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Topological superconducting states and quasiparticle transport on the kagome lattice
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The pairing symmetry of superconducting state is a critical topic in the realm of topological superconductivity.
However, the pairing symmetry of the AV3Sb5 family, wherein A = K, Rb, Cs, remains indeterminate. To
address this issue, we formulate an effective model on the kagome lattice to describe topological superconducting
states featuring chiral charge density waves. Through this model, we explore the topological phase diagrams and
thermal Hall conductivity under various parameters, with and without spin-orbit coupling. Our analysis reveals
that the disparities in thermal Hall conductivity curves among different pairing symmetry states are safeguarded
by the topology resulting from the interplay of spin-orbital coupling and superconductivity. Remarkably, this
theoretical prediction can potentially enable the differentiation of various superconducting pairing symmetry
states in materials via experimental measurements of thermal Hall conductivity curves.
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I. INTRODUCTION

Revealing specific physical phenomena through minimal
lattice models is a fundamental undertaking within the realm
of contemporary condensed matter physics. The kagome lat-
tice has garnered considerable attention due to its distinctive
and exotic electronic properties, along with its unique topo-
logical features. These encompass both theoretically predicted
topological bands and flat bands [1]. When the rotational and
spin symmetries are perturbed within the kagome lattice struc-
ture, intriguing outcomes emerge, including the emergence
of nontrivial Z2 invariants and the presence of gapless edge
states [2]. Furthermore, the kagome lattice has been instru-
mental in realizing higher-order topological insulators [3].
More recently, the family of AV3Sb5 (where A can be K, Rb,
or Cs) has come into focus as the first example of quasi-two-
dimensional kagome superconductors. The crystal structure
of these materials is depicted in Fig. 1(a). This discovery of-
fers an exceptional platform for investigating superconducting
properties within the kagome lattice framework. Addition-
ally, these materials have been demonstrated to exhibit charge
density wave (CDW) order and superconducting (SC) proper-
ties [4–6], sparking considerable interest in understanding the
characteristics of each and their coexistence [7–23]. Addition-
ally, anomalous Hall effect (AHE), magneto-Seebeck effect,
and Nernst effect have been observed in these materials, fur-
ther expanding the range of intriguing phenomena associated
with them [24–29].

The determination of the pairing symmetry underlying su-
perconductivity within the AV3Sb5 family remains a highly
contentious issue that has yet to find a definitive resolution.
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Although a majority of findings point towards conventional
s-wave pairing, certain experimental observations have sug-
gested unconventional behavior. The presence of U-shaped
differential conductivity and the absence of in-gap states
lend support to the notion of s-wave pairing [9,14,16]. In
materials exhibiting s-wave pairing, in-gap states are only
induced by magnetic impurities, not by states with sign-
changing properties. Notably, a Cr cluster only triggers the
formation of an in-gap bound state, which strongly implies
s-wave pairing in AV3Sb5 [16]. Moreover, the clear Hebel
Slichter coherence peak observed in nuclear magnetic reso-
nance serves as additional robust evidence for s-wave pairing
[30,31]. Additionally, two-gap s-wave pairing models have
provided the most comprehensive explanations for measure-
ments related to resistance, penetration depth, and superfluid
density [15,32]. Nevertheless, two independent experiments
involving differential conductivity have identified an unsplit
zero bias conductivity peak, suggesting the potential existence
of p-wave pairing [9,33]. The thermal conductivity exhibits
similarities with the d-wave superconductor Tl-2201 [13],
featuring residual conductivity at 0 K. Furthermore, certain
theoretical frameworks have predicted the presence of nodal
s-wave, p-wave, and d-wave pairings within the AV3Sb5

system [34,35]. Benefiting from the intense competition be-
tween chiral charge density wave and superconducting phases
[13,17,18], we have developed an effective model aimed at
capturing the critical physical properties.

