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One-dimensional chiral anomaly and its disorder response
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The condensed-matter realization of chiral anomaly has attracted tremendous interest in exploring unexpected
phenomena of quantum field theory. Here, we show that one-dimensional (1D) chiral anomaly (i.e., 1D
nonconservational chiral current under a background electromagnetic field) can be realized in a generalized
Su-Schrieffer-Heeger model where a single gapless Dirac cone occurs. Based on the topological Thouless pump
and anomalous dynamics of chiral displacement, we elucidate that such a system possesses the half-integer
quantization of the winding number. Moreover, we investigate the evolution of 1D chiral anomaly with respect
to two typical types of disorder, i.e., on-site disorder and bond disorder. The results show that the on-site disorder
tends to smear the gapless Dirac cone. However, we propose a strategy to stabilize the half-integer quantization,
facilitating its experimental detection. Furthermore, we demonstrate that the bond disorder causes a unique
crossover with disorder-enhanced topological charge pumping, driving the system into a topological Anderson
insulator phase.
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I. INTRODUCTION

The exploration of Dirac matter provides a promising av-
enue to investigate various fundamental physics in relativistic
quantum field theory [1–5]. Specifically, a single Dirac cone
associates with quantum anomaly, playing an essential role in
formulating exotic topological states in modern condensed-
matter physics [6–10] which is an interesting manifestation
of the topological phenomena, such as quantum anomalous
Hall effects [11–14] and topological magnetoelectric effects
of axion electrodynamics [15,16]. Recently, a novel topo-
logical semimetallic phase, known as a quantum anomalous
semimetal, characterized by the half-integer (or fractional)
topological invariant, was introduced in Ref. [17] and further
explored in several works [18–20]. So far, there have been
many theoretical and experimental efforts devoted to observ-
ing the physics related to the quantum anomaly [21–30], but
direct evidence of a hallmark half-integer topological invari-
ant is rather scarce. The main reason is that the Dirac fermions
always come in pairs in a realistic system according to the
Nielsen-Ninomiya no-go theorem [31,32], strongly hindering
the direct observation of quantum anomalous physics in ex-
periments.

Very recently, significant experimental progress in the two-
dimensional (2D) quantum anomaly, referred to as the parity
anomaly, was made in a semimagnetic topological insula-
tor (TI) heterostructure [21,22]. Compared with the parity
anomaly occurring in even spatial dimensions, the analogous
phenomenon in odd spatial dimensions is the so-called chi-
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ral anomaly [33], which has also been attracting extensive
interests. A typical example of this is the nonconservative
chiral current of Weyl fermions under an electromagnetic
field, which is considered to be the origin of the topologi-
cal magnetoelectric effects of axion electrodynamics, and the
negative magnetoresistance of Weyl semimetals [4,24–27,34].
Up to now, exotic phenomena related to the chiral anomaly of
Weyl quasiparticles in condensed-matter systems have been
the subject of intense studies [25–30], but these studies have
been mainly limited to three spatial dimensions. The one-
dimensional (1D) chiral anomaly and especially its analogous
condensed-matter realization are largely unexplored. Consid-
ering recent encouraging advancements in 1D topological
states [35–45], the exploration of a 1D chiral anomaly and
its related novel physics is highly desirable.

In this paper, we show that the chiral anomaly can be
realized in a 1D topological nodal system. Without loss of
generality, we choose the generalized Su-Schrieffer-Heeger
(SSH) model with long-range hopping, a paradigmatic model
used to investigate the 1D topological states [39–42]. With
the proper setting of dimerization, which is accessible in ex-
periments, a 1D single gapless Dirac cone characterized by
a half-integer winding number is present [17]. This massless
Dirac fermion gives rise to the nonconservation of chiral cur-
rent under a background electromagnetic field, serving as a
signature of 1D chiral anomaly. To facilitate the experimental
measurement of half-integer quantization, we investigate the
topological Thouless pumping and anomalous dynamics of
chiral displacement [46–50]. Moreover, it is worth noting that
the influence of disorder in one spatial dimension is more
remarkable than that in higher spatial dimensions where the
usual perturbation theory breaks down [51,52], causing an-
other difficulty for the experimental detection of a 1D chiral
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FIG. 1. (a) The schematic diagram of a generalized SSH model
with nearest- and next-nearest-neighbor hopping, containing two
sublattices A and B. (b) The equivalent structure in (a) with a two-
leg ladder structure. Two SSH chains are dimerized with staggered
hopping amplitudes J1 and J2, respectively. The coupling between
two chains is described by J0. (c) The band structures and (d) the
corresponding density of states with parameter � = 0 and � = 0.6.

