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Trotter error with commutator scaling for the Fermi-Hubbard model
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We derive higher-order error bounds with small prefactors for a general Trotter product formula, generalizing
a result given by Childs et al. [Phys. Rev. X 11, 011020 (2021)]. We then apply these bounds to the real-time
quantum time evolution operator governed by the Fermi-Hubbard Hamiltonian on one-dimensional and two-
dimensional square and triangular lattices. The main technical contribution of our work is a symbolic evaluation
of nested commutators between hopping and interaction terms for a given lattice geometry. The calculations
result in explicit expressions for the error bounds in terms of the time step and Hamiltonian coefficients.
Comparison with the actual Trotter error (evaluated on a small system) indicates that the bounds still overestimate
the error.
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I. INTRODUCTION

This work is concerned with quantum simulation, i.e., ap-
proximating the time evolution operator e−itH of a quantum
system governed by a time-independent Hamiltonian H . Split-
ting methods (also called product formulas) are a versatile
and natural approach for this purpose, and can in principle be
directly mapped to a quantum computer based on their circuit
representation [1–8]. Along with a rich mathematical theory,
there are many studies on how to bound the simulation error
when using product formulas [2,9–20]. In particular, Childs
et al. derived improved error bounds in a recent paper [14].
Their work applies to Hamiltonians H = ∑�

γ=1 Hγ consisting
of � summands, where the time evolution governed by each
individual summand can be evaluated exactly. Using the same
notation as Ref. [14], a general (Trotter) product formula can
be written as

Sp(t ) =
ϒ∏

v=1

�∏
γ=1

e−itav,γ Hπv (γ ) (1)

with ϒ being the number of stages, real coefficients av,γ , and
πv (γ ) being the ordering of summands in a stage. p denotes
the order of the product formula, i.e.,

Sp(t ) = e−itH + O(t p+1). (2)

Childs et al. derive the following bound:

‖Sp(t ) − e−itH‖ = O(t p+1α̃comm), (3)

where

α̃comm =
�∑

γ1,...,γp+1=1

‖[Hγ1 , · · · [Hγp, Hγp+1 ] · · · ]‖, (4)
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where ‖·‖ denotes the spectral norm and [·, ·] denotes the
commutator. The authors also prove even tighter bounds for
special cases, denoted error bounds with small prefactors.

In this paper, we generalize these results of Childs et al.
[14] by deriving general error bounds with small prefac-
tors (see Theorem 1 below), and evaluate commutators and
bounds specifically for the Fermi-Hubbard model, represent-
ing a widely studied and fundamental model class. Unlike
conceptually similar studies [15,16], we consider various lat-
tice geometries.

Denoting the spin by σ ∈ {↑,↓} and the underlying lattice
by �, the Fermi-Hubbard Hamiltonian is defined as

HFH = v
∑

〈i, j〉,σ
(a†

iσ a jσ + a†
jσ aiσ ) + u

∑
i∈�

ni↑ni↓, (5)

where i and j refer to neighboring lattice sites in the first
sum, v ∈ R is the kinetic hopping coefficient, and u > 0 is the
on-site interaction strength. a†

iσ , aiσ , and niσ are the fermionic
creation, annihilation, and number operators, respectively, act-
ing on site i ∈ � and spin σ ∈ {↑,↓}.

II. GENERAL HIGHER-ORDER ERROR BOUNDS
WITH SMALL PREFACTORS

For notational simplicity, we express Eq. (1) as

Sp(t ) = e−itAK · · · e−itA1 =
K∏

k=1

e−itAk , (6)

where we have already merged compatible consecutive expo-
nentials: e−ita1Hγ e−ita2Hγ = e−it (a1+a2 )Hγ .

The multiplication order is relevant for noncommuting op-
erators, and we fix the notation and convention:

n∏
i=k

Ai = AnAn−1 · · · Ak (7)
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and
k∐

i=n

Ai = Ak · · · An−1An. (8)

The following theorem generalizes Appendix M of
Ref. [14], with adAB = [A, B] denoting the adjoint action and
adq

A denoting its q-fold application.
Theorem 1. (Higher-order error bounds with small pref-

actors). Let Sp be a product formula of order p in the
representation (6), and let s ∈ {1, . . . , K}. Then

‖Sp(t ) − e−itH‖

� t p+1

(p + 1)!

⎛
⎜⎜⎝

s∑
j=2

∑
q j+···+qs=p

q j �=0

(
p

q j, . . . , qs

)∥∥adqs
As

· · · adq j

A j
B j

∥∥

+
K∑

j=s+1

∑
qs+1+···
+q j=p
q j �=0

(
p

qs+1, . . . , q j

)∥∥adqs+1
As+1

· · · adq j

A j
B j

∥∥
⎞
⎟⎟⎟⎟⎟⎠

(9)

with

Bj =
j−1∑
	=1

A	, j = 2, . . . , K. (10)

Appendix A contains a proof of the theorem.
As demonstration, we reproduce the results in Appendix L

of Ref. [14] using Eq. (9) applied to the Strang (second-order
Suzuki) splitting rule

S2(t ) = e−itH1/2e−itH2 e−itH1/2, (11)

with H1 and H2 Hermitian matrices and the overall Hamilto-
nian H = H1 + H2. In the notation of Eq. (6), we have thus
K = 3, A1 = 1

2 H1, A2 = H2, A3 = 1
2 H1, B2 = 1

2 H1, and B3 =
1
2 H1 + H2. We set s = 2. Then the multinomial coefficients in
(9) evaluate to 1, and

‖S2(t ) − e−itH‖

� t3

3!

(∥∥ad2
A2

B2

∥∥ + ∥∥ad2
A3

B3

∥∥)
= t3

6

(
1

2
‖[H2, [H2, H1]]‖ + 1

4
‖[H1, [H1, H2]]‖

)

= t3

12
‖[H2, [H2, H1]]‖ + t3

24
‖[H1, [H1, H2]]‖, (12)

in agreement with Eq. (L5) of Ref. [14].
Evaluating Eq. (9) for the fourth-order Suzuki formula and

two Hamiltonian terms likewise reproduces the coefficients in
Eq. (M13) of Ref. [14], as expected.

