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Higher-order topological superconductor phases in a multilayer system
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Higher-order topological phases are gapped phases of matter that host gapless corner or hinge modes.
For the case of superconductors, corner or hinge modes are gapless Majorana modes or Majorana zero
modes. To construct three-dimensional higher-order topological superconductors, we consider a topological-
insulator/superconductor multilayer under in-plane Zeeman coupling. We found three different types of
higher-order topological superconductor phases, a second-order topological superconductor phase with Majo-
rana hinge flat bands, a second-order Dirac superconductor phase with surface Majorana cones and Majorana
hinge arcs, and nodal-line superconductor phases with drumhead surface states and Majorana hinge arcs.
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I. INTRODUCTION

Topological insulators (TIs) and topological superconduc-
tors (TSCs) are electronic systems that have a gapped bulk
spectrum and gapless boundary modes. These systems have
been initially classified by the Altland-Zirnbauer symmetry
class by the presence/absence of time-reversal, particle-
hole, and chiral symmetries [1,2]. Beyond this classification,
topological semimetals [3–6] that have gapless bulk nodes,
topological crystalline insulators [7,8] that are protected by
crystalline symmetries, and their corresponding superconduc-
tors (SCs) [9–14] have been widely studied.

Topological systems show quantized responses directly
related to the topological numbers of the electronic states
in filled bands. In two dimensions, quantum Hall, quantum
anomalous Hall (QAH), quantum spin Hall (QSH), and TSC
systems show the quantized (electric, spin, thermal) Hall con-
ductivity [15–17]. In one dimension, electronic systems with
inversion symmetry have a quantized dipole moment [18–21].
The concept of the dipole-moment quantization has been
extended to the multipole quantization such as quadrupole
and octupole moments [22,23]. Electronic systems hosting
quantized multipole moments are known as higher-order TIs
[22–26]. Multipoles are quantized in the presence of crys-
talline symmetry such as reflection, rotation, and inversion
[27], and hence the higher-order TIs are topological crys-
talline insulators beyond the conventional classification of
topological insulators. In general, nth-order TIs host gapless
modes in a (d − n)-dimensional subspace, where d is the
material’s dimensions. Specifically, while first-order TIs are
usual TIs, second-order TIs have corner zero modes in two
dimensions and gapless hinge modes in three dimensions.
Higher-order topological phases has been confirmed in pho-
tonic systems [28–30].

Of particular interest are the higher-order topological
superconductors (HOTSCs) [31–60] as they host localized
Majorana zero modes, which can be utilized in quantum
computation [61]. Specifically, two-dimensional (2D) second-
order topological superconductor (SOTSC) phases have been
predicted in heterostructures such as the 2D TI/d-wave or

s±-wave SC [37,62,63], second-order TI/SC [40,64], p ±
ip/d-wave SCs [35], 3D antiferromagnetic TI/SC [38],
2D TI/s-wave SC under an in-plane magnetic field [65–69],
Rashba-metal/s + id-wave SC [70,71], a π junction of
SC/QSH-bilayer/SC [72], and so on. However, not as much
is known about the construction of 3D HOTSC phases by
heterostructures.

For the construction of novel three-dimensional topo-
logical phases, one possible route is to make a multilayer
structure of topological materials and other gapped materials.
This strategy has been adopted for creating Weyl semimetal
(WSM) phases by multilayers of a TI/trivial insulator and
WSM/trivial insulator [5,73]. The method has been applied
to multilayers of SC/TI and SC/WSM to construct Weyl su-
perconductor (WSC) phases [10,74], which have point nodes
in the bulk superconducting states and Majorana Fermi arcs on
the surface. Recently, a π junction through two Rashba-metal
layers under an in-plane magnetic field has been predicted
to be a 2D SOTSC [75]. This system is similar to a part of
the SC/TI multilayer, as both systems require a π junction
(π -phase difference) between neighboring SCs [10]. So it is
natural to expect that a multilayer of SC and TI under an
in-plane magnetic field shows 3D HOTSC phases.

