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Nature of the Schmid transition in a resistively shunted Josephson junction
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We study the phase diagram of a resistively shunted Josephson junction (RSJJ) in the framework of the
boundary sine-Gordon model. Using the nonperturbative functional renormalization group (FRG) we find that
the transition is not controlled by a single fixed point but by a line of fixed points, and compute the continuously
varying critical exponent ν. We argue that the conductance also varies continuously along the transition line.
In contrast to the traditional phase diagram of the RSJJ, an insulating ground state when the shunt resistance
R is larger than Rq = h/(2e)2 and a superconducting one when R < Rq, the FRG predicts the transition line in
the plane (α, EJ/EC ) to bend in the region α = Rq/R < 1 but we cannot discard the possibility of a vertical
line at α = 1 (EJ and EC denote the Josephson and charging energies of the junction, respectively). Our results
regarding the phase diagram and the nature of the transition are compared with Monte Carlo simulations and
numerical renormalization group results.
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I. INTRODUCTION

Although the resistively shunted Josephson junction (RSJJ)
[1] is one of the best-studied examples of dissipative quantum
systems [2], its basic properties are still a matter of debate.
Since the seminal work of Schmid and Bulgadaev (SB) on the
quantum Brownian particle in a periodic potential (a problem
that can be mapped on the RSJJ) [3,4], the conventional view
is that the junction is insulating when the shunt resistance R
is larger than the quantum of resistance Rq = h/q2 (q = 2e
is the Cooper pair charge) and superconducting when R < Rq

[1,5–7] but for a long time there has been little experimen-
tal evidence [8–11]. In a recent experiment no sign of the
expected insulating phase was observed and the very exis-
tence of the dissipative quantum phase transition at R = Rq

has been questioned [12,13], whereas the observation of the
Schmid transition has been reported in another experiment
[14]. On the other hand, using both the numerical renor-
malization group (NRG) and the functional renormalization
group (FRG), it has been shown that when α = Rq/R < 1 an
insulating-superconducting transition can be induced by vary-
ing the ratio EJ/EC between the Josephson coupling energy
and the charging energy [15,16], but these conclusions have
been questioned [17].

In this paper, we reconsider the superconductor-insulator
transition in a RSJJ, as shown in Fig. 1, where the Josephson
junction is shunted by both a resistance and a capacitance [18].
The RSJJ can be described in the framework of the boundary
sine-Gordon model originally studied by SB and defined by
the Euclidean (imaginary-time) action [19]

S[ϕ] = 1

2

∑
ωn

(
α

2π
|ωn| + ω2

n

2EC

)
|ϕ(iωn)|2

− EJ

∫ β

0
dτ cos ϕ(τ ), (1)

where EJ is the Josephson coupling energy, EC = q2/2CJ the
charging energy, and CJ the capacitance of the junction. The
field ϕ, which stands for the superconducting order-parameter
phase difference across the junction, is a noncompact variable
which satisfies periodic boundary conditions in imaginary
time, ϕ(0) = ϕ(β ), and ωn = 2nπT (n integer) is a bosonic
Matsubara frequency. β = 1/T is the inverse temperature, and
we consider only the zero-temperature limit β → ∞ (we set
h̄ = kB = 1 throughout the paper). We assume an ultraviolet
(UV) frequency cutoff W . The action (1) also describes a
quantum Brownian particle in one dimension with coordi-
nate ϕ and mass m = 1/2EC moving in a periodic potential
(η = α/2π is then the friction coefficient in the classical limit)
[3,4,6], and a Luttinger liquid in presence of an impurity
(with K = 1/α the Luttinger parameter) or a weak link (with
K = α) [20–22].

We study the boundary sine-Gordon model (1) in the
framework of the nonperturbative FRG [23–25], an approach
which has proven very successful for the (1 + 1)-dimensional
sine-Gordon model [26,27]. We find that the transition is
not controlled by a single fixed point but by a line of fixed
points, and compute the continuously varying critical ex-
ponent ν associated with the relevant direction about the
fixed point. These results qualitatively agree with the Monte
Carlo simulations of Werner and Troyer (WT) who showed
that the correlation function χ (τ ) = 〈eiqϕ(τ )e−iqϕ(0)〉 (|q| � 1

2 )
exhibits continuously varying critical exponents along the
transition line [28,29]. Recent NRG calculations also imply
that the transition line is a line of fixed points [15]. Although
no precise calculations are performed, we argue that the con-
ductance varies continuously along the transition line.

Unlike the traditional phase diagram of the RSJJ, where the
transition between the insulating and superconducting phases
is located at α = 1, the FRG predicts the transition line in
the plane (α, EJ/EC ) to bend in the region α = Rq/R < 1.
The FRG is, however, not reliable in the limit α → 0 since
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FIG. 1. Resistively (and capacitively) shunted Josephson junc-
tion (RSJJ). The capacitance CJ determines the charging energy
EC = (2e)2/2CJ of the junction while the transparency of the tun-
nel barrier and the superconducting gap set the Josephson coupling
energy EJ .

it predicts a phase transition at a finite value of EJ/EC while
in the absence of dissipation the ground state of the model
(1) is known to be insulating. This leads us to propose two
possible scenarios for the Schmid transition. In the first one,
the transition line is vertical and located at α = 1, as in the
traditional phase diagram and in agreement with the Monte
Carlo simulations of WT. In the second one, the transition
line bends in the region α < 1, as in the FRG and NRG
calculations [15,16], but eventually the critical value of EJ/EC

diverges as α → 0.
On the other hand, we compute the phase mobility μ(ω)

(i.e., the mobility of the Brownian particle) related to the
admittance Y (ω) = q2/μ(ω) of the RSJJ. The dc mobility
μ = limω→0 μ(ω) vanishes in the superconducting phase, and
is equal to the mobility μ0 = 2π/α = 1/η of the free particle
in the insulating phase. The frequency dependence of the
mobility in the superconducting phase is correctly obtained
only for α � 2; when 1 � α � 2, the FRG fails to capture
the instantons connecting neighboring minima of the periodic
potential. This does not prevent us to obtain the low-frequency
behavior of the RSJJ; in the insulating phase Y (ω → 0) =
1/R whereas Y (ω) is purely inductive at low frequencies in
the superconducting phase. However, the effective inductance
is not determined by the “coherence,” i.e., the expectation
value 〈cos ϕ〉, which in fact remains nonzero in the insulating
phase. We compare our results for 〈cos ϕ〉 and 〈cos(ϕ/2)〉 with
results obtained from integrability methods and Monte Carlo
simulations [29,30].