We have empirically found that a centered s = 	K
2 
 gen-

erally leads to the tightest bounds (smallest coefficients). For
example, setting s = 1 instead of 2 in the above Strang split-
ting demonstration results in the prefactor t3

4 instead of t3

12
in Eq. (12). Nevertheless, there are instances where some
coefficients are slightly larger and others are slightly smaller,
e.g., for the fourth-order Suzuki formula and two Hamiltonian

terms (K = 11), choosing s = 6 versus s = 7. In these in-
stances, the best choice for s then depends on the actual norms
of the nested commutators. We will set s = 	K

2 
 throughout
for the numerical calculations in Sec. V.

It turns out that the commutator bound in Theorem 1 can
be further slightly improved for the special case of the Strang
splitting method and more than two Hamiltonian terms; see
Proposition 10 of Ref. [14]. To be self-contained, we cite the
result here.

Proposition 1. (Tight error bound for the second-order
Suzuki formula, [14]). Let H = ∑�

γ=1 Hγ be a Hamilto-
nian consisting of � summands and t � 0. Let S2(t ) =∐1

γ=� e−itHγ /2 ∏�
γ=1 e−itHγ /2 be the second-order Suzuki for-

mula. Then, the additive Trotter error can be bounded as

‖S2(t ) − e−itH‖

� t3

12

�∑
γ1=1

∥∥∥∥∥
[

�∑
γ3=γ1+1

Hγ3 ,

(
�∑

γ2=γ1+1

Hγ2 , Hγ1

)]∥∥∥∥∥
+ t3

24

�∑
γ1=1

∥∥∥∥∥
[

Hγ1 ,

(
�∑

γ2=γ1+1

Hγ2 , Hγ1

)]∥∥∥∥∥. (13)

The proof of this proposition in Ref. [14] uses a telescoping
sum and the self-similarity of the Strang splitting method for
fewer terms. This technique is not straightforwardly general-
izable to higher-order product formulas.

We explicate the improvement offered by Proposition 1 in
Appendix B.

III. LATTICE GEOMETRY AND DECOMPOSITION
OF THE HAMILTONIAN

Our goal is to decompose the Fermi-Hubbard Hamiltonian
(5) into HFH = ∑�

γ=1 Hγ , such that each Hγ consists of lo-
cal terms with disjoint support. The operators H1, . . . , H�−1

will contain the kinetic terms, and the last operator, H� , will
contain the on-site interactions.

Let � denote the underlying spatial lattice of spin-endowed
sites. We will assume periodic boundary conditions through-
out and finally take the thermodynamic limit of infinite lattice
size. For example, � = Z/L for a one-dimensional lattice of
size L with periodic boundary conditions and even L. The
number of lattice sites is denoted |�|. It will turn out to be
convenient to establish a sublattice �′ ⊂ � such that each
Hγ is translation invariant with respect to �′. For the one-
dimensional example � = Z/L, we will set �′ = (2Z)/L =
{0, 2, . . . , L − 2}.

We define an individual hopping term as

hi jσ = a†
iσ a jσ + a†

jσ aiσ (14)

(assuming i �= j), and the number operator

niσ = a†
iσ aiσ , (15)

where i, j ∈ � denote lattice sites and σ ∈ {↑,↓} denotes
the spin. Additionally, we will encounter the “signed hopping
term”

h̃i jσ = a†
iσ a jσ − a†

jσ aiσ , (16)
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FIG. 1. (a)–(c) Decomposition of the Fermi-Hubbard Hamilto-
nian on a one-dimensional lattice as HFH = ∑3

γ=1 Hγ , such that terms
within each Hγ have disjoint support.

which is zero in the case i = j. Observe the (anti)symmetry
relations

hi jσ = h jiσ , (17a)

h̃i jσ = −h̃ jiσ . (17b)

We now introduce common lattice geometries and cor-
responding Hamiltonian decompositions. These define the
scenarios studied in this paper in detail. The overarching
theoretical framework is general and applicable to other ge-
ometries as well.

A. One-dimensional lattice

As mentioned, � = Z/L with L even and �′ = (2Z)/L. We
can decompose HFH = H1 + H2 + H3 with H1 containing the
“even-odd” kinetic hopping terms, H2 containing the “odd-
even” hopping terms, and H3 containing the interactions, as
illustrated in Fig. 1. Explicitly,

H1 = v
∑
i∈�′

∑
σ∈{↑,↓}

hi,i+1,σ , (18a)

H2 = v
∑
i∈�′

∑
σ∈{↑,↓}

hi−1,i,σ , (18b)

H3 = u
∑
i∈�′

(ni,↑ni,↓ + ni+1,↑ni+1,↓). (18c)

By construction, each Hγ is translation invariant with re-
spect to �′, i.e., by a shift of two sites.

B. Two-dimensional square lattice

We consider a square L × L lattice with periodic boundary
conditions and even L, i.e., � = (Z/L )2.

A small Trotter splitting error is achievable by partitioning
the kinetic terms into plaquettes, as proposed and studied in
Ref. [16] and illustrated in Fig. 2. By construction, each Hγ is
shift invariant with respect to integer multiples of the vectors
(2, 0) and (0, 2). These span the sublattice �′ = ((2Z)/L )2.
The summands in the decomposition HFH = H1 + H2 + H3

can then be expressed as

H1 = v
∑
i∈�′

∑
σ∈{↑,↓}

4∑
k=1

hi+pk ,i+pk+1,σ
, (19a)

H2 = v
∑
i∈�′

∑
σ∈{↑,↓}

4∑
k=1

hi+pk−(1,1),i+pk+1−(1,1),σ , (19b)

FIG. 2. (a)–(c) Decomposition of the Fermi-Hubbard Hamil-
tonian on a two-dimensional square lattice as HFH = ∑3

γ=1 Hγ ,
grouping the kinetic hopping terms into plaquettes.

H3 = u
∑
i∈�′

4∑
k=1

ni+pk ,↑ni+pk ,↓, (19c)

where we have enumerated the vertex coordinates of a pla-
quette as p1 = (0, 0), p2 = (1, 0), p3 = (1, 1), p4 = (0, 1)
and set p5 = p1. This decomposition assumes that the four
elementary hopping terms of a plaquette can be realized si-
multaneously.

