
PHYSICAL REVIEW B 108, 184516 (2023)

Long-range coupling between superconducting quantum dots induced by periodic driving
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We consider a Josephson bijunction consisting of three superconducting reservoirs connected through two
quantum dots. In equilibrium, the interdot coupling is sizable only for distances smaller than the superconducting
coherence length. Application of commensurate dc voltages results in a time-periodic Hamiltonian and induces
an interdot coupling at large distances. The basic mechanism of this long-range coupling is shown to be due to
local multiple Andreev reflections on each dot, followed by quasiparticle propagation at energies larger than the
superconducting gap. At large interdot distances, we derive an effective non-Hermitian Hamiltonian describing
two resonances coupled through a continuum.

DOI: 10.1103/PhysRevB.108.184516

I. INTRODUCTION

When a Josephson junction is phase biased, Cooper
pairs can be transmitted through the junction, resulting in a
dissipationless supercurrent [1,2]. The microscopic process
explaining this phenomenon is Andreev reflection, where an
outgoing Cooper pair is a result of an incoming electron
reflected into a hole on a normal-superconducting interface
[3]. Consequently, superconducting correlations are nonzero
in the normal region of the junction and Andreev bound
states (ABSs) form [4,5]. Moreover, when a voltage differ-
ence V is applied across the junction, quasiparticles change
their energy by eV when traversing the normal region. The
quasiparticles can then overcome the superconducting gap
of energy 2� by undergoing multiple Andreev reflections
(MARs). Then, whenever the voltage is an integer subdivision
of the gap, eV = 2�/n, there is an additional contribution to
a dc dissipative current, resulting in a subgap structure of the
current-voltage characteristics [6–13].

For a quantum dot (QD) coupled to superconducting reser-
voirs (S) in the presence of voltage bias, it has been shown
that the equilibrium (V = 0) ABSs are replaced by resonances
with a finite width since MARs provide a mechanism of
coupling to the continuum of states of the reservoirs [14–16].
Floquet replicas of these resonances, separated by integer
multiples of the drive, appear due to the time periodicity
of the system [17–19]. Therefore, superconducting quantum
dots offer the unique advantage of exploring Floquet physics
without suffering from thermalization problems [20]. Indeed,
some mechanism of energy localization is required to avoid
thermalization [21]. Here, this is provided by the supercon-
ducting gap and the fact that the ABSs of quantum dots remain
detached from the superconducting continua. This, in turn,
produces sharp Floquet resonances when the voltage is turned
on, provided the coupling to the superconductors is small with
relation to the superconducting gap.

*akeliri@lpthe.jussieu.fr

In multiterminal configurations, commensurate voltages
are required in order to have a single basic frequency in
the system. The simplest nontrivial case then involves a
three-terminal junction biased in the quartet configuration
of voltages, where two superconductors are biased at op-
posite voltages, Va = −Vb, and the third one is grounded,
Vc = 0. Besides the general interest in multiterminal Joseph-
son junctions as synthetic topological matter [22], the quartet
configuration is of interest since it permits a dc supercurrent
[23,24] and correlations between Cooper pairs [25–29].

In the case of a three-terminal S-QD-S-QD-S junction,
which we will also call a bijunction, and in the absence of volt-
age bias, the ABSs on each dot hybridize and form an Andreev
molecule, producing nonlocal effects in the Josephson current.
The Andreev molecule and its signatures have been the recent
subject both of theoretical [30–34] as well as of experimental
studies [35–40]. When the Andreev molecule is biased in the
quartet configuration, the molecular character of the system
causes splitting of the Floquet resonances and modification
of the subgap structure, as long as the interdot distance is
comparable to the superconducting coherence length ξ0 [41].
However, in contrast to the equilibrium case, one expects that
a nonlocal coupling between the dots of the biased system
should persist at interdot distances which are much larger
than ξ0 [42]. We have previously shown that at large interdot
distances, the system behaves like an interferometer, resulting
in a MAR dc current that oscillates as a function of the volt-
age [41]. The interference is due to a Floquet version of the
geometrical interference effect first discovered by Tomasch in
thick superconducting films [43,44]. The Tomasch effect en-
sues from the interference between electronlike and holelike
quasiparticles which are degenerate in energy, but differ in
their wave numbers, ke,h − kF = ±√

E2 − �2/h̄vF [45,46].
As a result of the interference, the tunneling current and the
density of states (at energies larger than the gap) oscillate as a
periodic function of the applied voltage V and the thickness d
of the film that appear in the combination 2d

h̄vF

√
(eV )2 − �2. A

typical thickness in the Tomasch experiments was a few tens
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FIG. 1. Sketch of the three-terminal junction considered in this
paper.

of micrometers, which corresponds to a distance two orders
of magnitude larger than a typical superconducting coherence
length.

In this paper, we show that the long-range coupling
between the dots of the driven bijunction is due to processes
that involve local MARs on each dot, followed by quasipar-
ticle propagation at energies above the gap, |E | > �, in the
middle superconductor, in agreement with [42]. Reference
[42] focuses on the consequences of this Floquet-Tomasch
effect on the quartet supercurrent. Here, we focus on the
consequences on the spectrum of the bijunction, in particular
in the subgap region |E | < �. We find that oscillations appear
in the spectral functions, superimposed on the single-junction
spectral function. The corresponding pole structure of the re-
solvent is drastically modified with respect to the resolvent of
the single junction, and the number of poles that are found in-
creases with the dot separation. We show that the modification
of the resolvent around the single-junction resonances, as well
as the resulting oscillations in the spectrum, can be accounted
for by deriving an effective non-Hermitian two-level model
of resonances coupled through a continuum. The continuum
in this case acts as the sole source of both dissipation and
coupling.