In this work, we study a multilayer of TI and conventional
SC forming a π junction under in-plane Zeeman coupling
[Fig. 1 (right)]. The phase difference between neighboring
SC layers can be tuned by a magnetic flux inserted through
a Josephson junction whose endpoints are connected to the
SC layers (not explicit in Fig. 1 (right); see [10,76]). Let
us see what could happen under in-plane Zeeman coupling.
When the Zeeman field aligns the out-of-plane direction,
WSC phases appear between weak TSC phases whose sec-
tions (let us say normal to the kz axis) in the momentum space
have nontrivial Chern numbers [10]. By flipping the Zeeman
field, the sign of the Chern number is reversed. With this
mechanism, when the Zeeman field is tilted to the in-plane
direction, weak TSC phases turn to nodal-line superconductor
(NLSC) phases by closing a bulk gap at each kz. Similarly,
the WSC phases also turn to NLSC phases, where nodes in a
WSC phase are connected by nodal lines. In addition to NLSC
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FIG. 1. A single unit of superconductor(SC)/topological
insulator(TI)/SC layers and a multilayer model of TI/SC under
in-plane Zeeman coupling. In the multilayer model, each SC layer
consists of two SC layers [SC(�SC) and SC(−�SC)] forming a π

junction separated by an insulator layer.

phases, we found a 3D SOTSC phase and a second-order
Dirac superconductor (SODSC) phase [45]. The 3D SOTSC
is a bulk-gapped SC where the kz section is a 2D SOTSC. The
SODSC is a bulk-gapped SC where the kz section is either
a 2D SOTSC or a trivial SC, and surface Majorana point
nodes separate them. The emergence of SOTSC phases in this
multilayer system has been overlooked in previous works as
these phases cannot be deduced from bulk and surface spectra.
In addition, we found that NLSC phases that appear next to
the 3D SOTSC phase have both drumhead surface states and
Majorana hinge states forming a flat band.

This paper is organized as follows. We first study effec-
tive low-energy models of a TI/SC multilayer under in-plane
Zeeman coupling in Sec. II. We review the case with a single
layer and thoroughly study the π -junction case as these results
are used in the multilayer case. Then we study the effective
multilayer model. To make the presence of Majorana hinge
modes clear, we numerically study a lattice multilayer model
in Sec. III. Similarly to the previous section, we start with a
detailed study of a single-layer model and then move on to the
multilayer case. We finally conclude in Sec. IV.

II. EFFECTIVE SURFACE MODEL

First, we consider an effective model, in which only the
surface Dirac fermions of the 3D TI layer are taken into ac-
count as an effective low-energy theory. SCs are incorporated
as an induced pair potential by the proximity effect.

A. Single unit

Let us discuss a single unit case, that is, a single TI layer
sandwiched by two SCs [Fig. 1 (left)]. This system is similar
to models studied in [68,75,77], but we will review in par-
ticular the SOTSC phase and the corner Majorana modes in
detail, aiming to extend to the multilayer system. The effective

Hamiltonian reads

H =
∑
k⊥

[c†
k⊥H0(k⊥)ck⊥ + c†

k⊥H�(k⊥)c†
−k⊥ + H.c.],

H0(k⊥) = vF (ẑ × σ ) · k⊥ρz + tsρ
x + �Zn · σ,

H�(k⊥) = i�SCσ y(cos ϕ/2 + iρz sin ϕ/2), (1)

where ck⊥ = (ψk⊥top↑, ψk⊥top↓, ψk⊥bottom↑, ψk⊥bottom↓), k⊥ =
(kx, ky) is the momentum along the TI surface, σ and ρ are
the Pauli matrices for the spin and top/bottom-surface de-
grees of freedom, respectively, vF is the Fermi velocity of
the surface Dirac fermion, and ẑ is the unit vector normal
to the surfaces.�SC is the induced pair potential and ϕ is the
phase difference between the pair potential from the top and
bottom SCs. �Z is the magnitude of Zeeman coupling and n
is the orientation of the Zeeman field. The intralayer tunneling
amplitude between the top and bottom surfaces of the 3D TI
is ts.