Alternatively, we could separate the kinetic terms into hor-
izontal and vertical hopping directions, and then each in turn
into an even-odd partitioning, requiring four kinetic Hamil-
tonians in total. As an advantage, each such Hamiltonian
would only contain nonoverlapping elementary hopping terms
(instead of the four hopping terms subsumed in a plaquette).
However, it turns out that the resulting error bound is consid-
erably weaker, and hence we opted for the plaquette Trotter
splitting.

C. Triangular lattice

We consider the lattice structure shown in Fig. 3. By con-
vention, the distance between nearest-neighbor lattice points
is 1. The triangular lattice � is spanned by integer multiples
of the unit cell vectors (1, 0) and ( 1

2 ,
√

3
2 ). We take the sublat-

tice �′ to consist of the filled (black) points, i.e., the centers
of the hexagons. The unit cell vectors of �′ (blue vectors in
Fig. 3) have coordinates ( 3

2 ,
√

3
2 ) and (0,

√
3).

There are several possibilities of how to decompose the
kinetic part of the Hamiltonian. We choose to partition it into
three summands H1, H2, H3. Each of them, in turn, contains
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FIG. 3. Triangular lattice setup. The filled (black) lattice points
are hexagon centers and define the sublattice �′. The red edges
visualize the hopping terms of H1 after decomposing the Hamiltonian
as HFH = ∑4

γ=1 Hγ ; see Eq. (20).

(shifted copies of) three hopping terms along the edges of a
triangle, illustrated in red for H1 in Fig. 3. H2 is then obtained
from H1 via a rotation by 2π

3 , and H3 is obtained via another
rotation by 2π

3 . The decomposition aims at a small number of
Hamiltonian terms Hγ , such that the translated copies of the
hopping operators contained in each Hγ have disjoint support
and hence commute. Denoting the vertex coordinates of the
hexagon at the origin as gk = (cos((k − 1)π

3 ), sin((k − 1)π
3 )),

k = 1, . . . , 6, and setting g7 = g1, we can express

H	 = v
∑
i∈�′

∑
σ∈{↑,↓}

(hi,i+g2	−1,σ
+ hi+g2	−1,i+g2	,σ

+ hi+g2	,i,σ )

for 	 = 1, 2, 3, (20a)

H4 = u
∑
i∈�′

(
ni,↑ni,↓ + 1

3

6∑
k=1

ni+gk ,↑ni+gk ,↓

)
. (20b)

The interaction part H4 subsumes the local interactions on
a hexagon. The factor 1

3 compensates for overcounting since
each white lattice point is shared between three hexagons.
Note that the above representation of H4 is invariant with
respect to rotations by π

3 . Evaluating e−itH4 is possible based
on the representation H4 = u

∑
i∈� ni↑ni↓.

We have found it advantageous to use the following in-
teger representation of lattice coordinates to avoid rounding
errors: We apply the linear conformal map R2 → R3 defined
in terms of lattice unit cell vectors by (1, 0) �→ (2,−1,−1)
and ( 1

2 ,
√

3
2 ) �→ (1, 1,−2), which sends � to a sublattice of

the cubic lattice in three dimensions. Each lattice point now
has integer coordinates which sum to zero; these properties
are inherited from the new unit cell vectors. The unit cell
vectors of �′ read (3, 0,−3) and (0, 3,−3). Note that angles
are preserved.

IV. AUTOMATED COMMUTATOR EVALUATION
AND NORM BOUNDS

Having a decomposition HFH = ∑�
γ=1 Hγ available, the

next task consists of evaluating (nested) commutators between
the Hγ operators.

A. Commutators of elementary operators

Commutators of the hopping and number operator terms
follow from the fermionic anticommutation relations; see,
e.g., Ref. [21]. To be self-contained, we summarize them here,
and provide a derivation in Appendix C. For sites i, j, k, 	 ∈ �

and spin orientations σ, τ ∈ {↑,↓},
[hi jσ , hk	τ ] = 0, [h̃i jσ , h̃k	τ ] = 0, [hi jσ , h̃k	τ ] = 0,

[hi jσ , nkτ ] = 0, [h̃i jσ , nkτ ] = 0 (21)

in the case {i, j} ∩ {k, 	} = ∅ (disjoint support) or σ �= τ .
Number operators always commute: For all lattice sites

i, j ∈ � and σ, τ ∈ {↑,↓},
[niσ , n jτ ] = 0. (22)

For i, j, k ∈ � with i �= j and j �= k and σ ∈ {↑,↓},
[hi jσ , h jkσ ] = h̃ikσ , (23a)

[h̃i jσ , h̃ jkσ ] = h̃ikσ , (23b)

[hi jσ , h̃ jkσ ] =
{

2(niσ − n jσ ), i = k
hikσ , i �= k

(23c)

as well as, for i �= j,

[hi jσ , n jσ ] = h̃i jσ , (24a)

[h̃i jσ , n jσ ] = hi jσ . (24b)

B. Commutators of Hamiltonian operators

In view of Theorem 1, we now evaluate (nested) commuta-
tors between the Hγ operators. Section IV A together with the
general relations

[A, B1 + · · · + Bn] = [A, B1] + · · · + [A, Bn] (25)

and

[A, B1 · · · Bn] = [A, B1]B2 · · · Bn

+ B1[A, B2]B3 · · · Bn + · · ·
+ B1 · · · Bn−1[A, Bn] (26)

shows that these commutators can be expressed solely in
terms of sums and products of the elementary operators hi jσ ,
h̃i jσ , and niσ .

We can exploit translation invariance on �′ based on the
following observation: Let A and B be linear operators with
local support (i.e., acting nontrivially only on a local region
of lattice sites), and denote their versions after translation by
i ∈ �′ as Ai and Bi, respectively. Then[ ∑

i∈�′
Ai,

∑
k∈�′

Bk

]
=

∑
i∈�′

[
Ai,

∑
	∈�′

Bi+	

]
, (27)
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where we have used the periodic boundary conditions of the
overall lattice. Together with the commutation relations for
the individual hopping and interaction terms, one obtains, for
example, on the two-dimensional square lattice

[H1, H2] = v2
∑
i∈�′

∑
σ∈{↑,↓}

(h̃i,i+2e1,σ
− h̃i−e1,i+e1,σ

) (28)

and

[H1, H5] = vu
∑
i∈�′

∑
σ∈{↑,↓}

[
h̃i,i+e1,σ

· (
ni+e1,σ̄

− ni,σ̄

)]
, (29)

where σ̄ denotes the flipped spin.