The paper is structured as follows. Our objective is to dis-
tinguish various superconducting pairing symmetry states via
the observable quasiparticle transport properties, specifically,
the thermal Hall effect. After this introductory section, Sec. II
expounds upon an effective model applied to a kagome lattice
characterized by the presence of chiral charge density wave
and superconductivity. In Sec. III, we elucidate the method-
ology employed for the computation of Berry curvature,
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FIG. 1. (a) The lattice structure of AV3Sb5. (b) The Brillouin
zone of the kagome lattice with 2 × 2 modulation which shrinks by
1/4. Qs are related to van Hove singularities, which can be written as
Q1 = (0, π/

√
3), Q2 = (−π/2,−π/2

√
3), Q3 = (π/2,−π/2

√
3).

(c) Schematic of chiral flux phase model [36]. (d) Schematic of the
d+id-wave pairing. Different colors represent different phases. Blue
lines represent φ = 0, yellow lines represent φ = 2π/3, and green
lines represent φ = 4π/3. If there is a d-id pairing, the order of the
definition reverses.

Chern number, and thermal Hall conductivity. Subsequently,
in Sec. IV, we outline the phase diagrams and thermal Hall
conductivity profiles for the model in the absence of spin-
orbit coupling (SOC), as previously mentioned. Section V
then presents the outcomes concerning phase diagrams and
thermal Hall conductivity for the model incorporating SOC,
considering different chemical potential values. Section VI
engages in a comprehensive discussion on the means by which
we can discern distinct pairing symmetries by scrutinizing the
thermal Hall conductivity profiles, ultimately concluding the
paper’s presentation. Supplementary materials are included in
the Appendices.

II. MODEL

We develop an effective model on a two-dimensional
kagome lattice that incorporates chiral charge density wave
(CDW), spin-orbit coupling (SOC), and superconductivity
(SC). The primary goal of this model is to examine the topo-
logical properties of the system’s superconducting states and
the transport properties of quasiparticles in the presence of
time-reversal symmetry breaking. Furthermore, we intend to
propose a method for discriminating between different pairing
symmetries based on our results.

Taking inspiration from the properties exhibited by
AV3Sb5, we have constructed our model on a two-dimensional
kagome lattice, consisting of three atoms in each unit cell of
the basic lattice. When we consider the 2 × 2 chiral CDW,

the unit cell expands by a factor of four, while the Brillouin
region shrinks to one quarter of its original size. This results
in the number of sublattice atoms becoming 12. Upon the
introduction of a nonzero SOC, the spin symmetry is broken,
thereby doubling the number of bands to 24.

We decompose the Hamiltonian into four parts: the nearest-
neighbor tight-binding part, the CDW part, the SOC part, and
the SC part, as expressed by Eq. (1). The first three terms
combined are referred to as Ĥ0.

Ĥ = ĤTB + ĤCDW + ĤSOC + ĤSC, (1)

The nearest-neighbor tight-binding model for the kagome
lattice is given by

ĤTB =
∑
k,σ

∑
α,α′

(HTB)α,α′c†
kσ,α

ckσ,α′

=
∑

k

∑
α,α′

[
−μδα,α′ − 2t cos

(
kl

2
|εαα′l |

)]
c†

kσ,α
ckσ,α′ ,

(2)
where the sublattice indexes α, α′ = A, B,C are extended to
α, α′ = 1, 2, . . . , 11, 12 with the inclusion of CDW. εαα′l is
the Levi-Civita symbol. We only consider the case where α

and α′ represent the nearest-neighbor sublattices. Spin indices
are denoted by σ =↑,↓, and the hopping t is chosen to be
isotropic, implying that we are studying the low-energy state
(Appendix A). For the sake of simplicity, we choose t = 1
as energy unit throughout the paper, and μ represents the
chemical potential.

