole symmetry
breaking [38,97–101] may be possible in low-dimensional
experimental platforms with algebraically decaying interac-
tions. Lastly, we point out that studying long-range systems
with subsystem symmetries is an exciting direction for future
research.

Note added. Recently, we became aware of independent
works by A. Morningstar, N. O’Dea, and J. Richter [102] and
O. Ogunnaike, J. Feldmeier, and J.Y. Lee [103] that also con-
sider long-range interactions in dipole-conserving systems.
Both works appeared in the same arXiv posting, and we thank
the authors for coordinating submission.
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APPENDIX A: EFFECTIVE HAMILTONIAN FOR A
LONG-RANGE XY MODEL IN A TILTED POTENTIAL

This Appendix will present the effective Hamiltonian for a
long-range XY model in a tilted potential. Our starting point
is the one-dimensional (1D) Hamiltonian

H =
∑

j,k

ti, jS
+
i S−

j + H.c. +
∑

k

kFSz
j, (A1)

where the ti, j terms are long-range XY couplings between the
spins at sites i and j, and F sets the strength of the tilted po-
tential. In the limit where ti, j → 0, the spectrum of the system
divides into sectors with different dipole moments. For finite

ti, j � F , we can construct the effective dipole-conserving
Hamiltonian that acts on of these sectors.

Using a Schrieffer-Wolff (SW) transformation, the effec-
tive Hamiltonian up to second order in ti, j/F is

Heff =
∑
i< j

1

4F
Sz

i

(ti, j )2

i − j
+

∑
i< j<k

1

2F 2
Sz

i Sz
j

ti, jt j,ktk,i

(i − k)( j − k)

+
∑

i< j<k<l

∑
n

Ji, j,k,l S
+
i S−

j S−
k S+

l + H.c., (A2)

where

Ji, j,k,l = − 1

4F 2

(
ti, jti,kti,l

(i − j)(i − k)
+ ti,l t j,l tk,l

(l − j)(l − k)

− ti, jt j,kt j,l

(i − j)( j − l )
− ti,kt j,ktk,l

(i − k)(k − l )

)
. (A3)

If we take the XY coupling t j,k to have the power-law form
t j,k = t01/| j − k|γ , then Ji, j,k,l takes the form given in Eq. (7)
with J0 = −t3

0 /(4F 2).

APPENDIX B: DERIVATION OF THE RECIPROCAL RULE
FOR THE MULTIPOLE RELAXATION EXPONENT

Using the same linearized master-equation approach as for
the dipole case (cf. Sec. IV A), the long-time decay of the
charge density in an m-pole-conserving system obeys

∂tρ(k, t ) = A(k)ρ(k, t ). (B1)

Here the prefactor A(k) in the long-wavelength limit deter-
mines the dynamical exponent β (m) and is given by

A(k) ∼
∫ ∞

1
dx1

1 − cos kx1

x2α1
1

m∏
i=1

∫ xi

1
dxi+1

1 − cos kxi+1

x2αi+1
2

.

(B2)
The nested “Russian doll” form of the integration re-

gion, which formally resembles the time-ordered expression
for the unitary time evolution operator in the Dyson series,
makes the convergence of the rightmost integrals depend on
that of the previous ones. In other words, the dynamics are
dominated by the exponents αi with the lowest index i.

First, we consider the regime αi � 1/2 so that all the inte-
grals converge. The dominant term will give the dynamical
exponent in the long-wavelength limit of Eq. (B2). To this
end, each integral can be split into a noncompact domain and
a compact domain,

∫ ∞
1 dxi = ∫ ∞

0 dxi − ∫ 1
0 dxi. Along any

compact domain, we can expand the cosine in the k → 0 limit
and the resulting integral scales like k2. We cannot expand the
cosine for noncompact domains; instead, we extract an overall
factor of k2αi−1 for each integration variable xi by rescaling.

Performing this expansion from left to right in the inte-
grals, we get what may appear to be 2m+1 different terms.
However, if an integral over xi has a compact domain, all
the following integrals over x j>i also have a compact domain
since the leftmost integration variable bounds them. Because
of this asymmetry, we find the following pattern of overall
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scaling:

A(k) ∼ (k2)m+1 + k2α1−1[(k2)m + k2α2−1[(k2)m−1 + · · · ]],
(B3)

where we have dropped all prefactors independent of k for
simplicity. We can rewrite this in more compact notation as

A(k) ∼
m+1∑
r=0

Aik
2r+∑

i�m+1−r (2αi−1), (B4)

reproducing exactly the (m + 2) possible exponents of the
reciprocal rule in Eq. (48). The dominant term for small k is
the one with the smallest exponent, which determines the dy-
namical exponent for relaxation β (m). If the dominant term is
kη with η � 0, then the hydrodynamic approximation breaks
down, and the equation for ρ(k, t ) gives exponential (or faster)
decay of the charge.

Now, if αi�n < 1/2 for some n, then all n of the leftmost
(dominant) integrals are IR divergent, and we must replace
the infinite upper integration limit with the finite system size

L. Then, these integrals yield an overall factor of Lν (where
ν is some positive power) that is canceled by the implicit
Kac factor. The remaining (m + 1) − n integrals to the right
are convergent even if we take the upper integration limit to
infinity;

∫ xn

1 dxn+1 · · · → ∫ L
1 dxn+1 · · · → ∫ ∞

1 dxn+1 · · · .
The problem, therefore, reduces to that of finding the

scaling for a [(m + 1) − n]-pole-conserving system, which is
exactly like setting all the previous β̃−1

i�n = 0 in the reciprocal
rule (see Table II) and ignoring their contribution to the overall
dynamical exponent. This can also be motivated by a physical
point of view because when the coupling between m poles,
(m − 1) poles, etc., becomes ultralong-range, then it is as if
these moments are no longer locally conserved. The local
hydrodynamics thus effectively “forgets” about the higher
multipole moments and reduces to the [(m + 1) − n]-pole-
conserving case. For more complicated regimes where only
a nonsequential subset of the {αi} are less than 1/2, the dy-
namical exponents can be found by analyzing the divergences
of (B2) directly, and the reciprocal rule no longer exhibits an
obvious hierarchy of moments.
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