In the Nambu space, the total Hamiltonian reads

Hsingle(k⊥) = vF (−kxσ
yρzτ z + kyσ

xρz ) + tsρ
xτ z

+ �Z(nxσ
xτ z + nyσ

y + nzσ
zτ z )

− �SCσ y(τ y cos ϕ/2 + ρzτ x sin ϕ/2), (2)

where τ is the Pauli matrix acting on the Nambu space.
This model is invariant under particle-hole conjugation by
P = τ xK, where K is the complex conjugation operator.
Provided the phase difference is either 0 or π and Zeeman
coupling is absent, the model is invariant under time reversal
by 	 = iσ yK when ϕ = 0 and 	 = iσ yτ zK when ϕ = π

[77]. Regarding crystalline symmetry, the model without Zee-
man coupling has mirror symmetry Mx = σ xτ z and My = σ y

with respect to the plane normal to the x and y axes, re-
spectively, and fourfold rotational symmetry U4 = eiπσ zτ z/4

with respect to the z axis. Notice that Zeeman coupling can
break the mirror and rotational symmetries mentioned above.
Combining mirror symmetry Mz = σ zρxτ x with respect to the
plane normal to the z axis, the total Hamiltonian is invariant
under 3D inversion, I = MxMyMz ∝ ρx.

Let us first discuss the phase diagram without Zeeman
coupling (�Z = 0). Without the proximity effect (�SC = 0),
a thin TI layer is a quantum spin Hall (QSH) insulator [78].
When the proximity effect is turned on, the bulk phase de-
pends on the phase difference ϕ. The bulk spectrum has an
energy gap (t2

s + �2
SC ± 2ts�SC sin ϕ/2)1/2. For the 0 junction

(ϕ = 0), the energy gap (t2
s + �2

SC)1/2 indicates that there is
no phase transition between the ts-dominated region (QSH)
and the �SC-dominated region, and thus the resulting phase
is a trivial SC phase. From the edge perspective, the helical
edge modes in QSH disappear by an energy gap induced
by the proximity effect [79]. On the other hand, for the π

junction (ϕ = π ), the energy gap is ts ± �SC, which indicates
a topological phase transition at |�SC| = |ts|. The phase with
�SC/ts > 1 is the helical TSC phase which is protected by
time-reversal symmetry [77]. When the phase difference is
slightly changed from ϕ = π , the helical TSC phase disap-
pears as time-reversal symmetry is broken.
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FIG. 2. The phase diagrams of a single unit of a SC/TI/SC
Josephson junction, where the phase difference is 0 (left) and π

[right, see Fig. 1 (left)], in �Z-�SC space. Large Zeeman coupling
regions (�Z � �SC) are dominated by topological superconductor
(TSC) phases when an out-of-plane Zeeman field is applied and Weyl
superconductor (WSC) phases when in plane. A second-order topo-
logical superconductor (SOTSC) phase with two Majorana corner
modes appears in the large pair-potential region (�Z � �SC) in a π

junction.

Including Zeeman coupling in the 0 junction, the spectrum
is given by

ε2 = v2
F

(
k2

x + k2
y cos2 θ

)

+ (
�Z ±

√
v2

F k2
y sin2 θ + t2

s + �2
SC

)2
, (3)

where n = (sin θ, 0, cos θ ). All states are doubly degener-
ate. Unless the Zeeman field is oriented in plane (θ �=
π/2), the energy gap closes at k⊥ = (0, 0) when �Z =
±(t2

s + �2
SC)1/2. The phase diagram is shown in Fig. 2 (left).

The Zeeman-coupling-dominated phase is a time-reversal-
symmetry-broken TSC phase with the Bogoliubov–de Gennes
Chern number N = ±2. The Chern number is determined by
the sign of the z component of the Zeeman field (sign[�Znz]).
Hence, when the Zeeman field aligns the in-plane direc-
tion (θ = π/2), the Zeeman-coupling-dominated phase is the
topological phase transition point between the TSC phases
with N = 2 and −2. This phase is a 2D WSC phase, which
has point nodes in the bulk. Notice that the energy gap of
the helical edge mode opened by the proximity effect can
be closed and reopened by Zeeman coupling. When Zeeman
coupling works at different magnitudes for different edges
in a rectangular geometry, corner Majorana modes could ap-
pear between �SC-dominated and �Z-dominated edges [79].
This phase is a SOTSC phase with four corner Majorana
modes [66]. However, the appearance of these corner Majo-
rana modes depends on the orientation of the Zeeman field
and does not accompany a bulk topological phase transition
as this is solely an edge phenomenon. This phase is not the
focus of this study.