C. Automated symbolic commutator evaluation

To automate the symbolic evaluation of (nested) commuta-
tors, we have implemented a PYTHON package [22]. It defines
tailored PYTHON classes to represent Hamiltonian operators
and commutators between them. The classes share an abstract
base class HamiltonianOp: (i) HoppingOp for represent-
ing α · hi jσ with α ∈ R, storing the lattice coordinates i, j
as tuples, the spin σ as an integer, and a scalar coefficient
α as a floating point number; (ii) AntisymmHoppingOp for
representing α · h̃i jσ with analogous member variables; (iii)
NumberOp to represent α · niσ , storing the lattice coordinate i
as a tuple, the spin σ as an integer, and the scalar coefficient
α as a floating point number; (iv) ZeroOp for the zero oper-
ation; (v) ProductOp to represent a product of Hamiltonian
operators, stored in a PYTHON list; and (vi) SumOp to represent
a sum of Hamiltonian operators.

The ZeroOp class could in principle be replaced by an
empty sum, but we have found it convenient to indicate that
an expression is zero and simplify derived expressions. For
example, in the case in which a ZeroOp object appears as a
factor in a ProductOp, the overall product is zero.

In Sec. III we have consistently written each Hamiltonian
term Hγ as translated copies of some local term hloc

γ with
respect to a sublattice �′, i.e., in the form

Hγ =
∑
i∈�′

hloc
γ ,i, (30)

with hloc
γ ,i being a copy of hloc

γ shifted by lattice vector i. In
our implementation, we mimic Eq. (30) by only storing hloc

γ

together with an instance of an auxiliary class SubLattice
for representing �′. This class contains the unit cell vectors
of �′.

Evaluating commutators is achieved by a straightforward
implementation of the relations in Sec. IV A together with
Eqs. (25) and (26). Translations are taken into account using
Eq. (27), which retains the form (30). For evaluating the
commutator on the right in Eq. (27), we enumerate all lattice
vectors 	 ∈ �′ for which the support regions of Ai and Bi+	

overlap. Note that we only need to consider i = 0 (origin).
To apply Theorem 1, we have implemented a function to

evaluate the expression on the right of Eq. (9), retaining the
nested commutators appearing in this expression in symbolic
form at first. In order to evaluate or upper-bound the spectral
norm of a nested commutator such as ‖adqs

As
· · · adq j

A j
B j‖, we

use the following strategy: In the case in which the operator

acts nontrivially on at most 14 fermionic modes, where a
mode refers to a lattice site and spin orientation, we com-
pute the matrix representation of the operator and evaluate its
spectral norm numerically exactly. To exploit particle number
conservation, which is adhered to by all involved operators,
the computation uses the particle number sub-blocks of the
matrix. We also evaluate the exact norm for quadratic (free
fermion) operators, i.e., consisting of linear combinations of
hopping and number operators: In this case the spectral norm
can be reduced to a sum of single-particle eigenvalues. Oth-
erwise, for nonquadratic operators involving more modes, we
partition them into clusters supported on up to 14 modes each
and make use of the triangle inequality to obtain an upper
bound. To avoid explicit dependence on system size, we report
the spectral norm bounds as error per lattice site.

Another subtle point involves telescoping effects. Consider
an operator containing two or more local summands, such as
Hγ = ∑

i∈�′ (Ai + Bi ). Then ‖Hγ ‖ � ∑
i∈�′ ‖Ai + Bi‖ by the

triangle inequality. Due to the periodic boundary conditions,
we can also represent Hγ = ∑

i∈�′ (Ai + Bi+	) for any fixed
	 ∈ �′, and correspondingly, ‖Hγ ‖ � ∑

i∈�′ ‖Ai + Bi+	‖.
The bound will depend on 	 in general. In order to arrive at
a bound that is as tight as possible, we maximize the overlap
(lattice support) of the local terms in our implementation.

V. COMMUTATOR BOUNDS AND ERROR
ANALYSIS RESULTS

It is instructive to demonstrate the analytic evaluation of
the commutator bounds explicitly for the concrete example
of a one-dimensional lattice and the Strang (second-order
Suzuki) splitting method. For higher-order product rules and
two-dimensional lattices, we will use the automated symbolic
evaluation since the algebraic manipulations become rather
tedious.

A. Analytical derivation for a one-dimensional
lattice and Strang splitting

We consider the Hamiltonian terms in Eq. (18) and the
Strang (second-order Suzuki) formula. We make use of the
theoretical bound of Proposition 1, as concretized in Eq. (B1)
for the present setting. Regarding the individual commutators,
we first evaluate the commutator of the kinetic Hamiltonian
terms:

[H2, H1] = v2
∑
i∈�′

∑
σ∈{↑,↓}

(h̃i−1,i+1,σ − h̃i,i+2,σ ). (31)

The nested commutator with H1, H2, and H3 is then

[H1, [H2, H1]] = 2v3
∑
i∈�′

∑
σ∈{↑,↓}

(hi−2,i+1,σ − hi−1,i,σ ),

(32a)

[H2, (H2, H1)] = 2v3
∑
i∈�′

∑
σ∈{↑,↓}

(hi,i+1,σ − hi−1,i+2,σ ),

(32b)
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and

[H3, [H2, H1]]

= v2u
∑
i∈�′

∑
σ∈{↑,↓}

[hi−1,i+1,σ · (ni−1,σ̄ − ni+1,σ̄ )

+ hi,i+2,σ · (ni+2,σ̄ − ni,σ̄ )], (33)

with σ̄ denoting the flipped spin. Next, we evaluate the
commutator between a kinetic Hamiltonian term and an in-
teraction Hamiltonian term:

[H3, H1] = vu
∑
i∈�′

∑
σ∈{↑,↓}

h̃i,i+1,σ · (ni,σ̄ − ni+1,σ̄ ), (34a)

[H3, H2] = vu
∑
i∈�′

∑
σ∈{↑,↓}

h̃i−1,i,σ · (ni−1,σ̄ − ni,σ̄ ). (34b)

Computing nested commutators then leads to

[H1, [H3, H1]] = −4v2u
∑
i∈�′

[(ni,↑ − ni+1,↑)(ni,↓ − ni+1,↓)

+ h̃i,i+1,↑ · h̃i,i+1,↓], (35)

[H2, [H3, H1]] = v2u
∑
i∈�′

∑
σ∈{↑,↓}

[(hi−1,i+1,σ − hi,i+2,σ )

· (ni,σ̄ − ni+1,σ̄ ) + h̃i−1,i,σ · h̃i,i+1,σ̄

+ h̃i,i+1,σ · h̃i+1,i+2,σ̄ ] (36)

and

[H3, [H3, H1]] = vu2
∑
i∈�′

∑
σ∈{↑,↓}

hi,i+1,σ (ni,σ̄ − ni+1,σ̄ )2.