AV3Sb5 exhibits a CDW that can be classified into two
types: in-plane CDW, and out-of-plane CDW that also known
as c-axis modulation. The 2 × 2 modulation of the CDW
has been verified by several experiments [7–9,14,33,37–40].
Muon spin spectroscopy has detected a magnetic response
of the chiral charge order, indicating time-reversal symmetry
breaking (TRSB) [7]. It has been confirmed by other exper-
iments [33,37,39,41,42]. Several theories have attempted to
explain the origin of TRSB, with the chiral flux phase (CFP)
being the most successful in carrying nontrivial topology and
naturally explaining TRSB [36]. Since we are considering the
quasi-two-dimensional properties of the kagome lattice, we
take the 2 × 2 modulation into account only.

Before we begin the analysis of the model, we have to
emphasize that the different origins of the CDW might lead to
different physics and, consequently, different models. There
are some experiments that point out that CDW might be re-
lated to the displacement of atoms [12]. Many studies have
observed the CDW transition in the AV3Sb5 (A = K, Rb, Cs)
system [4–6], with the indicator being a change in specific
heat. This characteristic highlights the significant contribution
of the electronic structural phase transition. What’s more, our
paper primarily explores the relationship between the system’s
topological properties and transport properties, the breaking
of time-reversal symmetry, as one of the most critical concepts
in topological physics, should be considered. Therefore we
choose the chiral flux phase model to describe the CDW in
the system.

The 2 × 2 modulation charge order results in an enlarged
unit cell that is four times larger than the previous one, while
the Brillouin zone shrinks by 1/4 [as shown in Fig. 1(b)].
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Several theories tried to explain the properties of the 2 × 2
CDW, including those presented in Refs. [36,43–45]. Among
them, the CFP model (shown in Fig. 1(c)) is the most convinc-
ing model for capturing the chiral CDW characteristic, which
has been confirmed by muon spin spectroscopy measurements
[7]. The CFP Hamiltonian can be expressed in real space as
[36]

ĤCDW = −iξ
∑

R

	CFP(R) · O(R) + H.c., (3)

where 	CFP(R)i = (cos(Qa · R), cos(Qb · R), cos(Qc · R))
and O(R) = (c†

AcB, c†
BcC, c†

CcA) are three-dimensional vec-
tors. The wave vectors Qi (i = a, b, c) are related to van Hove
singularities at the three equivalent M points on the boundary
of the Brillouin zone, as shown in Fig. 1(b).

For the 2 × 2 CDW modulation kagome lattice, there
would be about 120 free parameters in the SOC term if no ap-
proximations were made. Even after considering time-reversal
symmetry and point group symmetry, there might still be five
free parameters left, which deviates from our original goal of
constructing an effective model. To simplify the model, we
adopt the Rashba model [46] and rewrite it into a lattice model
with sixfold symmetry, given by

ĤSOC(r) = λ
∑
〈i, j〉

∑
〈α,α′〉

c†
iα (Rπ/2eiα, jα′ · σ )c jα′ , (4)

where c†
iα = (c†

iα,↑, c†
iα,↓), λ represents the Rashba spin-orbit

coupling strength, and eiα, jα′ = eiα − e jα′ is the unit vector
from site iα to site jα′, which is a constant value when the
unit cell indexes i, j are specially chosen. Rπ/2 is the 3D in-
plane rotation matrix with rotation angle π/2. We consider the
nearest-neighbor tight-binding model with a periodic bound-
ary condition, thus it is not necessary to involve the unit cell
index. The vector eiα, jα′ ≡ eα,α′ = eα − eα′ is only dependent
on the sublattice indexes. Hence, we can explicitly see that
the Fourier transformation form of the SOC Hamiltonian in k
space is independent of the real space index (see Appendix A).