On the other hand, including Zeeman coupling in a π

junction, the eigenenergy is given by

ε2 = v2
F

(
k2

x + k2
y cos2 θ

)

+ (
�Z ±

√
v2

F k2
y sin2 θ + (ts ± �SC)2

)2
. (4)

Unless in plane (θ �= 0), there are topological phase transi-
tions at �Z = ±ts ± �SC [Fig. 2 (right)]. Between the TSC

phase with N = 2 (continuously connected to the QAH
phase) and the SC phase, a TSC phase with N = 1 appears,
which is similar to Ref. [80]. Similarly to the 0-junction case,
when the Zeeman field aligns the in-plane direction, TSC
phases become WSC phases. The focus of this study is the
SOTSC phase when �SC is dominated.

Let us analyze this phase from the edge perspective fol-
lowing Ref. [77]. Without Zeeman coupling, the helical TSC
phase has helical Majorana edge modes that are protected by
time-reversal symmetry. Consider an edge at y = 0 where the
bulk is in y > 0. The helical Majorana modes with kx = 0 are
the solution of Hsingle(0,−i∂y)ψ (y) = 0 by slightly changing
the tunneling term as ts → ts − B∂2

y (B > 0). To satisfy the
boundary condition ψ (y = 0) = 0 and ψ (y → ∞) = 0, the
equation is solved with an ansatz wave function,

ψ (y) ∝ (e−η+y − e−η−y)φ, (5)

where φ is an eight-component spinor. Two solutions ψR/L(y)
are present provided �SC > ts and are given by η± = {vF ±
[v2

F + 4B(ts − �SC)]1/2}/2B with eigenspinors φ = φR/L, re-
spectively. Since φR (φL) is the eigenvector of −vF kxσ

yρzτ z

with eigenvalues vF kx (−vF kx), these correspond to the helical
Majorana edge modes.

The helical Majorana modes are gapped by Zeeman cou-
pling [34,75]. Since 〈φR|σ xτ z|φL〉 = i, the x component
of the Zeeman coupling opens a gap. The gap is finite
unless the Zeeman field is perpendicular to the edge, and the
sign of the gap depends on the relative direction between the
Zeeman field and the edge. The orientation of the edge is
defined in the counterclockwise direction around the bulk.
In a rectangular geometry, the sign of the gap changes at
two corners provided that the in-plane Zeeman field is not
parallel to any of the edges. These corners can be viewed as
domain walls where the sign of the gap changes and thus bind
corner Majorana zero modes [75]. Since the mass induced
by in-plane Zeeman coupling is odd under twofold rotational
symmetry C2, the presence of the corner Majorana zero modes
is guaranteed in rectangular geometry [27,34,39]. This phase
is a 2D SOTSC phase with two Majorana corner modes.

B. Multilayer

Next, we extend the model in the previous section to a
multilayer model by stacking TI and SC layers repeatedly
[Fig. 1 (right)]. The case in which the Zeeman field aligns
the out-of-plane (z) direction has been studied in [10]. The
low-energy effective Hamiltonian is given by

H =
∑

i, j,k⊥

�
†
ik⊥Hi j (k⊥)� jk⊥ , (6)

where i, j are the index of the TI layers, k⊥ = (kx, ky), and
�ik⊥ = (cik⊥ , c†

i−k⊥ ). The Hamiltonian of each TI layer is the
same as the one in the previous section [Eq. (2)], and the
tunneling terms couple neighboring layers as

Hi j (k⊥) = Hsingle(k⊥)δi j + td
2

(δi, j+1ρ
− + δi, j−1ρ

+)τ z. (7)

By Fourier transform in the z direction, we obtain the Hamil-
tonian in the momentum space,

H(k) = Hsingle(k⊥) + td (cos kzρ
xτ z + sin kzρ

yτ z ), (8)
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where k = (kx, ky, kz ). This model has the same symmetries
as the single-unit model, that is, particle-hole and inversion
symmetries, while time-reversal, fourfold rotational, and mir-
ror symmetries are broken by Zeeman coupling.

In the following, we focus on the π phase difference and
the x component of the Zeeman field. Comparing Eqs. (2)
and (8), the Hamiltonian of the multilayer model at kz = 0
and π is the same as that of the single layer by replacing
intralayer coupling by ts → ts + td and ts − td , respectively.
So, we can deduce the phase diagram of the multilayer model
from the single-layer results. In the following, we assume
ts > td > 0, but the other case can be discussed in the same
way.