(37)

Analogous expressions hold for [H1, [H3, H2]], [H2, [H3,

H2]], and [H3, [H3, H2]].
We report an upper bound on the spectral norm of the

commutators per lattice site, by omitting the summation over
i ∈ �′ and dividing by 2 (since �′ only covers every second
site). For example, applying this procedure to the expression
in Eq. (32a) and using the triangle inequality gives

1

|�| ‖[H1, [H2, H1]]‖ � |v|3
∑

σ∈{↑,↓}
‖h−2,1,σ − h−1,0,σ ‖

= 4|v|3. (38)

One also recognizes that ‖ni,σ − n j,σ ‖ = 1 for any i �= j.
Regarding ‖[H2, [H3, H1]]‖, we form the matrix represen-

tation ∈ R256×256 of the summand in Eq. (36) (for fixed i ∈
�′) and compute its exact spectral norm. Specifically, the ma-
trix is symmetric and has the largest eigenvalue and singular
value 4. For comparison, bounding the norm using the triangle
and submultiplicative properties yields 8, which is thus not
tight.

Inserting everything into Eq. (B1) leads to

1

|�| ‖S2(t ) − e−itHFH‖ � t3

6
(3|v|3 + 4|v|2|u| + |v||u|2).

(39)
This formula is the first concluding result of this paper.

B. Higher-order splitting methods for a one-dimensional lattice

We now make use of the automated symbolic commutator
evaluation to derive error bounds on fourth-order methods as
well, and we compare them with the empirical error eval-
uated on a small system. The empirical error refers to the
numerically exact evaluation of the time evolution operator,
the splitting method, and the deviation between them. We first
consider the fourth-order Suzuki formula. In general, higher-
order Suzuki formulas can be defined recursively via [23]

S2(t ) = e−itH1/2 · · · e−itH�/2e−itH�/2 · · · e−itH1/2, (40)

S2k (t ) = S 2
2k−2(ukt ) S2k−2((1 − 4uk )t ) S 2

2k−2(ukt ) (41)

with uk = 1/(4 − 41/(2k−1)) and k ∈ N, k � 2. The fourth-
order Suzuki formula with three Hamiltonian terms has been
analyzed in Appendix M and Proposition M.2 of Ref. [14],
and our proof of Theorem 1 generalizes the technique there.
Programmatically evaluating the coefficients in Eq. (9) re-
produces Table II of Ref. [14] when setting s = 10. It turns
out that s = 	K

2 
 = 11 leads to a sharper bound, since some
coefficients are smaller; for example, the coefficient in front of
‖[H3, [H3, [H3, [H3, H2]]]]‖ is 0.0628 for s = 10 and 0.0316
for s = 11.

Together with evaluating norm bounds of the nested com-
mutators, one arrives at

1

|�| ‖S4(t ) − e−itHFH‖ � t5(1.3405|v|5 + 8.8233|v|4|u|

+ 2.3945|v|3|u|2 + 0.4137|v|2|u|3 + 0.060 01|v||u|4)
(42)

for the fourth-order Suzuki method and one-dimensional lat-
tice setting.

For comparison, we investigate another fourth-order split-
ting method: the symmetric scheme AK 11-4 for three terms
by Auzinger et al. [24]. This leads to the estimate

1

|�| ‖S4(t ) − e−itHFH‖ � t5(3.0745|v|5 + 28.2247|v|4|u|

+ 13.4738|v|3|u|2 + 4.9908|v|2|u|3 + 0.9155|v||u|4)
(43)

for the AK 11-4 method, which is noticeably larger than the
bound for the Suzuki method in Eq. (42).

As a remark, the norms of all nested commutators con-
tained in Eqs. (42) and (43) have been computed numerically
exactly.

Figure 4 summarizes the commutator bounds and empir-
ical error on a one-dimensional lattice, both for the Strang
(second-order Suzuki) formula and the fourth-order methods.
The commutator bounds overestimate the empirical error by
an order of magnitude for Strang splitting and by around three
orders of magnitude for the fourth-order methods. We evaluate
the empirical error only for a small system due to the steep
increase in computational cost for larger L, and thus the error
for larger systems could deviate from the values in the plot.
In any case, the results indicate that the commutator bounds
are far from tight. Interestingly, the empirical error using the
AK 11-4 scheme is slightly smaller compared with the Suzuki
method, reversed from the bounds in Eqs. (42) and (43).
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FIG. 4. Trotter splitting error 1
|�| ‖S (t ) − e−itHFH‖ for the Fermi-

Hubbard model on a one-dimensional (1D) lattice, comparing
commutator (comm.) bounds with the empirical (empir.) error (L = 4
sites). The Hamiltonian coefficients are set to v = −1 and u = 1.
Suzuki4, fourth-order Suzuki method.

C. Two-dimensional square lattice

We now apply splitting methods to the Fermi-Hubbard
model on a two-dimensional square lattice, using the three
Hamiltonian terms in Eq. (19).

For Strang splitting, we obtain the bound

1

|�| ‖S2(t ) − e−itHFH‖

� t3

6
(4.4142|v|3 + 8.0889|v|2|u| + 1.3062|v||u|2) (44)

on the error per lattice site. We have already accounted for a
factor 4 due to the sublattice �′ covering one-quarter of all
sites.