The rest of the paper is organized as follows: In Sec. II,
we present the model Hamiltonian and map the problem to
a tight-binding chain with sites labeled by Floquet modes.
We discuss the coupling of the two dots at the limit of large
interdot distances. In Sec. III, we derive an effective Flo-
quet Hamiltonian corresponding to two discrete states coupled
through a superconducting continuum. Conclusions are pre-
sented in Sec. IV. Details on the derivation of the effective
two-level Floquet operator are presented in the Appendix.

II. MODEL AND METHOD

A. Hamiltonian

We consider a Josephson bijunction as depicted in Fig. 1,
composed of three superconducting reservoirs and two quan-
tum dots. For simplicity, the quantum dots are modeled by
discrete levels at zero energy. Since the reservoirs are biased
with commensurate dc voltages, the resulting Hamiltonian
is time periodic and Floquet theory can be applied. The

configuration (Va,Vc,Vb) = (−V, 0,+V ) used here means
that a basic frequency ω0 = eV/h̄ exists in the system. More-
over, using the Josephson relation φ̇ j (t ) = 2eVj/h̄, we see
that this choice of voltages leads to a static phase, φq =
φa(t ) + φb(t ) − 2φc, where φq is called the quartet phase [25].
Without loss of generality, we can choose a gauge where
φc = 0.

The total Hamiltonian of the bijunction is

H(t ) = H0 + V (t ), (1)

where the static part H0 is a sum of BCS Hamiltonians de-
scribing the superconducting reservoirs j = {a, b, c},

H0 =
∑
jkσ

εkc†
jkσ

c jkσ

+
∑

jk

(�eiφ j c†
jk↑c†

j−k↓ + �e−iφ j c j−k↓c jk↑), (2)

and the time-dependent part V (t ) describes the tunneling be-
tween dots labeled by i = {1, 2} and reservoirs labeled by j,

V (t ) =
∑

i∈dots

∑
jkσ

[Jj (xi )e
is jω0t d†

iσ c jkσ + H.c.]. (3)

The operators c(†)
jkσ

create (annihilate) an electron in the j
reservoir with momentum k and spin σ, while corresponding
operators on the dots are denoted by d (†). For convenience,
we take the dots’ positions to be at x1 = 0, x2 = R, and the
tunnel couplings to be Jj (xi ) = Jjeikxi , with a real amplitude
Jj = J∗

j . We have, moreover, used the notation Vj = s jV.

B. Mapping to a tight-binding chain

Using the basic idea of the Floquet method [18,19,47,48],
quantities can be expanded into Fourier modes e−imω0t , where
integers m can be thought of as positions on a fictional Floquet
direction. One then obtains a time-independent tight-binding
model in an extended Hilbert space [18,49]. A common pro-
cedure is to “project out” the contribution of sites n �= m up
to some large Floquet index n = N and arrive at an effective
Floquet Hamiltonian for the site m [48]. The dimensions of
the obtained tight-binding model depend on the number of
incommensurate drive frequencies [50]. Here, we have one
basic frequency across the system, so we will obtain an effec-
tive one-dimensional (1D) tight-binding model.

The main idea is that since the system does not thermalize,
we can still use the notion of a quasiparticle. We therefore
start by constructing dressed quasiparticle operators �†(t )
[16,41], which are time-periodic solutions of the Bogoliubov–
de Gennes (BdG) equations,

i
d

dt
�†

σ (t ) = [H(t ), �†
σ (t )], (4)

and therefore obey the Floquet theorem

�†(t + T ) = e−iEt�†(t ). (5)

Here, E is the quasienergy, defined modulo the frequency of
the drive [51]. Written as a Fourier series, an ansatz for the
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creation operator is

�†
σ (t ) =

∑
m∈Z

e−i(E+mω0 )t

{ ∑
i∈dots

[um(i)d†
iσ + σvm(i)di−σ ]

+
∑

jk

[um( jk)c†
jkσ

+ σvm( jk)c j−k−σ ]

}
, (6)

where um(i), vm(i) are the electronlike and holelike ampli-
tudes on the dot i. By plugging Eq. (6) into Eq. (4) and in-
tegrating out the amplitudes of the reservoirs um( jk), vm( jk),
we arrive at a set of eigenvalue equations for the amplitudes
on the dots,

(E + mω0)um(i) =
∑

ji′

[
g11

j,ii′ (m + s j )um(i′)

+ g12
j,ii′ (m + s j )vm+2s j (i

′)
]
,

(E + mω0)vm(i) =
∑

ji′

[
g21

j,ii′ (m − s j )um−2s j (i
′)

+ g22
j,ii′ (m − s j )vm(i′)

]
. (7)

The above equations involve “local” Green’s functions
g j,ii′δii′ ≡ g j for the 1D superconductor of the j reservoir,
defined here as

g j (ω) = � j

ivF q(ω)