Without Zeeman coupling, the phase with �SC > ts + td
has helical Majorana surface modes in the entire kz space
(kz ∈ [−π, π ]). This phase is a 3D helical TSC phase, each
kz section of which is a 2D helical TSC. On the other hand,
in the phase with �SC ∈ [ts − td , ts + td ], helical Majorana
surface modes are present at kz = π , but absent at kz = 0.
This indicates a helical Majorana Fermi arc on the surface
and Weyl nodes in the bulk. This is a 3D WSC phase
[Fig. 3(b)].

Including Zeeman coupling along x direction, the helical
TSC phase becomes a 3D SOTSC phase as an energy gap
opens in the helical Majorana surface modes. Majorana hinge
modes form a flat band at ε = 0. What is interesting in this
model is the appearance of NLSC phases, which has no corre-
spondence in the single-unit model [Fig. 3(c)]. By increasing
Zeeman coupling, the 3D SOTSC phase turns to an NLSC
phase as the 2D SOTSC phase at the kz = 0 section turns to
a 2D WSC phase [see Fig. 2 (right)]. Let us check the bulk
energy spectrum. Here we consider the spectrum at kx = 0,

ε(kx = 0, ky, kz ) = ± �Z ± [
(vF ky)2 + (

�SC

±
√

t2
s + t2

d ± 2tstd cos kz
)2]1/2

. (9)

Nodal line(s) appears in the ky-kz plane. The condition of
the appearance of the bulk nodes is |�Z| > |�SC ± (t2

s + t2
d ±

2tstd cos kz )1/2|. Nodal lines are present in the region where
this condition is satisfied. The phase diagram on �SC-�Z

space is shown in Fig. 3(a). Along the dashed lines, the
geometrical feature of the nodal-line shape changes. Notice
that as the orientation of the Zeeman field deviates from
the in-plane direction, nodal lines are gapped out except at
k⊥ = (0, 0) and becomes a 3D WSC phase [10]. In the limit
of �SC = 0, two nodal lines close to each other fuse and
become a nodal-line semimetal (NLSM) [(V) and (VII) phases
in Fig. 3(a)].

Specifically, in phase (I) in Fig. 3(a), Zeeman coupling
turns the bulk nodes into bulk nodal lines [Fig. 3(b) into
Fig. 3(c)]. The nodal lines accompany drumhead states inside
loops that are the projection of the bulk nodal lines onto
the surface. These drumhead states are bound to the surface.
Now the helical Majorana Fermi arc disappears as Zeeman
coupling opens a gap. Instead, zero modes appear at the hinge.
The Majorana hinge modes form a flat band in part of the
Brillouin zone along kz, whose endpoints are at the edges
of the drumhead states [Fig. 3(c)]. An explicit form of the
wave function of the Majorana hinge modes can be obtained

FIG. 3. (a) The phase diagram of the effective multilayer model
[Fig. 1 (right)] with π phase difference in �Z -�SC space, and
the shape of the line nodes in the bulk in the ky-kz plane. Large
pair potential favors a three-dimensional second-order topological
superconductor (SOTSC, the orange area) phase, while large Zee-
man coupling favors nodal-line superconductor (NLSC, blue areas)
phases. Between them, NLSC phases with drumhead surface modes
and hinge modes (light-orange regions) appear. The position of the
zero modes in the bulk, surface, and hinge in the momentum space is
shown, (b) without and (c) with in-plane Zeeman coupling, which
correspond to Weyl superconductor (WSC) and NLSC phases in
phase (I), respectively.

at kz = 0 and π in the same manner as the single-layer case.
A similar situation also happens in the (II) phase in Fig. 3(a).
The number of Majorana hinge modes in (I) and (II) changes
continuously between the SOTSC phase and the NLSC phases
(III) and (IV) without Majorana hinge modes. The (I) and (II)
phases are unique to a 3D multilayer system in the sense that
these phases shrink in the limit of vanishing interlayer cou-
pling td → 0, and the phase at each kz section is not uniform.
The origin of the Majorana hinge zero modes is the same as
in the single-unit model as this multilayer model respects the
same symmetries.

III. LATTICE MODEL

In this section, we consider a lattice model to observe the
corner Majorana modes. In this model, the proximity effect
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is incorporated as an induced pair potential on the top and
bottom layers of the TI lattice.