II. FRG FORMALISM

Following the standard strategy of the nonperturbative
functional renormalization group (FRG) we add to the action
an infrared regulator term [23–25]

�Sk[ϕ] = 1

2

∑
ωn

Rk (iωn)ϕ(−iωn)ϕ(iωn), (2)

which suppresses fluctuation modes whose frequency is
smaller than the (running) frequency k, i.e., |ωn| � k, but
leaves unaffected those with |ωn| � k. The cutoff function is
written in the form

Rk (iωn) = α

2π
|ωn|r

( |ωn|
k

)
+ Z2,kω

2
nr

(
ω2

n

k2

)
, (3)

where Z2,k = 1
2π

∫ 2π

0 dφ Z2,k (φ) is the field average of
the function Z2,k (φ) defined in Eq. (8) and r(x) =

4(1 − x)2/x 
(1 − x). Including the second term in (3) allows
us to consider the limit α → 0. The partition function

Zk[J] =
∫

D[ϕ] e−S[ϕ]−�Sk [ϕ]+∫ β

0 dτ Jϕ (4)

thus becomes k dependent. The expectation value of the field
is given by

φ(τ ) = δ lnZk[J]

δJ (τ )
= 〈ϕ(τ )〉. (5)

The scale-dependent effective action

�k[φ] = − lnZk[J] +
∫ β

0
dτ Jφ − �Sk[φ] (6)

is defined as a slightly modified Legendre transform which
includes the subtraction of �Sk[φ]. Assuming that for k =
kin the fluctuations are completely frozen by the term �Skin ,
which is the case when kin � min(W, EC ), �kin [φ] = S[φ]. On
the other hand, the effective action of the original model (1)
is given by �k=0[φ] since Rk=0 vanishes. The nonperturbative
FRG approach aims at determining �k=0 from �kin using Wet-
terich’s equation [31–33]

∂t�k[φ] = 1
2 Tr

{
∂t Rk

(
�

(2)
k [φ] + Rk

)−1}
, (7)

where �
(2)
k is the second-order functional derivative of �k and

t = ln(k/kin ) a (negative) RG “time.”

A. FE2 expansion

In the frequency expansion to second order (FE2) [34], the
scale-dependent effective action is approximated by

�k[φ] = Z1

2

∑
ωn

|ωn|φ(−iωn)φ(iωn)

+
∫ β

0
dτ

[
1
2 Z2,k (φ)(∂τφ)2 + Uk (φ)

]
(8)

with initial conditions

Z1 = α

2π
, Z2,kin (φ) = 1

2EC
, Ukin (φ) = −EJ cos φ. (9)

The effective potential Uk (φ) is given by the effective ac-
tion when the field φ(τ ) ≡ φ is time independent: �k[φ] =
βUk (φ). We anticipate the fact that Z1 is not renormalized and
therefore remains equal to its initial value. The zeroth-order
harmonic of Z2,k (φ) and the first-order harmonic of Uk (φ)
can be seen as renormalized values of the coupling constants
1/2EC and EJ , respectively, but the flow equation generates
higher-order harmonics.

In practice, one introduces the dimensionless quantities

Ũk (φ) = Uk (φ)

k
, Z̃2,k (φ) = kZ2,k (φ), (10)

which ensure that the zero-temperature quantum phase tran-
sition between the superconducting and insulating phases
corresponds to a fixed point of the flow equations. The latter,
which are given in Appendix A, must be solved numerically.
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FIG. 2. Flow diagram projected on the (1/ẼC,k, ẼJ,k) plane, where 1/2ẼC,k and ẼJ,k denote the zeroth- and first-order harmonics of Z̃2,k (φ)
and Ũk (φ), respectively (α = 0.6, 0.8, 1, 1.4 from left to right). The red point shows the fixed point obtained by solving ∂kŨk (φ) = ∂k Z̃2,k (φ) =
0. The red dashed lines, showing the effective initial conditions of the flow (1/ẼC,W = W/EC, ẼJ,W = EJ/W ) at fixed EJ/EC = 0.02 when W
is varied [35], indicate that a smaller bandwidth W favors the superconducting phase.

B. Mobility and admittance

In addition to the effective potential Uk (φ), whose RG flow
indicates whether the RSJJ is insulating or superconducting,
a fundamental quantity is the mobility μ(iωn) = |ωn|G(iωn)
of the quantum Brownian particle, i.e., its average (long-time)
velocity when it is subjected to an external force. Since the
phase propagator Gk (iωn, φ) = 1/�

(2)
k (iωn, φ) is given by the

inverse of the two-point vertex, whose most general expres-
sion reads as �

(2)
k (iωn, φ) = Z1|ωn| + �k (iωn, φ) + U ′′

k (φ)
(for a time-independent field), the scale-dependent mobility
reads as

μk (iωn) = |ωn|
α

2π
|ωn| + �k (iωn, 0) + U ′′

k (0)
. (11)

We consider the vanishing field configuration φ = 0 since
this corresponds to the minimum of the effective potential for
any k > 0. In the FE2, the self-energy �k is approximated
by its lowest-order derivative expansion, i.e., �k (iωn, φ) =
Z2,k (φ)ω2

n. To obtain the frequency-dependent mobility μ(ω)
in real time, one must first take the limit k → 0 and perform
the analytic continuation iωn → ω + i0+; the dc mobility is
then given by μ = μ(ω → 0). In the FE2, the determination
of �k (iωn, φ) is, however, valid only in the limit |ωn| 	 k
(for the same reason that the derivative expansion in the ϕ4

theory is valid only in the small-momentum limit |p| 	 k
[25]) and setting k → 0 followed by ω → 0 (or ωn → 0) is
not, at least in principle, possible. We shall see how Eq. (11)
can nevertheless be used to obtain useful information about
the mobility.

When the RSJJ is biased by an infinitesimal external time-
dependent current I (t ), the mobility determines the induced
voltage V (t ) across the junction [1], i.e., the admittance

Y (ω) = I (ω)

V (ω)
= q2

μ(ω)
(12)

for a sinusoidal current.

III. THE SCHMID TRANSITION

In this section, we discuss the phase diagram obtained from
the FRG approach and the nature of the transition between the

superconducting and insulating phases. We compare our find-
ings with the traditional view of the SB transition and previous
numerical results. We also comment on some differences with
the FRG results of Masuki et al. [15,16].