(
ω −�eiφ j

−�e−iφ j ω

)
and

vF q(ω) ≡ i
√

�2 − ω2θ (� − |ω|)
+ sign(ω)

√
ω2 − �2θ (|ω| − �), (8)

as well as a nonlocal Green’s function g j,ii′ (ω)(1 − δii′ ) ≡
g j (ω, R), which couples the two dots,

g j (ω, R) = eiq(ω)R[cos(kF R)g j (ω) + sin(kF R)� jσz], (9)

where kF is the Fermi wave vector. The phase kF R will be
assumed fixed in order to avoid rapid oscillations at the Fermi
wavelength scale. We have used the notation � j = πρ0J2

j ,

where ρ0 is the density of states in the normal state of the su-
perconductors. Moreover, we are using the shorthand •(m) ≡
•(E + mω0) in order to lighten the notation.

The only nonlocal Green’s function is for j = c since Sc is
the only reservoir that couples with both dots. Due to the fac-
tor eiq(ω)R, the Green’s function gc(ω, R) decays exponentially
at distances larger than ξ0 for energies inside the gap |ω| < �,

while for energies outside the gap |ω| > �, it oscillates with-
out decay as long as there is no mechanism of decoherence in
Sc. A finite quasiparticle lifetime [52] will eventually produce
decay of the quasiparticle propagation in Sc over a mesoscopic
coherence length that should be between two to three orders
of magnitude larger than ξ0 [42].

We rewrite Eq. (7) on the basis of the Nambu spinor 
m ≡
[um(1), vm(1), um(2), vm(2)]T , which collects the amplitudes
on the two dots, by defining a linear operator L that acts on
the states 
m :

(L
)m ≡ M0
m
m − M+

m+1
m+2 − M−
m−1
m−2 = 0. (10)

Equation (10) defines a “Floquet chain operator” L. Written
in a matrix representation, it is a tridiagonal block matrix

of dimension dot ⊗ Nambu ⊗ Floquet. In the tight-binding
analogy, the matrix M0

m describes an on-site energy at posi-
tion m of the chain, while matrices M±

m±1 describe hopping
to neighboring sites through local Andreev reflections. The
recursive character of Eq. (10) makes it possible to write the
Floquet chain operator in a continued fraction form [47,53],

Lmm ≡ L(m) = M0(m) − �+(m) − �−(m), (11a)

�+(m) = M+(m + 1)
1

M0(m + 2) − �+(m + 2)
M−(m + 1),

(11b)

�−(m) = M−(m − 1)
1

M0(m − 2) − �−(m − 2)
M+(m − 1).

(11c)

The explicit form of the matrices in Eq. (11) will be discussed
in the following sections. Throughout this paper, we will con-
centrate on the diagonal part L00 = L(0) since the zeros of
det Lmm correspond to the eigenvalues of an effective Floquet
Hamiltonian for the site m, and therefore give access to a Flo-
quet spectrum. In fact, if we introduce the resolvent operator
R defined as the inverse of the operator L, then the spectral
function can be found by taking an appropriate trace of the
resolvent operator in the Nambu subspace of one of the dots
[54]. More precisely, a time-averaged spectral function over
one period of the drive can be defined [55] as proportional to
the imaginary part of the resolvent operator in the subspace
of one of the dots. If, for example, a normal probe is tunnel
coupled to dot 1, the spectral function will be given by

A1(ω) = − 1

π
Im

[
R11

00(ω) + R22
00(−ω)

] = − 2

π
ImR11

00(ω).

(12)

Expressions for the nondiagonal parts of L, needed for calcu-
lating more complicated observables such as the current, were
given in previous work [41]. Equation (11) can be seen as a
Dyson equation, with self-energy matrices �± that renormal-
ize the zeros of M0 by adding a finite imaginary part to them.
This imaginary part is introduced in practice by the reservoir’s
Green’s functions, contained in the self-energy, which become
imaginary at energies larger than the gap |ω| > �. Physically,
this corresponds to coupling the initial discrete levels (the
ABSs) on the dot(s) to the superconducting continua through
MAR. Then, �+ corresponds to MAR processes which raise
the energy of a quasiparticle above the gap ω > �, while �−
corresponds to MAR processes which lower the energy below
the gap ω < −�. Technically, one can truncate the contin-
ued fractions at some cutoff index |N | > �

ω0
by considering

that the self-energies become small �±(±N ) → 0 at large
energies |ω ± Nω0| � �. Therefore, at voltages which are a
significant fraction of the gap, one can greatly simplify the
expressions of �±, while at small voltages, an increasingly
greater number of Floquet harmonics need to be taken into
account. Here we will concentrate on the former regime since
it facilitates the analytical part of the work while giving some
insight into the involved mechanism of coupling. However,
the Floquet-Tomasch mechanism of coupling that will be de-
scribed in the next section occurs at smaller voltage values
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as well, albeit at higher MAR order and therefore at a higher
order in the tunnel couplings.