A. Single unit

First, we consider a single unit of an SC/TI/SC layer.
Consider the lattice model of the Bi2Se3-type TI given by
[81,82]

HTI(k) = α(sin kxσ
xλx + sin kyσ

yλx + sin kzλ
y)

+ [m + t (3 − cos kx − cos ky − cos kz )]λz, (10)

where σ and λ are Pauli matrices for the spin and orbital
degrees of freedom, and α is the amplitude of spin-orbit
coupling. By inverse Fourier transform with respect to kz,
we obtain the Hamiltonian in a slab geometry, HTI(k⊥, z, z′).
This model shows strong TI phases when m/t ∈ (−6,−4)
and (−2, 0), a weak TI phase when m/t ∈ (−4,−2), and a
trivial insulator phase otherwise. For a thin film, the 2D bulk
states show a QSH phase when m/t ∈ (−5,−1) and a trivial
insulator phase otherwise. Within the QSH phase, there is a
phase transition point at m/t = −3, where the position of the
helical edge modes changes from k = 0 to π . We also consider
Zeeman coupling and the proximity effect,

HZ(k⊥, z, z) = �Z(n · σ ), (11)

H�(k⊥, z, z) = δz,ztop�SC(− cos ϕ/2σ yτ y − sin ϕ/2σ yτ x )

+ δz,zbottom�SC(− cos ϕ/2σ yτ y+sin ϕ/2σ yτ x ),
(12)

where ztop and zbottom are the position of the top and bottom
surfaces of the TI lattice and τ is the Pauli matrix on the
Nambu space. Here, we consider only a π junction (ϕ = π ).
This model has the same symmetry as the effective model in
the previous section.

Without Zeeman coupling, helical TSC phases appear near
the phase transition point at m/t = −5 and −1 [Fig. 4(a)].
The phase diagram is determined for a lattice model with
three layers. The helical TSC phases near m/t = −1 and −5
have helical Majorana edge modes at k = 0 or π , respectively.
Between two helical TSC phases, there are three different SC
phases, each has two sets of helical Majorana modes. The
momenta at which the helical Majorana modes appear are
shown in Fig. 4(a).

Zeeman coupling induces a 2D SOTSC phase close to the
helical TSC phases, where two or four corner Majorana zero
modes appear. The number of the Majorana corner modes
is equal to that of the helical Majorana edge modes without
Zeeman coupling. The energy spectrum of 20 × 20 sites with
thickness of 3 sites is shown in Fig. 4(e), where we used
parameters α/t = 1, m/t = −5,�SC/t = 1,�Z/t = 0.4, and
n = (1/

√
2, 1/

√
2, 0). With these parameters, the bulk energy

gap is ∼0.5t and Zeeman coupling opens a gap in the edge
modes, leaving zero-energy Majorana corner modes. In this
system, the edge gap is opened by Zeeman coupling perpen-
dicular to the edge (e.g., the y component on the edge along
x). As a result, Majorana zero modes appear at corners where
the sign of the z component of n × e (e is the unit vector
parallel to the edge) changes. The position of the Majorana
corner modes depends on the details of the model and is

FIG. 4. (a) The phase diagram of a π junction through a three-
layer TI on m-�SC space without Zeeman coupling. Shaded regions
are helical topological superconductor (TSC) phases, and the number
and the position of helical edge Majorana modes are indicated.The
phase diagrams with Zeeman coupling are shown on �Z-�SC space
at (b) m/t = −6, (c) m/t = −5.5, and (d) m/t = −5. Zeeman
coupling turns helical TSC phases into second-order topological
superconductor (SOTSC) phases. Even larger Zeeman coupling turns
them into Weyl superconductor (WSC) phases. (e) The energy spec-
trum at m/t = −5, �SC/t = 1, �Z/t = 0.4 [red point in (d)] and the
wave function of the corner Majorana modes (inset).

different from the effective low-energy theory in the previous
section and Ref. [75]. Notice that if we use another model
of TI with cos kzσ

zλx in place of cos kzτ
y in Eq. (10) (e.g.,

see [81]), an energy gap of the helical Majorana edge mode
is opened by the orbital-dependent Zeeman coupling and the
gap size is proportional to its edge-parallel component (e.g.,
for an edge along x, σ xλzτ z). In this case, the position of the
corner Majorana modes is consistent with the effective model.