anomaly. Therefore, we investigate the evolution of the 1D
chiral anomaly with respect to disorder, including on-site
disorder and bond disorder. Remarkably, we find that on-site
disorder can be effectively suppressed and the half-integer
quantization can be nearly preserved in the regime of moder-
ate disorder strength. On the other hand, the interplay between
disorder and topology can lead to unexpected phenomena.
Thereby, we further investigate the case of bond disorder.
The results show a unique crossover with disorder-enhanced
topological charge pumping, and then the topological gapless
state evolves into an exotic topological Anderson insulator
(TAI) phase [53] with integer-quantized topological charge.

II. THE 1D CHIRAL ANOMALY
IN A GENERALIZED SSH MODEL

We start with a generalized SSH model, as sketched in
Fig. 1(a). This model can also be viewed as a system of
two coupled SSH chains with a two-leg ladder structure [see
Fig. 1(b)] [39,40,54–56]. In addition, we generally consider
two typical types of disorder, i.e., the on-site disorder and
bond disorder. The tight-binding Hamiltonian of the lattice
model is given by

H = H0 + V,

H0 =
∑

i

(ψ†
i T0ψi + ψ

†
i+1T1ψi + H.c.), (1)

V =
∑

i

(
W a

i a†
i ai + W b

i b†
i bi

) +
∑

i

(Uia
†
i bi + H.c.),

with

T0 =
(

0 J0

J0 0

)
, T1 =

(
0 J1

J2 0

)
, (2)

where the two component spinors ψ
†
i = [a†

i , b†
i ] and ψi are

composed of creation and annihilation operators acting on the
sublattice (A, B) at unit cell i. The schematic illustration of the
hopping matrices T0,1 is shown in Fig. 1(b), where the hopping
amplitudes between the unit cells are J1,2 and we set interchain
hopping J0 = 1 without loss of generality. The lattice constant
and Planck constant are set to be unity a = h̄ = 1 throughout
the following discussion. The on-site disorder is modeled by
the two independent random numbers W A

i and W A
i , whose val-

ues are taken from the interval [−W/2,W/2]. The parameter
Ui represents the bond disorder which takes a value randomly
from the interval [−U/2,U/2]. Here, W and U denote the
strength of disorder in the unit of J0.

First, we consider the ideal system and set the disorder
potential to zero, i.e., W A

i = W A
i = Ui = 0. Without disorder,

the lattice Hamiltonian Eq. (1) can be transformed into the
momentum space, and we have H0 = ∑

k ψ
†
k hkψk , where hk

can be expressed as

hk = hx(k)σx + hy(k)σy, (3)

with

hx(k) = J0 + (J1 + J2) cos(ka),

hy(k) = (J1 − J2) sin(ka),
(4)

and σx,y are Pauli matrices and act on the sublattice (A, B). For
convenience, we redefine 2J = J1 + J2 and 2� = J1 − J2, and
thus the parameter � characterizes the lattice dimerization of
a SSH chain. Here, we focus on the single gapless node in
the Brillouin zone, which can be realized by fixing J = 1