C. Large voltage bias, large separation approximation

We will study the bijunction in the regime of large separa-
tion between the two dots (R � ξ0) and voltages which are a
significant fraction of the gap �

2 < ω0 < �. In particular, we
will study the spectrum around energies close to the middle
of the superconducting gap. The opposite regime of small
separation (R � ξ0), which results in strong hybridization of
the states on the dots (molecular regime), has been studied
in previous work [41]. In the same work, we have, moreover,
shown that for energies above the superconducting gap |E | >

� and in the large separation regime R � ξ0, the density of
states (DOS) exhibits oscillations as a function of the energy
and the distance due to the Floquet-Tomasch effect.

At equilibrium, there are two competing mechanisms for
the coupling of the two dots in the molecular regime: (a)
crossed Andreev reflection (CAR) processes, involving the
Andreev reflection of two electrons, one from each dot, which
then form a Cooper pair in the middle superconductor, and (b)
elastic cotunneling (EC) processes, involving normal trans-
mission of quasiparticles through the middle superconductor
[56,57]. In terms of the superconducting Green’s functions,
CAR corresponds to the anomalous propagators, while EC
corresponds to the normal components. An efficient way to
tune the rate between these two processes has recently been
proposed and demonstrated [58,59]. At equilibrium, separat-
ing the two dots at distances larger than ξ0 will result in
trivially recovering the spectrum of two single dots, as both
CAR and EC will be exponentially suppressed. However, we
will show that when the system is periodically driven, a long-
range coupling develops between the dots.

The numerical results for the spectral function on dot 1
of the bijunction are presented in Fig. 2(b) and are compared
with the spectrum of a single junction (dot 2 decoupled from
dot 1) in Fig. 2(a). In the single-junction case, the zeros of the
Floquet chain operator det L(0) are slightly shifted below the
real axis (lower panel), giving a corresponding finite width to
the peaks of the spectral function (upper panel). More details
on the single-junction case are presented in the Supplemental
Material [60]. In the bijunction case, the real part of the reso-
nances is not shifted with respect to the single-junction peaks,
but oscillations appear, superimposed on the single-junction
peaks due to coupling with the second dot. In the complex
plane, the resulting behavior is a proliferation of the zeros
of det L(0). The frequency of oscillations of the resolvent
and, correspondingly, the number of zeros in the complex
plane increase with the distance. The behavior of the zeros
of det L(0) is shown in Fig. 3. At this stage, both Figs. 2 and
3 are calculated without making any approximations, i.e., by
using Eq. (11) and truncating the continued fractions at a large
cutoff index.

The starting point for understanding the results of Figs. 2
and 3 is Eq. (11), which at m = 0 gives

L(0) = M0(0) − �+(0) − �−(0) (13)

=
(

M0
1 (0) −gc(0, R)

−gc(0, R) M0
2 (0)

)
− �+(0) − �−(0).

FIG. 2. Contour plot of log10(| det L(0)|) in the complex plane
showing the zeros of det L(0) (lower panel) and the corresponding
spectral function of dot 1, − 2

π
ImR11

00 (upper panel). (a) Single junc-
tion. (b) Bijunction when the distance between the dots is R = 50ξ0,

showing the interference effect in the DOS due to Floquet-Tomasch
processes. All couplings are set to � j = �/2 and the frequency of
the drive is ω0 = �/2.

The operator L is written on the basis of the four-component
Nambu spinor 
m and is therefore a 4 × 4 matrix acting in
dot ⊗ Nambu space. The diagonal blocks of L correspond to
intradot processes, while the off-diagonal blocks correspond
to interdot processes. Specifically, dots 1 and 2 are each
coupled by local reflections to their closest reservoirs. This
information is contained in the block matrices,

M0
1,2(m) =(E + mω0)12 − gc(m)

−
(

g11
a,b(m + sa,b) 0

0 g22
a,b(m − sa,b)

)
. (14)

The off-diagonal blocks of L(0) couple the two dots
through processes involving nonlocal Andreev reflections.
The off-diagonal coupling term in M0(0) is the nonlocal
Green’s function of the middle reservoir gc(0, R), which is
the dominant source of coupling at small distances R � ξ0,

but becomes exponentially small at large distances for pro-
cesses inside the gap (i.e., for energies |E | < �). Therefore,
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FIG. 3. Evolution of the zeros of det L(0) for different couplings to the reservoirs when the interdot distance is increased. The frequency
of the drive is set to ω0 = �/2 and the couplings are (a) � j = �/2 and (b) � j = �/5.

in the regime of interest, R � ξ0, the coupling of the two dots
will be contained entirely in the self-energy matrices �±(0).
The self-energy elements do not go to zero as e−R/ξ0 , but
are instead limited by a mesoscopic coherence length [42].