The phase diagram on �Z-�SC space is shown for m/t =
−6,−5.5, and −5 [Figs. 4(b), 4(c), and 4(d), respectively].
Within WSC phases, dashed lines indicate phase-transition
lines where the number and/or the position of the bulk Weyl
nodes changes. When the phase without Zeeman coupling is a
helical TSC (SC) phase, the gapped phase induced by Zeeman
coupling is the SOTSC (SC) phase. The phase diagram is
symmetric with respect to m/t = −3.
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B. Multilayer

Next we consider a multilayer model of the lattice TI and
SC with alternating phases on the top and bottom surfaces,

H =
∑

i, j,k⊥,z,z′
�

†
ik⊥zHi j (k⊥, z, z′)� jk⊥z′ . (13)

Here,

Hi j (k⊥, z, z′)

= [HTI(k⊥, z, z′) + HZ(k⊥, z, z′) + H�(k⊥, z, z′)]δi j

+ td
2

(δi, j+1δz,zbottomδz′,ztop + δi, j−1δz,ztopδz′,zbottom )λzτ z,

(14)

where i, j are the TI layer index and z is the coordinate
of each layer along the stacking direction. We assume that
the interlayer coupling depends on the orbital (∝ λz). If we
employ an orbital-independent interlayer coupling (∝ λ0), the
phase diagram of the multilayer model is the same as that of
the single-layer model, that is, the interlayer coupling does
not work at all and each layer is independent. Notice that t in
Eq. (10) is a parameter of the Hamiltonian and is independent
of the thickness of the TI layer, while ts in the effective model
is the tunneling amplitude of the top and bottom surfaces and
thus is dependent on the thickness.

Figure 5(a) is the phase diagram without Zeeman coupling.
Here we use td/t = 0.5. The bulk phase without the proximity
effect (�SC = �Z = 0) is a strong TI phase near m/t = −5
and −1 and a weak TI phase near m/t = −3. WSC phases
appear between helical TSC and trivial SC phases or between
helical TSC phases [Fig. 5(a)]. The Weyl nodes projected
onto a surface are endpoints of a Fermi arc of helical surface
Majorana modes [Fig. 3(b)]. Any two helical TSC phases
separated by a WSC phase have a different number or position
of the helical Majorana modes.

By including in-plane Zeeman coupling, the helical TSC
phase turns to a 3D SOTSC phase and WSC phases turn to
NLSC phases [Figs. 5(b)–5(d)]. The Majorana hinge modes
appear in the whole kz Brillouin zone in the SOTSC phase
and within a part of the Brillouin zone in some NLSC phases.
Phases with strong Zeeman coupling are mostly NLSC phases
without hinge modes, which is consistent with the effective
model. Dashed lines in NLSC phases represent phase transi-
tions where the number or the shape of the nodal line changes.
In an NLSC phase [the red point in Fig. 5(c)], the energy
spectrum is shown for two geometries: a slab geometry with
the open boundary condition (OBC) in the y direction and
the periodic boundary condition (PBC) in the other directions
[Fig. 5(e)], and in a geometry in Fig. 1 (right) under the OBC
in both x and y directions, while the PBC in the z direction
[Fig. 5(f)]. The drumhead states can be observed in the slab
geometry, while the Majorana hinge modes forming a ε = 0
flat band can be seen in the geometry in Fig. 1 (right). The
hinge modes are terminated at the edge of the drumhead states
as schematically shown in Fig. 3(c).

The strong and weak TI phases around m/t = −5,−3,
and −1 retain surface Dirac cone(s) even in the presence of
the weak proximity effect [green regions in Fig. 5(a)]. Small
Zeeman coupling splits the surface Dirac cone(s) into two

FIG. 5. (a) The phase diagram of a multilayer lattice model
on m-�SC space without Zeeman coupling. Weyl superconductor
(WSC) phases intervene between SC and helical topological su-
perconductor (TSC) phases or between helical TSC phases with
different number/position of helical surface Majorana modes. Strong
and weak topological insulator (TI) phases survive in the presence of
a weak proximity effect. The phase diagrams with Zeeman coupling
on �Z-�SC space are shown at (b) m/t = −6, (c) m/t = −5.5,
and (d) m/t = −5. Zeeman coupling turns helical TSC phases into
second-order topological superconductor (SOTSC) phases, WSC
phases into nodal-line superconductor (NLSC) phases with drum-
head surface modes and hinge modes, and strong TI phases into
second-order Dirac superconductor (SODSC) phases.The energy
spectra of a NLSC with drumhead and hinge modes [m/t = −5.5,
�Z/t = 0.2, �SC/t = 1 and n = (1/