For the fourth-order Suzuki formula, an analogous calcula-
tion leads to

1

|�| ‖S4(t ) − e−itHFH‖ � t5(2.1485|v|5 + 92.1642|v|4|u|

+ 14.3445|v|3|u|2 + 1.0712|v|2|u|3 + 0.07938|v||u|4).
(45)

One notices the relatively small last coefficient.

D. Two-dimensional triangular lattice

Finally, we consider the triangular lattice shown in Fig. 3
and the four Hamiltonian terms in Eq. (20).

For Strang splitting, we obtain the bound

1

|�| ‖S2(t ) − e−itHFH‖

� t3

6
(39.4721|v|3 + 20.1594|v|2|u| + 1.9546|v||u|2) (46)

on the error per lattice site. The lattice � outnumbers �′ by a
factor 3, which we have already taken into account here.

The analogous error bound on the fourth-order Suzuki for-
mula reads

1

|�| ‖S4(t ) − e−itHFH‖ � t5(124.815|v|5 + 493.917|v|4|u|

+ 60.4106|v|3|u|2 + 2.9855|v|2|u|3 + 0.1206|v||u|4).
(47)

The coefficients are considerably larger compared with the
analogous bound for the square lattice in Eq. (45). As an
indication for the origin of this deviation, we remark that
the number of substeps K in the splitting methods differs:
K = 21 for the square lattice [three Hamiltonian operators
in Eqs. (19)] compared with K = 31 for the triangular lattice
[four Hamiltonian operators in Eqs. (20)].

VI. CONCLUSIONS AND OUTLOOK

The comparison with the empirical Trotter error in Fig. 4
indicates that the commutator scaling bounds are not perfectly
tight. Interestingly, in the proof of Theorem 1, the expres-
sion (A18) together the formulas for C j (t ) still describe the
exact difference between the Trotter formula and actual time
evolution operator. The exponential rotations contained in the
integrand of (A18) lead to cancellations which are not ac-
counted for when applying the triangle inequality. In a future
work, one could potentially exploit this observation to arrive
at sharper bounds.

The decomposition of a Hamiltonian as H = ∑
γ Hγ is not

unique and can affect the resulting Trotter error. The bounds
developed in this paper could be used to guide the search for
a decomposition with the smallest possible error.

We have studied three lattice geometries in detail as rep-
resentative examples. The generality of the framework and
of the implementation in the PYTHON package allow for a
straightforward application to other geometries and decompo-
sitions as well. Moreover, an extension by additional particle
species (such as bosonic particles) or pairing interactions for
superconductivity, for example, is likewise conceivable.

Reference [16] considers a variant of the Fermi-Hubbard
model where the number operators in the interaction part are
shifted by 1

2 . This convention leads to concise expressions for
the nested commutators and has the effect that some of them
have smaller norms. We leave an exploration of this approach
and a detailed comparison with Ref. [16] for future work. Note
that the commutators from Sec. IV A remain unaffected when
shifting the number operators by a constant.

Finally, we would like to remark that Trotter splitting
methods can in principle be further improved by numerically
optimizing the individual substeps tailored for a given Hamil-
tonian [25–28].

A PYTHON package implementing the calculations in this
paper is available at [22].
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APPENDIX A: PROOF OF THE HIGHER-ORDER ERROR BOUNDS

This Appendix contains a proof of Theorem 1.
We generalize the derivation in Appendix M of Ref. [14]:

d

dt
Sp(t ) − (−iH )Sp(t ) = [e−itAK ,−iAK−1]e−itAK−1 · · · e−itA1 + [e−itAK e−itAK−1 ,−iAK−2]e−itAK−2 · · · e−itA1

+ · · · + [e−itAK · · · e−itA2 ,−iA1]e−itA1 = [e−itAK ,−iAK−1]e−itAK−1 · · · e−itA1

+ e−itAK [e−itAK−1 ,−iAK−2]e−itAK−2 · · · e−itA1 + [e−itAK ,−iAK−2]e−itAK−1 e−itAK−2 · · · e−itA1

+ · · · + e−itAK · · · e−itA4 e−itA3 [e−itA2 ,−iA1]e−itA1 + e−itAK · · · e−itA4 [e−itA3 ,−iA1]e−itA2 e−itA1

+ · · · + [e−itAK ,−iA1]e−itAK−1 · · · e−itA2 e−itA1 . (A1)

For the first equal sign, we have used the consistency condition of the integration method,
∑K

k=1 Ak = H , and for the second
equal sign, we have sequentially expanded the commutators, according to the blueprint

[A1A2A3, B] = A1A2[A3, B] + A1[A2, B]A3 + [A1, B]A2A3. (A2)

As next step, we sum up all commutators appearing at the same position within the chain of matrix exponentials, which leads to

d

dt
Sp(t ) − (−iH )Sp(t ) =

K∑
j=2

K∏
k= j+1

e−itAk

[
e−itA j ,−i

j−1∑
	=1

A	

]
j−1∏

k′=1

e−itAk′ . (A3)

As in Ref. [14], we now factor out matrix exponentials on the left and right sides; for that purpose, we fix some index s ∈
{1, . . . , K} and introduce

Sleft(t ) =
K∏

k=s+1

e−itAk , Sright(t ) =
s∏

k=1

e−itAk . (A4)

This leads to

d

dt
Sp(t ) − (−iH )Sp(t ) = Sleft(t ) T (t ) Sright(t ) (A5)

with

T (t ) =
K∑

j=2

Tleft, j (t )

[
e−itA j ,−i

j−1∑
	=1

A	

]
Tright, j (t ), (A6)

where

Tleft, j (t ) =
⎧⎨
⎩

∐s+1
k= j eitAk > s

1 j = s∏s
k= j+1 e−itAk j < s,

(A7a)

Tright, j (t ) =
⎧⎨
⎩

∏ j−1
k=s+1 e−itAk j − 1 > s

1 j − 1 = s∐ j
k=s eitAk j − 1 < s.