For a large voltage bias �
2 < ω0 < �, we can truncate the

expressions for the self-energies [Eqs. (11b) and (11c)] such
that �±(|m| � 2) → 0. Then, the self-energy matrices have
the form

�+(0) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

0 g21
a (1)

[
1

M0(2)

]11
g12

a (1) g21
a (1)

[
1

M0(2)

]14
g21

b (1) 0

0 g12
b (1)

[
1

M0(2)

]41
g12

a (1) g12
b (1)

[
1

M0(2)

]44
g21

b (1) 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠, (15a)

�−(0) =

⎛⎜⎜⎜⎜⎜⎝
g12

a (−1)
[

1
M0(−2)

]22
g21

a (−1) 0 0 g12
a (−1)

[
1

M0(−2)

]23
g12

b (−1)

0 0 0 0
0 0 0 0

g21
a (−1)

[
1

M0(−2)

]32
g21

b (−1) 0 0 g21
b (−1)

[
1

M0(−2)

]33
g12

b (−1)

⎞⎟⎟⎟⎟⎟⎠. (15b)

By inverting the 4 × 4 matrix M0(±2), one can express the self-energies (and therefore the coupling between the dots) as
a function of local and nonlocal Green’s functions of the reservoirs. The inversion of the matrix M0(m) can be performed
blockwise. If the matrix has the form

M0(m) =
(

M0
1 (m) −gc(m, R)

−gc(m, R) M0
2 (m)

)
, (16)

then we can decompose its inverse as (suppressing the indices m, R for brevity)

1

M0
≈

(
1

M0
1

+ 1
M0

1
gc

1
M0

2
gc

1
M0

1

1
M0

1
gc

1
M0

2
1

M0
2
gc

1
M0

1

1
M0

2
+ 1

M0
2
gc

1
M0

1
gc

1
M0

2

)
, (17)
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FIG. 4. Self-energy terms (a) �+,23 and (b) �−,14 couple a hole (electron) on dot 1 to an electron (hole) on dot 2 through propagation in
the middle reservoir. An overall phase e∓iφq eiq(±2)R is accumulated.

where we have made a perturbative expansion in the tunnel
couplings and kept only terms up to O(�2

c ). The nondiagonal
terms of the self-energy can then be written as

�−,14 ≈ g12
a (−1)g21

c (−2, R)g12
b (−1)

×
[

1

M0
1 (−2)

]22[ 1

M0
2 (−2)

]11

, (18a)

�+,23 ≈ g21
a (1)g12

c (2, R)g21
b (1)

×
[

1

M0
1 (2)

]11[ 1

M0
2 (2)

]22

. (18b)

The inverse processes �−,41, �+,32 can be similarly obtained.
The above formulas can be interpreted as specific physical
processes that couple the two dots through local and nonlocal
Andreev reflections. Both processes couple an electron (hole)
at initial energy |E | � � on dot 1 to another hole (electron)
at energy E on dot 2. Initially, the quasiparticle on dot 2 is
Andreev reflected locally on reservoir Sb, whereby its energy
is changed by E ± ω0. This is then followed by a nonlocal
Andreev reflection through the middle superconductor Sc at
energies which are above the gap |E ± 2ω0| > �, so that the
propagation is not limited by the superconducting coherence
length. Finally, a local Andreev reflection on reservoir Sa

returns the quasiparticle to the initial energy E on dot 1. A
graphical representation of Eq. (18) is sketched in Fig. 4. The
coupling due to processes such as the above involves three
Andreev reflections, meaning it is of the order of O(�a�b�c)
in the tunnel couplings. We can also see that the three Andreev
reflections will contribute a quartet phase factor e±iφq , where
φq = φa + φb − 2φc, φc = 0. Finally, an energy-dependent
phase factor, which we could call the “Floquet-Tomasch phase

factor” eiq(±2)R = e±i
√

(E±2ω0 )2−�2R/vF , is also accumulated
due to the propagation in the middle superconductor.

III. REDUCTION TO A TWO-LEVEL SYSTEM

With an appropriate transformation, we can show that the
basic physics of the system at the regime of interest is that of
two resonances coupled through a continuum. The resulting
effective Hamiltonian is non-Hermitian, which is a result of
the fact that we have focused on the Hamiltonian of a sub-
system. The linear operator L(0) can be transformed into the
basis where the matrices M0

1,2(0) of the uncoupled dots are

diagonal. We will assume identical dots for simplicity, so that
M0

1,2(0) have the same pair of eigenvalues ±E0. Details are
provided in the Appendix. We will take into account that due
to the particle-hole symmetry of the spectrum, the roots of the
characteristic polynomial det[L(0)] = 0 come in pairs (if E is
an eigenvalue, so is −E∗). We can then focus on the positive
sector of energies only, assuming that the coupling between
the positive and negative energy states is small. We then find
an effective Floquet operator,

Leff =
(

E − E0 0
0 E − E0

)
− cos2 θ

(
�(0)−,11 �(0)−,14

�(0)−,41 �(0)−,44

)
− sin2 θ

(
�(0)+,22 �(0)+,23

�(0)+,32 �(0)+,33

)
. (19)

We see that the parameter θ [defined in Eq. (A4)] controls
the relative strength of the self-energy processes �±, where
�− connects the dots through Sc at energies below the gap
E − 2ω0 < −�, while �+ connects the dots through quasi-
particle propagation in the middle superconductor at energies
above the gap E + 2ω0 > �. The parameter θ itself can be
controlled by the voltage and the couplings which change the
relative weights of the electronlike and holelike components
of the eigenvectors.

The resulting effective operator is of the form

Leff =
(

E − E0 + iγ iγ12

iγ21 E − E0 + iγ

)
, (20)

but the γ , defined in Eq. (A9), are themselves functions of
the energy E , the voltage bias ω0, and the distance R between
the resonances. The above relation describes the coupling of
two discrete levels initially at E0, which are coupled through
a continuum of states. The overall action of the continuum is,
as expected, to add a small shift to E0 equal to the real part of
the diagonal self-energy elements and a width equal to their
imaginary part. Moreover, the two resonances are then cou-
pled through the nondiagonal elements of the self-energies.