√
2, 1/

√
2, 0) indicated by the

red point in (c)] on a slab geometry with (e) the thickness Ly =
200 and on geometry in Fig. 1 (right) with (f) the size (Lx, Ly ) =
(40, 40). (g),(h) The energy spectra of an SODSC [m/t = −5,
�Z/t = 0.08, and �SC/t = 0.08 indicated by the red point in (d)]
on the same geometry as (e) and (f), but the size of (h) is (Lx, Ly ) =
(60, 60).
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(four) surface Majorana cones [Fig. 5(g)]. This phase is the
SODSC phase [45], where two or four Majorana cones are
on the surface in addition to a Majorana-zero-mode arc on
the hinge connecting the surface nodes. The split of surface
Majorana nodes is approximately proportional to the Zeeman
field normal to the surface (e.g., on a surface normal to the y
axis, the Majorana surface nodes split along the kz direction by
∝ �Zny). This phase is unique to 3D systems in the sense that
there is no correspondence in 2D systems. In the geometry in
Fig. 1 (right), the Majorana hinge zero modes can be seen
and they connect the surface Majorana nodes [Fig. 5(h)].
From this result, the SC phase in the effective model [the SC
phase around the origin in Fig. 3(a)] can be a SODSC phase.
However, we could not identify this phase with our technique
and we leave this problem for future work.

IV. CONCLUSION

In this paper, we studied a multilayer model of TI and SC
layers where the proximity-induced pair potential has alter-
nating signs at the top and bottom surfaces of each TI and
under in-plane Zeeman coupling. In this model, we found
three types of 3D HOTSC phases: (i) a SOTSC phase, each
kz section of which is a 2D SOTSC and that has Majorana
hinge zero modes forming flat bands in the whole kz space,
(ii) a SODSC phase, which has surface Majorana cones and a
Majorana hinge arc connecting them, and (iii) NLSC phases
that have drumhead states on the surface and Majorana hinge
zero modes forming arcs connecting edges of the drumhead
states. The SOTSC phase appears by applying in-plane Zee-
man coupling in a 3D helical TSC phase, while NLSC phases
with drumhead and hinge modes emerge from WSC phases
and intervene between the SOTSC phase and NLSC phases
without hinge states. On the other hand, the SODSC phase
appears around the strong and weak TI phases when both
Zeeman coupling and the proximity effect are small. The
SODSC phase and the NLSC phase with drumhead and hinge
modes are unique to 3D systems.

As a lattice model, we employed Bi2Se3-type TI for numer-
ical study, but the theory could be applied to multilayers with

other TIs. In that case, the relative position of the Majorana
hinge zero modes against the direction of the Zeeman field
could be different from ours as it is dependent on the details of
the electronic structure. From a practical perspective, a mul-
tilayer of Bi2Se3 could be constructed with superconducting
NbSe2 [83] or Pb [84]. In addition, since Zeeman coupling
can be enhanced by doping magnetic impurities to the Bi2Se3

layers [85,86] and since the HOTSC phases appear in small
�Z regions [Figs. 5(b)–5(d)], it is enough to induce Zeeman
coupling which is smaller than the induced pair potential. A
small magnetic field would not disturb the proximity effect
since the critical field is enhanced as SC layers are thinner, and
since the motion of the surface Dirac electron is less affected
by the magnetic field applied in parallel.

A π junction between neighboring SC layers could be real-
ized by connecting them through an SC ring and by threading
a magnetic flux (see Fig. 1 in Ref. [76]). When SC loops are
placed vertically, the applied in-plane magnetic field generates
π -phase difference and simultaneously works as an in-plane
Zeeman field. Notice that once SC loops are fabricated, the
π -junction condition restricts the magnetic field strength and
hence in-plane Zeeman coupling. Fortunately, however, fine
tuning the Zeeman coupling strength is not necessary since
any of the HOTSC phases realized in our model persist down
to the small �Z limit [Figs. 5(b)–5(d)]. In addition, the pres-
ence of Majorana hinge flat modes, which is essential in
higher-order topological phases, is considered to persist even
if the phase difference is not exactly π as long as the bulk
energy gap of the corresponding kz sections remains open (see
discussion for the 2D case in [75].) Notice, however, that the
other Majorana modes such as the bulk nodal lines and the
surface drumhead states can be subject to qualitative changes
by the deviation from π .
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