In order to simplify analysis and numerical calculations,
a Fourier transform is often employed to convert the real-
space Hamiltonian into momentum space, using the basis
c†

k = (c†
k1,↑, c†

k2,↑ · · · , c†
k12,↑, c†

k1,↓, c†
k2,↓, · · · , c†

k12,↓). In this

space, the Hamiltonian can be expressed as Ĥ0 = c†
kH0ck,

where

H0 =
(
HTB +HCDW H↑↓

SOC

H↓↑
SOC HTB +HCDW

)
. (5)

It should be noted that HTB +HCDW is identical for both
spin-up and spin-down, as magnetism is not considered in this
model. H↑↓

SOC represents the SOC Hamiltonian with the basis
c†

kα↑ckα′↓, and the naming convention for H↓↑
SOC follows the

same rule.
It is straightforward to verify that our model exhibits a

sixfold rotation symmetry, denoted by C6. Specifically, the
sixfold rotation symmetry ofHCDW has been demonstrated in
a previous study [36]. To establish the existence of the sixfold
rotation symmetry inHTB andHSOC, we need to demonstrate
that their forms preserve the symmetry. The sixfold rotation
symmetry of HTB can be revealed by its form as shown in

Eq. (2). Notably, when we rotate the real space, it is equivalent
to exchange the numbering rules while maintaining Eq. (2).
Furthermore, the sixfold symmetry of HSOC is guaranteed by
the fact that σ can be treated as a series of constant matrices
under space rotation transformations. Therefore the rotations
are equivalent to exchange the numbering rules again in ac-
cordance with Eq. (4).

After discussing the geometric and electric properties, we
will now delve into the model of superconductivity. While
the pairing symmetry of AV3Sb5 (A = K, Rb, Cs) has not
yet been confirmed [9,13,14,16,33], we can construct some
possible SC pairing symmetries to gain insight into the transi-
tion properties of the SC states. Additionally, we would like to
highlight an observable value that can potentially distinguish
between different pairing symmetries in experiments. Note
that, although there are some experiments interpreting their
findings as indicative of p-wave occurrence [9,33], a greater
number of studies point towards a spin-singlet pairing. There-
fore our paper highlights the three most plausible spin-singlet
superconducting scenarios and distinguishes among them us-
ing the thermal Hall effect.

The most probable SC pairing symmetry is s-wave pairing,
also known as conventional SC. The corresponding Hamilto-
nian can be expressed as

Ĥs-wave = 	

2

∑
k,α

c†
kα,↑c†

−kα,↓ + H.c.

− 	

2

∑
k,α

c†
kα,↓c†

−kα,↑ + H.c., (6)

where 	 represents the SC gap function, which is a constant
for s-wave pairing. The negative sign in the second term
arises from the anti-commutation relation of the Fermion cre-
ation and annihilation operators {c†

k,α, c†
k′,α′ } = {ck,α, ck′,α′ } =

0 (see Appendix B).
Another possible spin-singlet pairing is d-wave pairing,

with angular momentum l = 2 and even spatial wave func-
tion. Based on the irreducible representations of the finite
subgroups of SO(3), there are two possible d-wave pair-
ings, namely, dx2−y2 -wave and dxy-wave. When the momentum
(kx, ky) rotates by π/2 to become (−ky, kx ), the gap func-
tion 	d-wave changes sign to become −	d-wave, and when
(kx, ky) → (−kx,−ky), 	d-wave → 	d-wave. Thus, as k rotates
once in k space, 	d-wave undergoes two periods.

On a kagome lattice, it is more convenient to consider a
complex d-wave pairing or d+id-wave pairing. To construct a
SC gap function using the tight-binding model, a d-wave pair-
ing SC is transformed from real space to k space by assuming
an extra phase when pairing in different directions [47]. As a
result, the real space d+id-wave SC can be determined and
written in a Fourier transformation form as follows.

Ĥd+id-wave = 	

2

∑
k,α

ei2θiα, jα eik·eiα, jα c†
kα,↑c†

−kα,↓ + H.c.