The nondiagonal elements that couple the two resonances
can be written in a form that makes the dependence on the
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FIG. 5. Contour plots of the solutions of Eq. (22) in the complex plane. The solutions are found at the intersections of Re(det Leff ) = 0
(black lines) and Im(det Leff ) = 0 (blue dashed lines). The roots are marked with red dots. Choice of parameters: � j = 0.2�, ω0 = 0.5�.

quartet phase φq = φa + φb − 2φc apparent,

γ12 = αeiφq eiq(−2)R − βe−iφq eiq(2)R, (21a)

γ21 = αe−iφq eiq(−2)R − βeiφq eiq(2)R, (21b)

where the coefficients α, β are defined in Eq. (A11).
Finding the resulting eigenvalues due to the coupling be-

tween the two resonances requires finding the zeros of the
characteristic polynomial of Leff . The characteristic polyno-
mial will be a transcendental equation, generally requiring a
numerical solution,

(E − E0 + iγ )(E − E0 + iγ ) + α2e2iq(−2)R

+ β2e2iq(2)R − 2αβ cos 2φqeiq(2)Reiq(−2)R = 0. (22)

The solutions of the above equation are found numerically
and plotted on the complex plane in Fig. 5. At small distances,
we find two solutions around the initial level E0, slightly
shifted in the complex plane. As the distance between the
dots grows, however, there are more solutions which appear
around the two initial ones. The number of the solutions
increases with the distance since the factors eiq(±2)R become
more rapidly oscillating. Figure 5 shows that the effective
model roughly captures the expected behavior, i.e., the num-
ber of poles increases with increasing interdot distance, in
agreement with Fig. 2(b) and Fig. 3 that were produced by
numerically calculating the full operator L(0).

Oscillations of the spectral function. From Eq. (20), we
can calculate the corresponding effective resolvent operator
Reff = L−1

eff ,

R11
eff = E − E0 + iγ

(E − E0 + iγ )2 + γ12γ21

=
∞∑

n=0

(−γ12γ21)n

(E − E0 + iγ )2n+1
. (23)

One sees that the strength of the Floquet-Tomasch effect on
the resolvent is controlled by the product

γ12γ21 = α2e2iq(−2)R + β2e2iq(2)R

− 2αβ cos 2φqeiq(2)Reiq(−2)R.
(24)

The system resembles a Fabry-Pérot interferometer, but there
are two types of propagating waves involved, corresponding
to the two self-energy processes �±. We can associate the
parameter α with the backward self-energy �− and with
propagation at E − 2ω0 < −�. Meanwhile, the parameter β

comes from the forward self-energy �+ and is associated with
propagation at E + 2ω0 > �. The amount of interference
between the two processes is controlled by the quartet phase.

In the weak-coupling limit, the interference effects due
to the Floquet-Tomasch effect can be ignored. Keeping only
the first term of the geometric series will then give a single
resonance at E0. What we call a weak-coupling limit is more
evident if we scale the resolvent with respect to the energy
scale related to propagation in Sc at distance R, ωR = vF /R.

In reduced energy units,

R11
eff = 1

ωR

∞∑
n=0

(−1)n
(
γ12γ21R2/v2

F

)n(
E
ωR

− E0R
vF

+ i γ R
vF

)2n+1 . (25)

The strength of the interference is therefore controlled by the
rescaled quantities (γ12R/vF ) and (γ21R/vF ). The amount of
terms we need to keep in the calculation of the resolvent
therefore increases with the interdot distance, resulting in the
proliferation of poles as shown in Fig. 5. Since the parameters
γ12, γ21 are proportional to �a�b�c, it also follows that for
the same fixed distance R, larger couplings to the reservoirs
produce more solutions of Eq. (22). This agrees with the
numerical results shown in Fig. 3.

For illustrative purposes, we can consider a voltage
value � − E0 < 2ω0 < � + E0, where only the forward self-
energy �+ contributes around E0 > 0. Then the expression
for the resolvent at real energies close to E0 simplifies
to

R11
eff =

∞∑
n=0

(−β2)ne2inq(2)R

(E − E0 + iγ )2n+1

≈ 1

E − E0 + iγ
− β2e2iq(2)R

(E − E0 + iγ )3
+ · · · . (26)

The effect on the spectral function − 2
π

ImR11
eff (E ) will then

be a Breit-Wigner-like resonance around E0, coming from
the first term (E − E0 + iγ )−1, and smaller oscillations su-
perimposed on the resonance due to the second term on
the right-hand side. The spectral function will therefore os-
cillate as a periodic function of a Floquet-Tomasch factor,
2q(2)R = 2R

vF

√
(E + 2ω0) − �2. Since the interdot coupling

term β is proportional to �a�b�c, we expect that the Floquet-
Tomasch oscillations are larger in amplitude when increasing
the couplings. At the same time, the width of the resonances
given by γ is also proportional to the tunnel couplings.
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FIG. 6. (a) Variation of the spectral function Im[R−R1
R1

]11. Different colors represent a different quartet phase, φq ∈ [0, π

2 ], as explained in

the inset. Other parameters are set to ω0 = 0.7�, � j = 0.5�, R = 25ξ0. (b) Sketch of an octet process �(0)−,14 × �(0)+,32, which couples a
hole at energy E0 on dot 1 to an electron at the same energy on dot 2 and accumulates a phase e2iφq .