(A7b)

Further following the derivation in Ref. [14], we express the commutator in Eq. (A6) via

[etX ,Y ] = etX
∫ t

0
dτe−τX [X,Y ]eτX

=
∫ t

0
dτeτX [X,Y ]e−τX etX ,

(A8)

using the first variant in the case j > s and the second variant in the case j � s. This leads to

T (t ) =
K∑

j=2

T j (t )

(∫ t

0
dτe±iτAj [ − iA j,−iB j]e

∓iτAj

)
T †

j (t ) (A9)
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with the first (upper) sign corresponding to j > s and the lower sign corresponding to j � s,

Bj =
j−1∑
	=1

A	, j = 2, . . . , K, (A10)

and

T j (t ) =
⎧⎨
⎩

∐s+1
k= j−1 eitAk j > s + 1

1 j = s, s + 1∏s
k= j+1 e−itAk j < s.

(A11)

Together with the Lie-algebraic identity eABe−A = eadA B for adAB = [A, B], we can express (A9) as

T (t ) =
K∑

j=2

T j (t )

(∫ t

0
dτe±iτadA j adiA j (iB j )

)
T †

j (t ). (A12)

Next, we use Theorem 5 of Ref. [14], which in turn is based on a repeated application of the Taylor series expansion (for integer
q ∈ N�1):

eτadA B = B + τadAB + · · · + τ q−1

(q − 1)!
adq−1

A B +
∫ τ

0
dτ2

τ
q−1
2

(q − 1)!
e(τ−τ2 )adA adq

AB. (A13)

First applying this theorem to e±iτadA j inside the integral of (A12) and then to the conjugations by T j (t ) facilitates the series
expansion

T j (t )

(∫ t

0
dτe±iτadA j adiA j (iB j )

)
T †

j (t ) = Cj,0 + Cj,1t + · · · + Cj,p−1t p−1 + C j (t ), (A14)

with the remainder term of order C j (t ) = O(t p). Due to the order condition (2), we conclude that all terms of lower order will
eventually cancel out. Regarding the remainder term, we distinguish between two cases:

In the case j � s,

C j (t ) = e−itadAs · · · e−itadA j+1

∫ t

0
dτ1

∫ τ1

0
dτ2

τ
p−2
2

(p − 2)!
e−i(τ1−τ2 )adA j adp−1

−iA j
adiA j (iB j )

+
s∑

k= j+1

∑
q j+···+qk=p−1

qk �=0

e−itAs · · · e−itAk+1

∫ t

0
dτ

τ qk−1

(qk − 1)!

t qk−1+···+q j+1+(q j+1)

qk−1! · · · q j+1!(q j + 1)!
e−i(t−τ )adAk adqk

−iAk
· · · adq j

−iA j
adiA j (iB j ).

(A15)

The expressions with (qj + 1) (instead of q j) result from the integration in (A14), and we use the convention that a summation
over an empty range, such as

∑s
k= j+1 · · · for j = s, evaluates to 0.

In the case j > s,

C j (t ) = eitadAs+1 · · · eitadA j−1

∫ t

0
dτ1

∫ τ1

0
dτ2

τ
p−2
2

(p − 2)!
ei(τ1−τ2 )adA j adp−1

iA j
adiA j (iB j )

+
j−1∑

k=s+1

∑
qk+···+q j=p−1

qk �=0

eitAs+1 · · · eitAk−1

∫ t

0
dτ

τ qk−1

(qk − 1)!

t qk+1+···+q j−1+(q j+1)

qk+1! · · · q j−1!(q j + 1)!
ei(t−τ )adAk adqk

iAk
· · · adq j

iA j
adiA j (iB j ). (A16)

To assemble everything into a final error estimate, we use the triangle inequality and the fact that the spectral norm of the
matrix exponentials evaluates to 1 (since they are unitary maps). The inner integration with respect to τ can then be performed
analytically, and one arrives at

‖T (t )‖ �
K∑

j=2

‖C j (t )‖ �
s∑

j=2

⎛
⎜⎜⎝

∫ t

0
dτ1

∫ τ1

0
dτ2

τ
p−2
2

(p − 2)!

∥∥adp
Aj

B j

∥∥ +
s∑

k= j+1

∑
q j+···+qk=p−1

qk �=0

t p

p!

(
p

q j + 1, q j+1, . . . , qk

)

×∥∥adqk
Ak

· · · adq j

A j
adAj B j

∥∥
⎞
⎟⎟⎠ +

K∑
j=s+1

⎛
⎜⎜⎝

∫ t

0
dτ1

∫ τ1

0
dτ2

τ
p−2
2

(p − 2)!

∥∥adp
Aj

B j

∥∥ +
j−1∑

k=s+1

∑
qk+···+q j=p−1

qk �=0

t p

p!

(
p

qk, . . . , q j−1, q j + 1

)
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×∥∥adqk
Ak

· · · adq j

A j
adAj B j

∥∥
⎞
⎟⎟⎠ = t p

p!

⎛
⎜⎜⎜⎜⎜⎝

s∑
j=2

∑
q j+···+qs=p

q j �=0

(
p

q j, . . . , qs

)∥∥adqs
As

· · · adq j

A j
B j

∥∥

+
K∑

j=s+1

∑
qs+1+...
+q j=p
q j �=0

(
p

qs+1, . . . , q j

)∥∥adqs+1
As+1

· · · adq j

A j
B j

∥∥
⎞
⎟⎟⎟⎟⎟⎠. (A17)

Now applying Lemma A.1 of Ref. [14] (variation of parameters) to Eq. (A5) results in

Sp(t ) = e−itH +
∫ t

0
dτe−i(t−τ )HSleft(τ ) T (τ ) Sright(τ ). (A18)

Inserting the above bound for ‖T (t )‖ leads to the final result:

‖Sp(t ) − e−itH‖ �
∫ t

0
dτ‖T (τ )‖ � t p+1

(p + 1)!