A. Phase diagram

Typical flow trajectories, shown in Figs. 2 and 3, are in
agreement with previous results by Masuki et al. [15,16].
When α > 1, there is a (repulsive) trivial fixed point Ũ ′(φ) =
Z̃2(φ) = 0 and all RG trajectories with initial condition
ẼJ,kin = EJ/kin > 0 flow to the strong-coupling limit where
both the effective potential Ũ ′(φ) and Z̃2(φ) flow to infin-
ity [36]: the system is in the superconducting phase. When
α < 1, in addition to the trivial fixed point Ũ ′(φ) = Z̃2(φ) =
0, which is now attractive, we find a critical fixed point
(Ũ ∗′(φ), Z̃∗

2 (φ)), so that the trajectories can flow to either
the trivial fixed point or the strong-coupling limit depending
on the initial conditions at scale k = kin. Thus, the system
can be either superconducting (Ũ ′

k, Z̃2,k → ∞ for k → 0) or
insulating (Ũ ′

k, Z̃2,k → 0).

FIG. 3. Flow diagram projected on the (1/ẼC,k, ẼJ,k ) plane for
α = 0.6, 1, and 1.4. The line of critical fixed points for α < 1 is
shown in red.
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FIG. 4. Location of the critical fixed point in the plane
(1/Ẽ∗

C, Ẽ∗
J ) as α varies. The inset shows 1/Ẽ∗

C and Ẽ∗
J vs α. Near α =

1, 1/Ẽ∗
C ∼ 1 − α and Ẽ∗

J ∼ √
1 − α. The red point shows the (spuri-

ous) fixed point obtained when α = 0 (see text for a discussion).

The location of the critical fixed point as α varies can be
obtained by solving the equations ∂kŨ ′

k (φ) = ∂kZ̃2,k (φ) = 0
(Fig. 4). When α → 0, the action (1) corresponds to the
one-dimensional sine-Gordon model and describes a friction-
less quantum particle in a one-dimensional periodic potential.
Since all quantum states of the particle are extended, the
ground state should be insulating in that limit, whatever the
value of EC and EJ . The existence of a fixed point at a finite
value Ẽ∗

J /Ẽ∗
C when α = 0 is a known artifact of the FRG-FE2

approach to the one-dimensional sine-Gordon model [37]. In
the limit α → 0, we expect the fixed point (shown by a red
dot in Fig. 4) to move to infinity, i.e., Ẽ∗

J /Ẽ∗
C → ∞ [38].

The phase diagram as a function of the bare parameters of
the model is shown in Fig. 5. We find a transition between an
insulating and a superconducting phase in the region α < 1.
In the large-bandwidth limit W/EC � 1, the transition line de-
pends only on the ratio EJ/EC and starts with an infinite slope:
(EJ/EC )crit ∼ (1 − α)0.5 when α → 1−. The transition line
then bends towards the region α < 1, a direct consequence of
the existence of the line of critical fixed points shown in Fig. 4.
The finite value of (EJ/EC )crit in the limit α → 0 is due to Ẽ∗

J
remaining finite; if Ẽ∗

J → ∞ when α → 0 (as it should be,
see the previous discussion) the RSJJ is insulating whatever
the value of the Josephson energy EJ . Two possible scenarios
are shown in Fig. 5 (bottom panel). The first one is a vertical
transition line located at α = 1, as in the traditional picture of
the Schmid transition and in agreement with the Monte Carlo
simulations of WT in the large-bandwidth limit W � EC who
find that the transition occurs at α = 1.00(2) at least up to
EJ/EC ∼ 0.5 [28,39]. In this scenario, the presence of the spu-
rious fixed point at α = 0 invalidates the entire transition line
obtained in the FE2, the only vestige of the true transition line
being the vertical tangent at α = 1. In the second scenario,
the spurious fixed point at α = 0 invalidates the FE2 result
for α 	 1 but the obtained transition line is correct in a finite
interval near α = 1. The NRG results of Masuki et al. [15]
also yield a transition line that bends in the region α < 1 but
with two qualitative differences with the FRG results reported
here: The transition line exhibits a vanishing slope near α = 1

FIG. 5. (Top) Zero-temperature phase diagram of the RSJJ as
a function of the bare parameters of the model (α, EJ , 1/EC , and
W ) showing the insulating (I) and superconducting (SC) phases. The
transition line depends only on the ratio EJ/EC when W � EC . The
inset shows the phase diagram for W/EC = 0.01. As explained in the
text, the existence of a transition at a finite value (EJ/EC )crit when
α → 0 is an artifact of the FE2. (Bottom) Two possible scenarios for
the Schmid transition taking into account the absence of transition in
the limit α → 0.

and a reentrance of the superconducting phase at small α

[which is hard to reconcile with the known phase diagram
of the one-dimensional sine-Gordon model (α = 0), see the
discussion above].

Moving away from the large-bandwidth limit, at fixed EC ,
favors the superconducting phase as shown in Fig. 2: decreas-
ing W will always change the initial conditions of the flow so
as to make the system superconducting. Thus, (EJ/EC )crit de-
creases when W is lowered. As shown in the inset of Fig. 5, we
find that the transition persists in the limit W/EC → 0 since
(EJ/W )crit remains finite. This differs from the conclusion of
Ref. [15] that a nonzero value of 1/EC is necessary to have a
transition for α < 1.

B. Critical behavior

1. Critical exponent ν

The functions Ũ ∗′(φ) and Z̃∗
2 (φ) at the fixed point control-

ling the phase transition are shown in Fig. 6 for α = 0.8. The
RG eigenvalue 1/ν associated with the relevant perturbation,
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FIG. 6. Fixed-point functions Ũ ∗′(φ) and Z̃∗
2 (φ) for α = 0.8.

shown in Fig. 7, is determined by linearizing the flow about
the fixed point.

Near α = 1, the critical fixed point is close to the Gaussian
fixed point and can be analyzed from perturbation theory. We
use the harmonic expansion Ũk (φ) = ∑∞

n=0 ũn,k cos(nφ) and
Z̃2k (φ) = ∑∞

n=0 z̃n,k cos(nφ), and expand the flow equations
in powers of ε = 1 − 1/α. When ε → 0, the flow of ũ1,k is
initially much slower than the flow of all other coupling con-
stants. After a transient regime, the values of ũn 
=1,k and z̃n,k

are determined by ũ1,k alone and all RG trajectories collapse
on a single line, as shown in Figs. 2 and 3 for the trajectories
projected on the plane (z̃0, ũ1). The flow along this line is
determined by the beta function

∂t ũ1,k =
(

1

α
− 1

)
ũ1,k + F ũ3

1,k, (13)

where F is a complicated combination of threshold functions
(see Appendix B for detail). Note that this beta function is not
exact (to order ũ3

1,k) since it relies on the FE2 expansion.

FIG. 7. Critical exponent ν vs α. The dashed (red) line shows the
result 1/ν = 2(1 − α) valid near α = 1.