Then one expects that the resonances are smeared out with
increasing �. The behavior of the resonances under differ-
ent couplings and voltages is shown in the Supplemental
Material [60].

Quartet phase. In Eq. (22), the quartet phase φq appears
in the last term as cos 2φq. This can be related to “octet”
processes, as discussed in [42]. A sketch of an octet pro-
cess is shown in Fig. 6(b). Here, Eq. (22) gives us bounds
for the appearance of the octets. At large distances, the
Floquet-Tomasch phase factors eiq(±2)R, and therefore the
corresponding self-energy processes �±(0), are nonzero at
the current order in the tunnel couplings only if the condi-
tion |E ± 2ω0| > � is satisfied. Then, around a resonance
E ∼ E0 > 0, the eiq(2)R term contributes when the voltage
is 2ω0 > � − E0, while the eiq(−2)R term contributes when
2ω0 > � + E0. As a result, the octet term can only contribute
when both processes are present, that is, when 2ω0 > � + E0.

There will therefore be a regime of voltages, � − E0 < 2ω0 <

� + E0, where only the forward self-energy �+ contributes
around E0 > 0, while, making an analogous argument, only
the backward self-energy �− will contribute around −E0 < 0.

When the voltage is increased above 2ω0 > � + E0, both pro-
cesses contribute, but with different weights since the process
with the larger absolute value of energy |E0 ± 2ω0| will start
to exponentially decay at energies much larger than the gap.

In the regime where the octet term is relevant, the quartet
phase can nonlocally control the interdot coupling since φq

can be tuned by changing the phase φb across the second junc-
tion, while measuring the spectrum on the first. Equation (22)
suggests that the amplitude of oscillations is enhanced at
φq = 0 and minimized at φq = π/2. Moreover, the quartet
phase does not affect the frequency of oscillations, which
is rather a function of the energy, the voltage, and the in-
terdot distance. These observations are verified numerically
in Fig. 6(a) that shows the variation of the spectral function
of the bijunction with respect to the spectral function of the
single junction, Im[R−R1

R1
]11, calculated numerically for dif-

ferent quartet phases. The numerical calculation is performed
without making any approximations, i.e., by calculating the
operator L using Eq. (11). It is worth noting that Fig. 6(a)
implies that the Floquet-Tomasch oscillations will not be
smeared out if an average is taken over the quartet phase. The

oscillations should therefore be observable even if the quartet
phase should drift with time.

IV. CONCLUSIONS

We have studied two driven superconducting quantum dots
connected to a common superconductor. In the limit where
the superconductor is long and subgap transport is governed
by MARs, we showed that a long-range coupling develops be-
tween the dots. By mapping the initial time-periodic problem
to a static tight-binding model where time is traded for an ex-
tra Floquet dimension, we obtained expressions in continued
fraction form for the resolvent operator and the corresponding
self-energy. The iterative form of the expressions allows for a
fast calculation of the resolvent and can be adapted to other
multiterminal configurations. We showed that the system can
be described by an effective non-Hermitian model of two res-
onances coupled through higher-order processes that involve
local MARs on each dot, followed by a nonlocal Andreev
reflection through the common superconductor at energies
above the gap. The induced interdot coupling modifies the
Floquet spectrum, producing oscillations in the spectral func-
tion. The amplitude of these oscillations can be controlled
nonlocally by changing parameters such as the phase drop
across one of the dots. This amounts to tuning the oscillations
with the quartet phase and we have found bounds for which
the quartet phase is involved.

It remains to be seen if control of the quartet phase is
experimentally feasible at finite voltage bias. This is the topic
of recent work, which proposes an interferometric setup sensi-
tive to quartet processes [61]. It is therefore an open question
whether the quartet phase can be used to control the amplitude
of the Floquet-Tomasch oscillations. Regardless, our results
suggest that the oscillations as a function of the energy will
not be smeared out, even if we consider a quartet phase that
drifts with time.

Our approach is relevant for well-defined Floquet res-
onances on the dots, that is, for tunnel couplings to the
reservoirs that are not very large, � < �, and for subgap
voltage values. We assumed a large subgap voltage bias,
�/2 < ω0 < �, that allows one to simplify the analyti-
cal part of this work since, at strong driving, only a few
Floquet harmonics need to be taken into account. However,
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the mechanism that results in a long-range interdot coupling
should exist at smaller subgap voltages as well, although at
higher order in the tunnel couplings. Coulomb repulsion U
on the dots was assumed to be small, U ∼ � < �, so that
the quantum dots can be modeled by single effective levels
[12] that we placed in the middle of the superconducting
gap. A possible way to include interactions could be to use
a master-equation approach [62,63], which has the advantage
of treating the interactions exactly, but assumes weak coupling
to the reservoirs, � � �, and therefore does not capture the
physics due to MAR processes. An open-quantum system
framework that includes both the effect of finite U and of
MARs has been proposed [64] and shows the possibility of
engineering the subgap transport through dissipation. It would
be interesting to see if the long-range Floquet-Tomasch effect
could be similarly engineered.