⎛
⎜⎜⎜⎜⎜⎝

s∑
j=2

∑
q j+···+qs=p

q j �=0

(
p

q j, . . . , qs

)∥∥adqs
As

· · · adq j

A j
B j

∥∥

+
K∑

j=s+1

∑
qs+1+...
+q j=p
q j �=0

(
p

qs+1, . . . , q j

)∥∥adqs+1
As+1

· · · adq j

A j
B j

∥∥
⎞
⎟⎟⎟⎟⎟⎠. (A19)

APPENDIX B: PREFACTOR COMPARISON FOR THE SECOND-ORDER SUZUKI FORMULA

To demonstrate the improvement offered by Proposition 1 compared with Theorem 1, we consider a Hamiltonian with three
terms, H = H1 + H2 + H3. Evaluating Eq. (13), expanding the commutators, and using the triangle inequality leads to

‖S2(t ) − e−itH‖ � t3

(
1

24
‖[H1, [H2, H1]]‖ + 1

12
‖[H2, [H2, H1]]‖ + 1

12
‖[H3, [H2, H1]]‖ + 1

24
‖[H1, [H3, H1]]‖

+ 1

12
‖[H2, [H3, H1]]‖ + 1

12
‖[H3, [H3, H1]]‖ + 1

24
‖[H2, [H3, H2]]‖ + 1

12
‖[H3, [H3, H2]]‖

)
. (B1)

For comparison, we now apply Theorem 1 in the same setting. Using the notation of Eq. (6), we identify K = 5, A1 = 1
2 H1,

A2 = 1
2 H2, A3 = H3, A4 = 1

2 H2, and A5 = 1
2 H1. Inserting into Eq. (9) for s = 3 leads to

‖S2(t ) − e−itH‖ � t3

6

⎛
⎜⎜⎝ ∑

q2+q3=2
q2 �=0

(
2

q2, q3

)∥∥adq3
A3

adq2
A2

(
1
2 H1

)∥∥ +
∑
q3=2

(
2

q3

)∥∥adq3
A3

(
1
2 H1 + 1

2 H2
)∥∥

+
∑
q4=2

(
2

q4

)∥∥adq4
A4

(
1
2 H1 + 1

2 H2 + H3
)∥∥ +

∑
q4+q5=2

q5 �=0

(
2

q4, q5

)∥∥adq4
A4

adq5
A5

(
1
2 H1 + H2 + H3

)∥∥
⎞
⎟⎟⎠

� t3

(
1

24
‖[H1, [H2, H1]]‖ + 1

8
‖[H2, [H2, H1]]‖ + 1

12
‖[H3, [H2, H1]]‖ + 1

24
‖[H1, [H3, H1]]‖

+ 1

12
‖[H2, [H3, H1]]‖ + 1

12
‖[H3, [H3, H1]]‖ + 1

24
‖[H2, [H3, H2]]‖ + 1

12
‖[H3, [H3, H2]]‖

)
. (B2)

This expression differs from Eq. (B1) by the prefactor 1
8 compared with the prefactor 1

12 in front of ‖[H2, [H2, H1]]‖.
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APPENDIX C: COMMUTATION RELATIONS
FOR THE HAMILTONIAN TERMS

OF THE FERMI-HUBBARD MODEL

We verify the commutation relations stated in Sec. IV A.
The relations in Eq. (21) are clear when noting that the

hopping and number operators consist of an even number of
creation and annihilation operators, and hence they commute
if they have nonoverlapping support.

The statement that number operators always commute,
Eq. (22), follows from the fact that number operators are
diagonal matrices with respect to the standard basis.

For notational conciseness, we will omit the spin index
in the following without loss of generality, assuming that all
operators share the same spin.

Lemma 1. If i, j, k ∈ � are pairwise different or i �= j = k
or i = j �= k, then

[a†
i a j, a†

j ak] = a†
i ak . (C1)

Proof. First consider the case where i, j, k are pairwise
different:

[a†
i a j, a†

j ak] = a†
i a ja

†
j ak − a†

j aka†
i a j

= a†
i aka ja

†
j + a†

i aka†
j a j

= a†
i ak[a ja

†
j + a†

j a j]

= a†
i ak .

(C2)

Next, consider i �= j = k:

[a†
i a j, a†

j a j] = a†
i a ja

†
j a j − a†

j a ja
†
i a j

= a†
i a ja

†
j a j

= a†
i a j .

(C3)

Similar calculations complete the proof for i = j �= k. �
Now we consider [hi j, h jk] for i, j, k that are pairwise dif-

ferent:

[hi j, h jk] = [a†
i a j + a†

j ai, a†
j ak + a†

ka j]

= [a†
i a j, a†

j ak] + [a†
i a j, a†

ka j]

+ [a†
j ai, a†

j ak] + [a†
j ai, a†

ka j]

= [a†
i a j, a†

j ak] − [a†
ka j, a†

j ai]

= a†
i ak − a†

kai

= h̃ik,

(C4)

where Lemma 1 has been applied in the penultimate step.
Notably, the commutator of two adjacent hopping terms has

no support on the overlapping mode (here j) and is, up to a
sign change, equal to a hopping term itself. In the case i = k,
one observes that [hi j, h ji] = [hi j, hi j] = 0, which agrees with
h̃ii. Taken together, we have verified Eq. (23a).

The commutators involving signed hopping terms follow a
similar pattern: For i, j, k that are pairwise different,

[h̃i j, h̃ jk] = [a†
i a j − a†

j ai, a†
j ak − a†

ka j]

= [a†
i a j, a†

j ak] − [a†
ka j, a†

j ai]

= a†
i ak − a†

kai

= h̃ik

(C5)

and

[hi j, h̃ jk] = [a†
i a j + a†

j ai, a†
j ak − a†

ka j]

= [a†
i a j, a†

j ak] + [a†
ka j, a†

j ai]

= a†
i ak + a†

kai

= hik,

(C6)

again using Lemma 1. In the case i = k �= j, we obtain
[h̃i j, h̃ ji] = −[h̃i j, h̃i j] = 0 = h̃ii, which completes the deriva-
tion of Eq. (23b). Moreover,

[hi j, h̃ ji] = [a†
i a j + a†

j ai, a†
j ai − a†

i a j]

= [a†
i a j, a†

j ai] − [a†
j ai, a†

i a j]

= 2[a†
i a j, a†

j ai]

= 2[a†
i a ja

†
j ai − a†

j aia
†
i a j]

= 2[ni(1 − n j ) − n j (1 − ni )]

= 2(ni − n j ),

(C7)

finalizing the proof of Eq. (23c).
As last step, we verify Eq. (24a) by

[hi j, n j] = [a†
i a j, a†

j a j] − [a†
j a j, a†

j ai]

= a†
i a j − a†

j ai

= h̃i j,

(C8)

where we have used Lemma 1 to simplify the commutators.
Equation (24b) follows analogously.
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