Linearizing the flow equation (13) about its nontrivial
fixed point ũ∗

1 = [(α − 1)/αF]1/2 yields the critical exponent
1/ν = 2(1 − α) + O[(1 − α)2], regardless of the value of F .
Only the sign of F matters (assuming F to be nonzero) since
it determines whether the fixed point ũ∗

1 exists when α < 1 or
α > 1. The fixed point is repulsive if α < 1 (1/ν > 0) and
attractive if α > 1 (1/ν < 0), in agreement with the trivial
fixed point ũ1 = 0 being attractive if α < 1 and repulsive if
α > 1. A numerical evaluation yields F < 0, thus indicating
that the nontrivial fixed point exists when α < 1.

In their Monte Carlo simulations [28], WT also observed
that the transition is not controlled by a single fixed point,
but rather by a line of critical points: By considering the
correlation function 〈eiqϕ(τ )e−iqϕ(0)〉 (|q| � 1

2 ), they obtained
continuously varying exponents along the transition line, in
full agreement with the FRG analysis (see Sec. III B 2). The
NRG calculations of Masuki et al. also predict the Schmid
transition to be controlled by a line of fixed points [15].

The bending of the transition line in the region α < 1
clearly simplifies the study of the critical behavior. For a
vertical transition line at α = 1, one would expect the cubic
term F and all higher-order terms in the beta function (13) to
vanish, in order to ensure that the transition line is a fixed line.
There are various claims in the literature that the cubic term F
in the beta function vanishes although no detailed calculations
seem to have been reported [5,6]. Interestingly, a nonzero
cubic term was found by Bulgadaev in his original paper [4].
In the FE2 expansion, the vanishing of the beta function to
all orders at α = 1 is made impossible by the (spurious) fixed
point at α = 0, which is at the origin of the transition line in
the region α < 1.

Note that in the scenario where the line of fixed points
and the transition line are vertical, 1/ν vanishes since the beta
function ∂t ũ1,k = (1/α − 1)ũ1,k is identically zero for α = 1.
The situation is different for the exponent γ discussed in the
following section.

2. Correlation function 〈e
i
2 ϕ(τ )e− i

2 ϕ(0)〉
Following WT [28,29], we consider the correlation func-

tion

χ (τ ) = 〈
e

i
2 ϕ(τ )e− i

2 ϕ(0)〉. (14)

The computation of its Fourier transform χk (iωn) for iωn =
0 is discussed in Appendix C. At criticality we find that
χk (iωn = 0) ∼ 1/k1−γ diverges with some exponent 1 −
γ . By dimensional analysis, we then obtain χk=0(iωn) ∼
1/|ωn|1−γ and

χk=0(τ ) ∼ 1

|τ |γ . (15)

The exponent γ is shown in Fig. 8. The limiting value γ � 0.5
when α → 1 (i.e., EJ → 0) agrees with the result of Lukyanov
and Werner obtained from integrability methods [29]. We
note, however, that γ exhibits a maximum for α ∼ 0.9 while
they obtain a strictly monotonous exponent along the transi-
tion line.

The qualitative agreement between our results and those
of Lukyanov and Werner (except for the maximum near
α ∼ 0.9) suggests that our determination of the exponent γ
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FIG. 8. Critical exponent γ associated with the correlation func-
tion χ (τ ) [Eq. (14)].

along the transition line is correct even in the scenario where
the transition line is vertical.

3. Mobility and conductance

At the fixed point, Z2,k (φ) = Z̃2,k (φ)/k → Z̃∗
2 (φ)/k for

k → 0 whereas Uk (φ) = kŨk (φ) → 0. The divergence of
Z2,k (φ) is not a problem since Z2,k (φ)ω2

n remains finite in the
domain of validity of the FE2 (|ωn| 	 k). It indicates, how-
ever, that the ω2

n dependence of the self-energy �k (iωn, φ) is
not preserved by the RG flow in the regime k 	 |ωn| and one
expects �k=0(iωn, φ) ∼ |ωn| at low energies. Heuristically,
one can obtain this result by stopping the flow of Z2,k (φ) at
k ∼ |ωn| since one expects ωn to play the role of an infrared
cutoff when computing the two-point vertex �

(2)
k (iωn, φ). As-

suming �k=0(iωn, 0) = C|ωn|, with C a function of α, one
then deduces from (11) that at the Schmid transition the dc
mobility

μ = 1
α

2π
+ C

(16)

takes a nontrivial (i.e., different from 0 and 2π/α) value that
depends only on α. As a result, the dc conductance G = q2/μ

also takes a nontrivial value. The FE2 does not allow us to
determine the value of the α-dependent constant C but a more
refined approximation scheme, e.g., the Blaizot–Mendez-
Galain–Wschebor approximation [40–42], would yield the
whole frequency dependence of the self-energy (regardless of
the value of |ωn|/k) and thus the mobility μ and conductance
G along the transition line.

IV. SUPERCONDUCTING AND INSULATING PHASES

In this section, we compute various observables in order to
characterize the insulating and superconducting phases, and
compare, when possible, with known results obtained from
integrability methods and Monte Carlo simulations.

FIG. 9. U ′
k (φ) = kŨ ′

k (φ) vs t = ln k in the insulating (top) and
superconducting (bottom) phases. E∗ = limk→0 U ′′

k (0) vanishes in
the former case but is finite in the latter as shown in Fig. 10. [EJ =
10−2EC , W → ∞, α = 0.6 (top), α = 1.4 (bottom).]

A. RG flows

Figure 9 shows the flow of the function U ′
k = kŨ ′

k in the in-
sulating and superconducting phases. Although U ′

k=0(φ) = 0,
as imposed by the periodicity and convexity of the effective
potential [43], the behavior near φ = 0 is markedly differ-
ent in each phase. In the insulating phase, U ′

k (φ) decreases
with k and U ′′

k (φ) → 0 for all φ. On the other hand, in
the superconducting phase, U ′′

k (φ) reaches a nonzero value
in the neighborhood of φ = 0. Although this neighborhood
shrinks as k → 0, this implies that E∗ = limk→0 U ′′

k (0) takes
a nonzero value (Fig. 10); U ′′

k (φ) converges nonuniformally
towards U ′′

k=0(φ) = 0 [44]. We conclude that the characteristic
energy scale E∗ vanishes in the insulating phase but is nonzero
in the superconducting phase where it varies as

E∗ ∼ EC

(
EJ

EC

)α/(α−1)

(17)

in the large-bandwidth limit W � EC , as shown in Fig. 10.
When approaching the transition, E∗ vanishes with the expo-
nent ν, i.e., E∗ ∼ (EJ − E (c)

J )ν if EJ is varied at fixed EC (see
Fig. 13).
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FIG. 10. (Top) U ′′
k (0) vs t = ln k for various values of α and

EJ = 0.01, 1/EC = 0.02. E∗ = limk→0 U ′′
k (0) takes a nonzero value

in the superconducting phase. (Bottom) E∗ vs EJ in the supercon-
ducting phase. The solid lines show the power-law behavior E∗ ∼
Eα/(α−1)

J .