APPENDIX: CHANGE OF BASIS

This section provides details on how to perform a rotation
in the basis that diagonalizes M0

1,2(0). For large voltage bias
and small tunnel couplings, we can make an approximation of
M0

1,2(0) by assuming |E | � ω0,�,

M0
1,2 ≈

⎛⎝E ∓ �a,bω0√
�2−ω2

0

−�c1,2

−�c1,2 E ± �a,bω0√
�2−ω2

0

⎞⎠. (A1)

The solutions of det(M0
1,2) = 0 are then

E±
1,2 = ±

√√√√�2
c1,c2

+
(

�a,bω0√
�2 − ω2

0

)2

. (A2)

For simplicity, we will assume that the dots are identical,
meaning that we take the couplings �a = �b and �c1,2 = �c.

Then, the two matrices M0
1,2 have the same pair of eigenval-

ues, ±E0 ≡ ±
√
�2

c + ( �aω0√
�2−ω2

0

)2
, but different eigenvectors.

Indeed, the structure of the matrices M0
1,2 means that the

corresponding eigenvectors satisfying M0
j (0)ψ±

j = 0 can be
parametrized as

ψ+
1 =

(
cos θ

sin θ

)
, ψ−

1 =
(− sin θ

cos θ

)
, (A3a)

ψ+
2 =

(
sin θ

cos θ

)
, ψ−

2 =
(− cos θ

sin θ

)
. (A3b)

We see that the “electron” and “hole” components of the
eigenvectors are, in fact, reversed. Moreover, we can derive a
simple relation for the angle θ involving the tunnel couplings
and the voltage frequency ω0,

θ = 1

2
arctan

(
�c

�a

√
�2 − ω2

0

ω0

)
. (A4)

Within our approximation that �
2 < ω0 < �, we can deduce

from the above relation that the principal value of the angle is
θ ∈ [0, π/4). This angle therefore controls the electron-hole
content of the eigenvectors.

We define the change of basis matrices P(θ ) and Q(θ ) that
diagonalize M0

1,2,

M0
1 (0) = P(θ )DP(θ )−1 =

(
cos θ − sin θ

sin θ cos θ

)(
E − E0 0

0 E + E0

)(
cos θ sin θ

− sin θ cos θ

)
,

M0
2 (0) = Q(θ )DQ(θ )−1 =

(
sin θ − cos θ

cos θ sin θ

)(
E − E0 0

0 E + E0

)(
sin θ cos θ

− cos θ sin θ

)
. (A5)

Using these, we can transform the initial operator L(0) on the basis of ψ+
1 , ψ−

1 , ψ+
2 , ψ−

2 ,

L̃ =
(

P(θ )−1 0
0 Q(θ )−1

)
L(0)

(
P(θ ) 0

0 Q(θ )

)
=

(
P(θ )−1M0

1 (0)P(θ ) 0
0 Q(θ )−1M0

2 (0)Q(θ )

)
−

(
P(θ )−1 0

0 Q(θ )−1

)
�(0)

(
P(θ ) 0

0 Q(θ )

)
. (A6)

By permutation of the basis vectors ψ−
1 � ψ+

2 , we can rewrite L̃ in order to make the two blocks which correspond to positive
and negative eigenvalues apparent. To lowest order of perturbation in the tunnel couplings, we can neglect the nondiagonal
blocks in L̃. This amounts to neglecting the coupling between positive and negative eigenvalue sectors. For the upper-left block
of L̃, we then obtain

L̃++ =
(

E − E0 0
0 E − E0

)
− cos2 θ

(
�(0)−,11 �(0)−,14

�(0)−,41 �(0)−,44

)
− sin2 θ

(
�(0)+,22 �(0)+,23

�(0)+,32 �(0)+,33

)
. (A7)

The resulting effective operator is of the form

Leff =
(

E − E0 + iγ1 iγ12

iγ21 E − E0 + iγ2

)
. (A8)
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Explicitly, the diagonal components of the self-energy matrices will add a finite lifetime to the discrete levels at E0, given by

−iγ1 = cos2 θg12
a (−1)

[
1

M0(−2)

]22

g21
a (−1) + sin2 θg21

a (1)

[
1

M0(2)

]11

g12
a (1), (A9a)

−iγ2 = cos2 θg21
b (−1)

[
1

M0(−2)

]33

g12
b (−1) + sin2 θg12

b (1)

[
1

M0(2)

]44

g21
b (1), (A9b)

and γ1 = γ2 ≡ γ for identical dots. The nondiagonal components will couple the two resonances,

γ12 = αeiφq eiq(−2)R − βe−iφq eiq(2)R, (A10a)

γ21 = αe−iφq eiq(−2)R − βeiφq eiq(2)R, (A10b)

where

α = �a�b�c�
3 cos(kF R) cos2 θ

[�2 − (ω0 − E )2]
√

(2ω0 − E )2 − �2

[
1

M0
1 (−2)

]22[ 1

M0
2 (−2)

]11

, (A11a)

β = �a�b�c�
3 cos(kF R) sin2 θ

[�2 − (ω0 + E )2]
√

(2ω0 + E )2 − �2

[
1

M0
1 (2)

]11[ 1

M0
2 (2)

]22

. (A11b)
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