2 . We
plot the band structure and the corresponding density of states
(DOS) in Figs. 1(c) and 1(d), respectively. The dimerization
parameter � strongly affects the feature of band dispersion.
When � = 0, we have a quadratically gapless nodal point at
k = π and its DOS is divergent at the band center. Such a
singularity of DOS can be removed by introducing the dimer-
ization (i.e., � �= 0) and the DOS becomes a finite value.
Significantly, the presence of lattice dimerization gives rise
to a single gapless Dirac cone with linear dispersion [see
Fig. 1(c)], which may invoke a topological transition. To re-
veal the process, we employ Eq. (3) to calculate the winding
number as [56]

w =
∫ π

−π

dk

2π

hx∂khy − hy∂khx

h2
x + h2

y

. (5)

After integrating using Eq. (5), we obtain the winding number
w = 1

2 sgn(�) [17], indicating that the 1D gapless system with
a single Dirac cone carries the half-integer winding number
as long as any finite dimerization occurs, i.e., � �= 0 [see
Fig. 2(a)]. It is worth noting that there is no singularity in the
integrand at the nodal point [57]. To reveal that the massless
Dirac fermion leads to the nonconservation of chiral current
under a background electromagnetic field, we expand the
Hamiltonian Eq. (1) near the nodal point (k0 = π ) and obtain
the continuous Dirac Hamiltonian with linear dispersion as
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FIG. 2. (a) The winding number of the gapless system Eq. (3) as
a function of �. (b) The time evolution of the polarization PX (t ) in
one period T . The pumped charge can be read off from Q = P(T ) −
P(0), and we have Q = − 1

2 (� > 0) and Q = 1
2 (� < 0). (c) The

time evolution of chiral displacement C(t ) which oscillates around
the winding number w = ± 1

2 .

HDirac = ∑
q ψ†

q vF qσyψq, where vF = 2� defines the veloc-
ity and q represents the wave vector from the nodal point. The
corresponding relativistic Lagrangian in (1+1) space-time can
be written as L = ψγ μ∂μψ (see details in the Supplemental
Material [57]). According to Fujikawa’s derivation of chi-
ral anomaly [58,59], we consider a background gauge field
where ∂μ → Dμ = ∂μ + eAμ. In this case, the conservation
of chiral current j5

μ = ψγ μγ 5ψ breaks down at the quantum
level ∂μ j5

μ = e
2π

εμνFμν [60]. Therefore, the generalized SSH
model with a single massless Dirac fermion carrying a half-
integer winding number provides a realistic platform to realize
the 1D chiral anomaly, similar to the half-quantized Chern
number (Hall conductance) of parity anomaly in two spatial
dimensions [11].

The 1D chiral anomaly with a half-integer winding number
can be revealed by the topological Thouless charge pump in
experiments [48,49]. For a periodically driven system, the
transported charge during one period T can be evaluated by
the time evolution of polarization as [61,62]

Q = PX̂ (T ) − PX̂ (0) = 1

2π
Im log[〈
(t )|ei2π X̂/L|
(t )〉], (6)

where the instantaneous wave function |
(t )〉 is composed
of occupied states at time t and X̂ is the position operator.
For a lattice with L unit cells, the operator X̂ can be writ-
ten in the form of a diagonal matrix as X̂ = diag{−L,−L +
1, . . . , L} ⊗ σ0. To investigate the charge pumping, we
modulate the static Hamiltonian Eq. (1) by a time pe-
riodic potential [17] H ′(t ) = J0

∑
i[ψ

†
i sin2(πt/T )σxψi +

ψ
†
i sin(2πt/T )σzψi]. As shown in Fig. 2(b), the transfer of

pumped charge in one period exhibits one half of the elemen-
tary charge, i.e., |Q| = 1

2 , in contrast to the gapped topological
phase where the pumped charge is always an integer. Such a

topological property with half-integer quantization can also
be detected in experiments by measuring the mean chiral
displacement (MCD) [35,50]. For the lattice Hamiltonian
Eq. (1), we can calculate dynamics of the chiral displacement
operator