The function Z2,k (φ) is shown in Fig. 11. While in the
insulating phase Z2,k (φ) becomes constant for k → 0, in the
superconducting phase it is strongly nonmonotonous, with
a form that is reminiscent of the (1 + 1)-dimensional sine-
Gordon model [26], and takes large values. At intermediate
stages of the flow, when k � E∗, we find that −∂t ln Z2,k (0) �
3 − 2/α takes a k-independent value (Fig. 12), which indi-
cates that the self-energy behaves as �k=0(iωn) ∼ |ωn|2/α−1

when |ωn| � E∗. The flow of Z2,k (φ), however, always stops
when k 	 E∗ and Z2,k (φ) reaches a nonzero value, implying
that the self-energy �k=0(iωn, φ) ∼ ω2

n is a quadratic function
of the frequency for ωn → 0 (as in the insulating phase).

These results imply that the propagator can be written in
the form

Gk=0(iωn) = 1
α

2π
|ωn| + E∗

(18)

in the low-energy limit (neglecting the ω2
n term). In the insu-

lating phase the propagator Gk=0 is field independent whereas
Eq. (18) holds for φ = 0 in the superconducting phase. Equa-
tion (18) is correct in the insulating phase (where E∗ = 0) and

FIG. 11. Z2,k (φ) vs t = ln k in the insulating (top) and super-
conducting (bottom) phases. [EJ = 10−2EC , W → ∞, α = 0.6 (top),
α = 1.4 (bottom).]

in the superconducting phase when α � 2; in the latter case
the physics is dominated by small fluctuations of the phase
about the minima of the periodic potential −EJ cos(ϕ). On the
other hand, Eq. (18) is not correct when 1 � α � 2, a regime
where transitions between neighboring minima (instantons)
play a crucial role [45].

B. Mobility and admittance

The real part of the mobility μ(ω) = μ′(ω) + iμ′′(ω) is
deduced from (18):

μ′(ω) = α

2π

ω2(
α

2π
ω

)2 + E2∗
. (19)

Thus, the dc mobility μ(ω = 0) is equal to 2π/α = μ0 in the
insulating phase and vanishes in the superconducting phase
(Fig. 13). However, the expression of the propagator (18)
being incorrect when 1 � α � 2, the frequency dependence
of the mobility (19) is not correct in this regime and should
vanish as

μ′(ω) ∼ |ω|2α−2 (20)

184514-7



ROMAIN DAVIET AND NICOLAS DUPUIS PHYSICAL REVIEW B 108, 184514 (2023)

FIG. 12. (Top) −∂t ln Z2,k (0) vs t = ln k. (Bottom) The value
of −∂t ln Z2,k (0) on the plateau (as shown in the top panel) vs α.
The system is in the superconducting phase for α � 1, and in the
insulating phase otherwise. (EJ/EC = 2 × 10−5, W → ∞.)

when ω → 0 [46–48]. The behavior of the self-energy,
�k (iωn) ∼ |ωn|2/α−1, in the frequency range |ωn| � E∗ al-
lows us to recover the perturbative (high-frequency) expan-
sion of the mobility μ′(ω) = μ0 − const |ω|2/α−2 [21], but
the FE2 expansion fails to reproduce the low-energy behavior
(20).

From (12), we deduce the low-frequency behavior of the
admittance [49]

Y (ω) =
{ 1

R (I),
1
R + i

Leff (ω+i0+ ) (SC).
(21)

Thus, the junction has a vanishing transmission in the insulat-
ing phase (I) (the whole current flowing through the resistor)
and behaves as an effective inductance Leff = 1/q2E∗ in the
superconducting phase (SC). At the beginning of the flow (i.e.,
at the classical level), where Ukin (φ) = −EJ cos φ, one finds
the expected result 1/Leff,kin = q2U ′′

kin
(0) = q2EJ . Note that

the inductive response in the superconductive phase follows
solely from the vanishing of the self-energy for ωn → 0, i.e.,

FIG. 13. Energy scale E∗, dc mobility μ = μ(ω = 0), coherence
〈cos ϕ〉, and current-current correlation function χR

II (0) vs EJ in the
large-bandwidth limit W/EC → ∞ for α � 0.909. The transition,
indicated by the black dotted vertical line, occurs for E (c)

J /EC �
0.0432. The inset shows the divergence of 1/E∗ in the supercon-
ducting phase as the transition is approached. The blue line is a fit
1/E∗ ∼ (EJ − E (c)

J )−ν with the exponent ν � 5.3 obtained from the
linearized flow equations (Fig. 4, bottom panel).

�k (iωn = 0, φ) = 0. The value of E∗ = limk→0 U ′′
k (0), and

whether it vanishes or not, however, requires to solve the FRG
flow equations.

C. Coherence and current-current correlation function

The expectation value 〈cos ϕ〉 is computed by adding to
the action a time-independent external complex source h.
The effective potential Uk (φ, h∗, h) is then a function of
φ, h∗ and h, and 〈cos ϕ〉 = −U (1,0)(0) where U (1,0)(φ) =
∂h∗U (φ, h∗, h)|h∗=h=0 (see Appendix C for details). Contrary
to the NRG result of Ref. [15], we find that the coherence
〈cos ϕ〉 never vanishes, although it becomes very small in
the insulating phase (see the inset in Fig. 14), and does not
allow one to discriminate between the superconducting and
insulating ground states of the RSJJ (Fig. 13). One cannot
discard the possibility that a more accurate description of the
superconducting phase in the range 1 � α � 2, taking into
account the instantons connecting neighboring minima of the
periodic potential (see the discussion at the end of the previous
section), would give a vanishing coherence in the neighboring
of α = 1, but such a scenario seems rather unlikely.

If we expand the potential U (1,0)(φ) = ∑∞
n=0 u(1,0)

n cos(nφ)
in circular harmonics, we observe that in the insulating phase
(where we would naively expect the coherence to vanish since
the effective potential is irrelevant), the nonzero value of
U (1,0)(0) is entirely due to the zeroth-order harmonic ampli-
tude u(1,0)

0 so that the nonzero value of the coherence comes
from the dependence of the free energy on the external source
h. Even though the Josephson coupling is irrelevant in the
insulating phase, the coherence cannot be simply computed
from the Gaussian action obtained by setting EJ = 0 (in which
case one would find 〈cos ϕ〉 = 0), we must keep track of the
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FIG. 14. Expectation value 〈cos ϕ〉 vs α in the superconducting
phase when 1/EC = 0. The lines show the exact result obtained from
integrability methods [30].

contribution of the high-energy modes to the free energy and
its dependence on the external source h.

Because of the U(1) invariance of the action (1), i.e., the
invariance in the shift ϕ(τ ) → ϕ(τ ) + a of the field by an ar-
bitrary constant, the coherence is related to the current-current
correlation function χR

II (ω) (with I = qEJ sin ϕ the current
through the junction) by [50]

q2EJ〈cos ϕ〉 − χR
II (ω = 0) = 0, (22)

which is the analog of the f -sum rule in electron systems with
q2EJ〈cos ϕ〉 playing the role of the diamagnetic term. This
relation is well satisfied by the FRG results (Fig. 13).

The free energy f = − 1
β

lnZ of the boundary sine-Gordon
model is known exactly in the superconducting phase when
α > 2 and 1/EC = 0 [30]. Using 〈cos ϕ〉 = −∂ f /∂EJ , one
obtains

〈cos ϕ〉 = �
(

α−2
2α−2

)
�

(
1

2α−2

)
2π3/2

(
1 − 1

α

) EJ
2bW

(
πEJ

2bW �(1/α)

)α/(α−1)

. (23)

Note that a finite UV cutoff W is necessary to make the
boundary sine-Gordon model well defined when 1/EC = 0.
b is a scale factor depending on the implementation of the UV
cutoff; for a hard cutoff, b = eγ /2 with γ the Euler constant
[26]. Figure 14 shows that the FRG reproduces the exact result
(23) with a very good accuracy.

Finally, we discuss the expectation value 〈cos(ϕ/2)〉,
whose exact expression has been conjectured by Fateev et al.
in the case 1/EC = 0 and W < ∞ [see Eq. (3) in Ref. [30]]. It
has also been computed by Lukyanov and Werner in the case
1/EC > 0 and W → ∞ [29]. Figure 15 shows a comparison
with the FRG results. In both cases (1/EC = 0, W < ∞ and
1/EC > 0, W → ∞), there is a good agreement for α � 2,
which shows that the FE2 is fully (quantitatively) reliable for
these values of α. However, the agreement deteriorates as α

approaches one, again a sign that the FE2 is not reliable in the
range 1 � α � 2.

FIG. 15. Expectation value 〈cos(ϕ/2)〉 in the superconducting
phase obtained from the FRG and compared with the conjecture of
Fateev et al. [30] in the case 1/EC = 0, W < ∞, and the Monte Carlo
simulations of Lukyanov and Werner [29] in the case 1/EC > 0,
W → ∞.

V. CONCLUSION

Our FRG study of the RSJJ has met with mixed success.
On the one hand, it clearly shows that the Schmid transition is
not controlled by a single fixed point but by a line of critical
fixed points, in agreement with the conclusions of Werner,
Troyer, and Lukyanov based on Monte Carlo simulations and
integrability methods [28,29]. The same conclusion can be
drawn from the NRG calculations of Masuki et al. [15].

On the other hand, there are strong discrepancies regarding
the location of the transition line in the plane (α, EJ/EC ).
In the large-bandwidth limit W/EC � 1, Werner and Troyer
find a vertical line located at α = 1 with an accuracy of 2%
(so that the transition can only be induced by varying α), the
NRG indicates that the transition line is curved in the region
α < 1 in a concave way (except for a surprising reentrance
of the superconducting phase at small α), whereas the FRG
gives a convex transition line which starts with an infinite
slope at α = 1. As already pointed out, the FRG fails in
the limit α → 0 and its prediction for the location of the
transition line may not be reliable even in the vicinity of
α = 1. These disagreements clearly call for further studies, in
particular numerical. The FRG also fails to capture the correct
frequency dependence of the mobility in the superconducting
phase when 1 � α � 2.

These two shortcomings, the spurious phase transition at
α = 0 and the inability to capture the frequency dependence
of the mobility when 1 � α � 2, can be ascribed to the failure
of the FRG in describing the instantons between neighboring
minima of the periodic potential. This is in sharp contrast with
the (1 + 1) sine-Gordon model where a derivative expansion
of the effective action to second order is sufficient to com-
pute the mass of the solitons and the lowest-lying breather
(soliton-antisoliton bound state) with high accuracy [26]. The
description of topological defects is an open issue in the
FRG approach. Aside from the topological excitations of the
(1 + 1)-dimensional sine-Gordon model, the FRG provides us
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with a good description of the vortices and the Berezinskii-
Kosterlitz-Thouless transition in the two-dimensional O(2)
model [51–53], but a good description of the kinks in the
one-dimensional Ising has still not been achieved [54,55].
Whether or not the FRG approach, used here in combination
with a second-order frequency expansion, can be improved in
order to describe the instantons of the boundary sine-Gordon
model is an open issue.

The discrepancies between the various theoretical and nu-
merical approaches could in principle be settled by future
experiments. By determining the location of the transition line
one could distinguish between the two scenarios proposed in
Fig. 5. We have provided a detailed prediction of this location

near α = 1, as a function of W and EC , in the scenario where
the transition line bends in the region α < 1 (top panel in
Fig. 5), which could be checked in finite-frequency measure-
ments of a RSJJ [12,14].
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APPENDIX A: FLOW EQUATIONS

The flow equations of Uk (φ) and Z2,k (φ) are obtained by relating these two quantities to the two-point vertex

�
(2)
k (iωn, φ) = Z1|ωn| + Z2,k (φ)ω2

n + U ′′
k (φ) (A1)

in a time-independent field φ(τ ) = φ. Thus, we have

∂tU
′′
k (φ) = ∂t�

(2)
k (0, φ),

∂t Z2,k (φ) = ∂t
�

(2)
k (iω1, φ) − �k (0, φ)

ω2
1

, (A2)

where ω1 = 2πT and we use a discrete frequency derivative for Z2,k (φ). �
(2)
k satisfies the flow equation

∂t�
(2)
k (iων, φ) =

∑
ωn

∂t Rk (iωn)

{
− 1

2
Gk (iωn, φ)2�

(4)
k (iων,−iων, iωn,−iωn, φ)

+ Gk (iωn, φ)2�
(3)
k (iων, iωn,−iωn+ν, φ)Gk (iωn+ν, φ)�(3)

k (−iων, iωn+ν,−iωn, φ)

}
, (A3)

where all quantities are evaluated in a time-independent field φ. In the limit T → 0, the Matsubara frequency becomes a
continuous variable and the discrete sums can be replaced by integrals. Likewise, the discrete derivative in (A2) becomes a
standard derivative. However, the propagator Gk (iωn) being a nonanalytic function of ωn, care must be taken when taking the
derivative with respect to ω2

ν of the right-hand side of (A3) since a naive expansion in ων of the integrand may give wrong results
[56,57].