C(t ) = 〈ϕ(t )|(2�̂X̂ )|ϕ(t )〉, (7)

where the �̂ is the chiral operator defined as � =
diag{1, . . . , 1} ⊗ σz. Choosing an arbitrary initial wave
function |ϕ0〉, its time evolution is given by |ϕ(t )〉 =
exp(−iH0t )|ϕ0〉. The dynamics C(t ) displays a oscillatory
behavior and converges to the winding number w as shown
in Fig. 2(c). By taking the time average, the MCD is given
by C̄ = limt→∞ 1

t

∫ t
0 dt ′C(t ′) = 1

2 , confirming the presence of
1D chiral anomaly in the generalized SSH model with single
massless Dirac fermions. Otherwise, the long-time dynamics
of C(t ) is trivial in the absence of dimerization with � = 0.
Moreover, due to the inevitable existence of disorder in real-
istic systems, the evolution of 1D chiral anomaly with respect
to disorder requests to be further verified.

III. STABILITY UNDER ON-SITE
RANDOM FLUCTUATIONS

We then consider the influence of random fluctuation with
on-site disorder described in Eq. (1). The random poten-
tial breaks the translational symmetry of the lattice, so the
winding number cannot be calculated in momentum space.
Here, we alternatively construct the projection operators based
on diagonalizing the real-space tight-binding Hamiltonian
Eq. (1), and then the winding number in real space can be
given by [35,63]

w = −Q̂BA[X̂ , Q̂AB], (8)

where Q̂AB = ŜAQ̂ŜB, Q̂ = Ŝ+ − Ŝ− with the positive and neg-
ative energy projection operators Ŝ±, and ŜA,B = 1

2 (Î ± �̂)
denote the sublattice projection operators. To reveal the in-
fluence of on-site disorder on the 1D generalized SSH system
with a single Dirac cone, we compute the disorder dependence
of the winding number using Eq. (8) for different values of
� as depicted in Fig. 3(a). It is found that the half-integer
winding number is destroyed since the chiral symmetry
is broken in the presence of on-site disorder. Fortunately,
the enhancement of dimerization is in favor of stabilizing
the half-quantized feature against disorder as shown Fig. S2
in the Supplemental Material [57]. For instance, the winding
number can be nearly preserved as 1

2 up to a relatively strong
disorder strength W ≈ 1 when � = 2 [see the blue-dotted
line in Fig. 3(a)]. This can also be verified by one-half of
the pumped charge in the topological Thouless pumping [see
Fig. 3(b)]. As shown in Fig. 3(c), we depict the time evolution
of chiral displacement C(t ). Although the fluctuation of C(t )
is larger that in the absence of disorder, the time average
of |C(t )| can always converge to w ≈ 1

2 in the regime of
moderate disorder strength if increasing the dimerization of
the system (see Fig. S1 in the Supplemental Material [57]).
Therefore, despite the fact that half quantization of the wind-
ing number is not exact, the interplay between the disorder and
dimerization offers a strategy for effectively suppressing the
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FIG. 3. (a) The disorder-averaged winding number as a func-
tion of the strength of on-site disorder W for different values of
�. For W = 1 (denoted by the vertical dashed line), the winding
number can be nearly preserved as 1

2 with increasing �. (b) The
disorder-averaged time evolution of polarization PX (t ) in one period
T . (c) The time evolution of chiral displacement C(t ) for the system
with L = 2000 unit cells under on-site disorder. The strength of
disorder is fixed to W = 1 in (b) and (c).

influence of on-site disorder, which facilitates the observation
of the 1D chiral anomaly in experiments.

IV. TOPOLOGICAL TRANSITION OF 1D CHIRAL
ANOMALY INDUCED BY BOND DISORDER

As discussed above, we can see that the on-site disor-
der cannot induce any topological transition. To establish
the connection between the 1D chiral anomaly and its ac-
companying topological transition, we further investigate the
effects of bond disorder. As shown in Fig. 4(a), with an
increase of disorder strength, the calculated wind number
displays from the initial w = 1