The flow equations for the dimensionless functions defined in (10) read as

∂tŨ
′′
k = − Ũ ′′

k + 2l3
2Ũ ′′′

k Z̃ ′
2,k + l3

0Ũ ′′′
k

2 − 1

2
l2
0Ũ (4)

k + l3
4 Z̃ ′

2,k
2 − 1

2
l2
2 Z̃ ′′

2,k, (A4)

∂t Z̃2,k = Z̃2,k + 1

2ω̃2
1

{
2l2,1

0 (iω̃1)[Ũ ′′′
k + ω̃2

1Z̃ ′
2,k]2 + 4ω̃1l2,1

1 (iω̃1)Ũ ′′′
k Z̃ ′

2,k + 4l2,1
2 (iω̃1)Ũ ′′′

k Z̃ ′
2,k − 4l3

2Ũ ′′′
k Z̃ ′

2,k − 2l3
0Ũ ′′′

k
2

+ 4ω̃3
1l2,1

1 (iω̃1)Z̃ ′
2,k

2 + 6ω̃2
1l2,1

2 (iω̃1)Z̃ ′
2,k

2 − l2
0 ω̃2

1Z̃ ′′
2,k + 4ω̃1l2,1

3 (iω̃1)Z̃ ′
2,k

2 + 2l2,1
4 (iω̃1)Z̃ ′

2,k
2 − 2l3

4 Z̃ ′
2,k

2
}
, (A5)

where ω̃n = ωn/k = 2πnT̃ with T̃ = 1/β̃ = T/k the dimensionless temperature. The prime, double prime, etc., denote deriva-
tives with respect to φ. We have introduced the threshold functions

lm
p = 1

β̃

∑
ω̃n

˙̃Rk (iω̃n)G̃k (iω̃n, φ)m|ω̃n|p,

lm1,m2
p (iω̃ν ) = 1

β̃

∑
ω̃n

˙̃Rk (iω̃n)G̃k (iω̃n, φ)m1 G̃k (iω̃n+ν, φ)m2 ω̃p
n (A6)

and the dimensionless cutoff function and its time derivative,

R̃k (iω̃n) = Rk (iωn)

k
= α

2π
|ω̃n|r(|ω̃n|) + kZ2,kω̃

2
nr

(
ω̃2

n

)
, (A7)
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˙̃Rk (iω̃n) = ∂t Rk (iωn)

k
= − α

2π
ω̃2

nr′(|ω̃n|) − 2kZ2,kω̃
4
nr′(ω̃2

n

) + k∂t Z2,kω̃
2
nr

(
ω̃2

n

)
, (A8)

where

G̃k (iω̃n, φ) = kGk (iωn, φ) = 1
α

2π
|ω̃n| + Z̃2(φ)ω̃2

n + Ũ ′′
k (φ) + R̃k (iω̃n)

(A9)

is the dimensionless propagator in a time-independent field φ(τ ) = φ. In the zero-temperature limit, the Matsubara sums in (A6)
become integrals over the continuous variable ω̃:

1

β̃

∑
ω̃n

→
∫ ∞

−∞

ω̃

2π
(T → 0). (A10)

To alleviate the notations, we do not write explicitly the dependence of the threshold functions on k, Z̃2,k (φ), and Ũ ′′
k (φ).

For Z̃2,k (φ) = Ũ ′′
k (φ) = 0 and in the limit T → 0,

l̄2
0 = l2

0 |Z̃2,k=Ũ ′′
k =0 =

∫ ∞

−∞

dω̃

2π
˙̃Rk (iω̃)G̃k (iω̃)2 = − 2

α

∫ ∞

0
dω̃

r′(ω̃)

[1 + r(ω̃)]2
= 2

α
. (A11)

The threshold function l̄2
0 is universal, i.e., independent of the cutoff function Rk , provided that r(0) = ∞ and r(∞) = 0.

APPENDIX B: PERTURBATION THEORY FROM TRUNCATED FLOW EQUATIONS

We use the flow equations to reconstruct the perturbation theory near α = 1 where the critical point is close to the Gaussian
fixed point. In a first step, we approximate Uk (φ) and Z2,k (φ) by retaining only the coupling constants that are nonzero for the
initial condition at k = kin, i.e.,

Uk (φ) = −EJ,k cos φ, Z2,k (φ) = 1

2EC,k
. (B1)

Anticipating that the fixed-point values 1/Ẽ∗
C and Ẽ∗

J of the dimensionless coupling constants 1/ẼC,k = k/EC,k and ẼJ,k = EJ,k/k
are of order ε = 1/α − 1 and

√
ε, respectively, we include in the flow equations all terms up to order ε3/2. To do so, one must

expand the threshold functions as follows:

lm
p = l̄m

p − m
[
Ũ ′′

k (φ)l̄m+1
p + Z̃2,k (φ)l̄m+1

p+2

] + 1
2 (m2 + m)Ũ ′′

k (φ)2 l̄m+2
p , (B2)

where l̄m
p = lm

p |Ũ ′′
k =Z̃2,k=0. For simplicity, we consider here the cutoff function Rk (iω̃n) = (α/2π )|ω̃n|r(|ω̃n|). This yields the flow

equations

k∂k
1

ẼC,k
= 1

ẼC,k
+ l̄2,1

0
′Ẽ2

J,k,

k∂kẼJ,k = ẼJ,k

(
−1 + 1

α

)
− 1

2
l̄3
2

ẼJ,k

ẼC,k
+ 3

8
l̄4
0 Ẽ3

J,k, (B3)

where

l̄m1,m2
p

′ =
⎧⎨
⎩limω̃→0

l̄
m1 ,m2
p (iω̃)−l̄

m1+m2
p

ω̃2 = ∂ω̃2 l̄m1,m2
p (iω̃)|ω̃=0 (p even),

limω̃→0
l̄

m1 ,m2
p (iω̃)

ω̃
= ∂ω̃ l̄m1,m2

p (iω̃)|ω̃=0 (p odd),
(B4)

using l̄m1,m2
p (iω̃ = 0) = l̄m1+m2

p (0) for p even (odd). We denote by l̄m1,m2
p (iω̃) the function lm1,m2

p (iω̃) in the limit Ũ ′′
k = Z̃2,k = 0.

The parameters l̄3
2 > 0, l̄4

0 > 0, and l̄2,1
0

′ < 0 in (B3) are real numbers whose values depend on the function r discriminating
between low (|ωn| � k) and high (|ωn| � k) frequency modes.

When α → 1, the running of the variable 1/ẼC,k is initially much faster than that of ẼJ,k; after a transient regime the value of
1/ẼC,k is entirely determined by the value of ẼJ,k:

1

ẼC,k
= −l̄2,1

0
′Ẽ2

J,k . (B5)

In other words, all RG trajectories in the (1/ẼC,k, ẼJ,k ) plane collapse on a single line as shown in Figs. 2 and 3: For a general
discussion of this “large-river effect,” see Refs. [58,59]. The flow equation on that line is deduced from (B3) and (B5):

k∂kẼJ,k = ẼJ,k

(
−1 + 1

α

)
+

(
3

8
l̄4
0 + 1

2
l̄3
2 l̄2,1

0
′
)

Ẽ3
J,k . (B6)
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We thus obtain the nontrivial fixed point

Ẽ∗
J =

(
8(α − 1)/α

4l̄3
2 l̄2,1

0
′ + 3l̄4

0

)1/2

,
1

Ẽ∗
C

= −8l̄2,1
0

′(α − 1)/α

4l̄3
2 l̄2,1

0
′ + 3l̄4

0

. (B7)

Depending on the sign of 4l̄3
2 l̄2,1

0
′ + 3l̄4

0 , this fixed point exists for α > 1 or α < 1. Linearizing the flow equation (B6) yields the
critical exponent

1

ν
= 2

(
1

α
− 1

)
for α → 1. (B8)

The same result can be obtained by linearizing Eqs. (B3) about the fixed point (B7).
To ensure that Eq. (B8) is correct, one should also consider the coupling constants that are not included in the ansatz (B1).

We thus use the harmonic expansion

Ũk (φ) =
∞∑

n=0

ũn,k cos(nφ), Z̃2k (φ) =
∞∑

n=0

z̃n,k cos(nφ) (B9)

and expand the flow equations in powers of ε = 1/α − 1. In addition to (B2) one must expand the threshold function

lm1,m2
p (iω̃ν ) = l̄m1,m2

p (iω̃ν ) − m1
[
Ũ ′′

k (φ)l̄m1+1,m2
p (iω̃ν ) + Z̃2,k (φ)l̄m1+1,m2

p+2 (iω̃ν )
] + 1

2

(
m2

1 + m1
)
Ũ ′′

k (φ)2 l̄m1+2,m2
p (iω̃ν )

− m2
[
Ũ ′′

k (φ)l̄m1,m2+1
p (iω̃ν ) + Z̃2,k (φ)l̄m1,m2+1

p+2 (iω̃ν )
] + 1

2

(
m2

2 + m2
)
Ũ ′′

k (φ)2 l̄m1,m2+2
p (iω̃ν )

+ m1m2Ũ
′′
k (φ)2 l̄m1+1,m2+1

p (iω̃ν ). (B10)

Near the fixed point, ũ1,k = O(
√

ε), z̃0,k, z̃2,k, ũn>1,k = O(ε), and z̃n 
=0,2,k = O(ε3/2). Using the fact that the running of ũ1,k is
initially much slower than the other variables, after a transient regime we find

z̃0,k = −1

2
l̄2,1
0

′ũ2
1,k,

z̃1,k = − α

4(1 + α)

[
32l̄2,1

0
′ũ2,k + (

l̄2,2
0

′ + 2l̄3,1
0

′)ũ2
1,k − 8

(
l̄2,1
1

′ + l̄2,1
2

′)z̃2,k
]
ũ1,k,

z̃2,k = α

2(4 + α)
l̄2,1
0

′ũ2
1,k,

ũ2,k = α

4(α − 4)

(
l̄3
0 ũ2

1,k − 2l̄2
2 z̃2,k

)
(B11)

to leading order in ε, and

∂t ũ1,k =
(

1

α
− 1

)
ũ1,k + 1

8

{
3l̄4

0 ũ3
1,k + 2

[
8l̄3

0 ũ2,k − 2l̄3
2 (2z̃0,k + z̃2,k )

]
ũ1,k − 4l̄2

2 z̃1,k
}

(B12)

including all terms of order ε3/2. Equations (B11) and (B12) lead to (13), where F is a complicated combination of the threshold
functions l̄m

p and l̄m1,m2
p

′.

APPENDIX C: CURRENT-CURRENT CORRELATION FUNCTION AND COHERENCE

To compute the expectation value 〈cos ϕ〉 and the zero-frequency limit of the current-current correlation function χII (iωn),
one must introduce a time-independent external complex source h in the action (1), i.e., consider

S −
∫ β

0
dτ (h∗eiϕ(τ ) + he−iϕ(τ ) ). (C1)

In the FE2 the effective action takes the form (8) where, however, the functions Z2,k (φ, h∗, h) and Uk (φ, h∗, h) depend on h∗ and
h. We can now use

〈cos ϕ〉 = 1

β

∂ lnZ (h∗, h)

∂h

∣∣∣∣
h∗=h=0

, χII (iωn = 0) = −q2E2
J

4β

(
∂2

∂h∗2
+ ∂2

∂h2
− 2

∂2

∂h∗∂h

)
lnZ (h∗, h)|h∗=h=0, (C2)

where Z (h∗, h) is the partition function obtained from (C1). These equations can be rewritten in terms of the effective potential
U (φ, h∗, h) ≡ Uk=0(φ, h∗, h) and G(iωn, φ) ≡ Gk=0(iωn, φ) [60]:

〈cos ϕ〉 = − U (1,0)(0), (C3)

χII (iωn = 0) = − q4E2
J

4
{−U (2,0)(0) − U (0,2)(0) + 2U (1,1)(0) + G(0, 0)[U (1,0)′(0)2 + U (0,1)′(0)2 − 2U (1,0)′(0)U (0,1)′(0)]},

(C4)
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where we use the notation U (i, j)(φ) = ∂ i
h∗∂

j
hU (φ)|h∗=h=0 and the prime denotes a derivation with respect to φ. U (i, j)(φ) can be

obtained from the flow equations of U (i, j)
k (φ) (which we do not show here).

A similar method can be used to obtain the expectation value 〈cos(ϕ/2)〉 as well as χ (iωn = 0) where χ (τ ) = 〈e i
2 ϕ(τ )e− i

2 ϕ(0)〉.
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