2 to another topological phase
with w = 1 undergoing a crossover with disorder-enhanced
topological charge pumping, and finally evolves to a trivial
phase with w = 0. To reveal the interplay between the topo-
logical transition and disorder-induced localization of states,
we calculate the inverse participation ratio (IPR) and the
normalized participation ratio (NPR) [52,64], which can be
obtained by

IPR =
∑
i,n

∣∣ϕi
n

∣∣4
, NPR =

(
L

∑
i,n

|ϕi|4
)−1

, (9)

where ϕi
n = 〈i|ϕn〉 is the wave function at site |i〉 for the nth

eigenvector |ϕn〉. The calculated results of IPR and NPR are
plotted as the blue and red lines in Fig. 4(a). In the absence
of disorder, the system is in the extended phase with IPR = 0
and NPR �= 0. In the case of low disorder strength, we can
see a crossover which corresponds to an intermediate regime
where the IPR and NPR are both finite. When the disorder
strength increases, the NPR decays rapidly and there is only
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FIG. 4. (a) The disorder-averaged winding number (left axis)
and the averaged IPR/NPR (right axis) as a function of strength of
random bond disorder U . Three topologically different regimes are
labeled by the crossover (w < 1, IPR �= 0, and NPR �= 0), the TAI
(w = 1, IPR �= 0, and NPR = 0), and the trivial Anderson insulator
(w = 0, IPR �= 0, and NPR = 0). (b) The disorder-averaged time
evolution of polarization PX (t ). The pumped charge in one period
T is integer quantized |Q| = 1. (c) The time evolution of chiral
displacement C(t ). (d) The probability density of the boundary wave
function in the TAI phase. The inset show the energy spectrum near
the band center E = 0, and two zero modes are denoted by the red
dots. (e) The phase diagram depicted by � and U , where the regimes
of TAI are enveloped by the white dashed line. We set the parameter
� = 1 in (a)–(d) and the disorder strength U = 4 in (b)–(d).

the finite IPR. As a result, the wave functions are localized
and the system evolves into the Anderson insulator phase with
w = 1 [57]. This topological regime corresponds to a TAI
phase [53] which belongs to the chiral AIII symmetry class
[5,63]. To further confirm this, we respectively calculate the
topological Thouless charge pump and dynamics of the chiral
displacement as shown in Figs. 4(b) and 4(c). In addition, the
TAI phase should host the related boundary states, and thus we
calculate the energy spectrum using open boundaries with 500
unit cells. As plotted in Fig. 4(d), we can see that there are two
zero-energy modes whose wave functions are localized at the
boundary sites. Moreover, it is worth noting that, similar to the
case of on-site disorder, the dimerization parameter � may af-
fect the critical disorder strength of the topological transition.
To reveal this, we calculate a comprehensive phase diagram
depicted by the parameters (�,U ) as plotted in Fig. 4(e). It
is found that the TAI cannot be formed by bond disorder if
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the dimerization parameter is absent, � = 0. Also, we can see
that the region of crossover is expanded with increasing �.

V. SUMMARY

In summary, we have theoretically investigated the 1D
chiral anomaly in the generalized SSH model with long-range
hopping. We argue that such a topological system character-
ized by the winding number w = 1

2 possesses a single gapless
Dirac cone, which can give rise to the nonconservation of
chiral current under a background electromagnetic field. We
show that the 1D chiral anomaly leads to half-quantized
topological charge Thouless pumping and the anomalous
dynamics of chiral displacement. Through controlling the
dimerization of SSH chains, we uncover that the influence of
on-site random fluctuation upon the experimental detection
can be effectively minimized and the half-integer quantization
can be nearly preserved in the regime of moderate disorder
strength. Moreover, under the bond disorder, we show that

a system with 1D chiral anomaly can evolve into a TAI
phase with integer-quantized topological charge, which
results from a unique disorder-enhanced topological Thouless
pumping. Considering the recent experimental progress in
studies of various 1D topological phases in artificial and
condensed-matter systems [35,65–70], we expect that our
proposed 1D chiral anomaly in a generalized SSH model can
be realized in experiments and further attract more intense
studies of lower-dimensional topological physics.
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