− 	

2

∑
k,α

ei2θiα, jα eik·eiα, jα c†
kα,↓c†

−kα,↑ + H.c., (7)

where θiα, jα is the angle between eiα and e jα , and it de-
pends on the sublattice index α. This is independent of the
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unit cell indexes i, j due to the periodic boundary condition.
Note that the gap function of d+id-wave pairing is given by
	(k) = 	ei2θiα, jα eik·eiα, jα , which is an even function of k. It
can be confirmed that under the transformation of k → −k,
	(k) remains unchanged. The sign-change between the first
and second terms occurs for the same reason as the s-wave
pairing. The phase of the SC gap function for the d+id-wave
pairing can be represented by Fig. 1(d), where the blue lines
represent φ = 2θ = 0, yellow lines represent φ = 2π/3, and
green lines represent φ = 4π/3. It is important to note that
the d+id-wave pairing here refers to a complex d-wave SC
state in the sense of real space and atomic level, as opposed to
a simple d-wave pairing.

The d-id-wave pairing state can be seen as the opposite SC
pairing state of the d+id-wave pairing state when the normal
state Hamiltonian Ĥ0 is topologically trivial. However, when
Ĥ0 is topologically nontrivial, there is a significant difference
between the d+id-wave and d-id-wave pairing states. There-
fore it is necessary to consider the d-id-wave SC pairing state,
which can be obtained by transforming θiα, jα → −θiα, jα , re-
sulting in the Hamiltonian expression

Ĥd-id-wave = 	

2

∑
k,α

e−i2θiα, jα eik·eiα, jα c†
kα,↑c†

−kα,↓ + H.c.

− 	

2

∑
k,α

e−i2θiα, jα eik·eiα, jα c†
kα,↓c†

−kα,↑ + H.c.,

(8)

where the parameters in the d-id-wave pairing state Hamilto-
nian are defined in exactly the same way as in the d+id-wave
pairing state.

In the customary approach, the Hamiltonian is expressed in
Bogoliubov-de Gennes (BdG) form in the Nambu representa-
tion, given by

(c†
k, c−k )r = (c†

k1,↑, · · · , c†
k12,↑, c†

k1,↓, · · · , c†
k12,↓,

c−k1,↑, · · · , c−k12,↑, c−k1,↓, · · · , c−k12,↓), (9)

where the subscript r denotes the rearrangement of the basis.
The SC Hamiltonian in the Nambu representation can be
written as

ĤSC = (c†
k, c−k )r

(
0 HSC

H†
SC 0

)(
ck

c†
−k

)
r

. (10)

Thus the entire Hamiltonian can be expressed as

H =
(H0(k) HSC

H†
SC −H∗

0 (−k)

)
. (11)

where we wrote the Hamiltonian into BdG form. Note that
HSC is the superconducting term which might be s-wave,
d+id-wave, or d-id-wave pairing superconducting term, re-
spectively.

III. METHOD

In this paper, we investigate the topological properties
and quasiparticle transport of superconducting pairing states
with chiral CDW and SOC on a kagome lattice. We aim to
distinguish different superconducting pairing symmetries by

comparing the thermal Hall conductivity curves of different
SC pairings, and we argue that the differences can be at-
tributed to topology.

The Z invariant, or the Chern number, serves as a good
topological number for systems with particle-hole symme-
try in the absence of time-reversal symmetry. The presence
of the CFP term breaks time-reversal symmetry, and as the
Hamiltonian is in a BdG form, the system naturally possesses
a particle-hole symmetry. We explore three different types
of superconducting pairing symmetries: s-wave, d+id-wave,
and d-id-wave pairings. When we apply the transformation
k → −k∗, the gap functions of spin-singlet pairings switch to
their negative counterparts. Therefore the spin-singlet pairings
belong to D class, which can be characterized by a Z invariant
in a two-dimensional system [48]. In our model, the normal
state Hamiltonian is topologically nontrivial, which makes the
situation particularly intriguing.

In addition to the topological analysis, we also investigate
quasiparticle transport, specifically the thermal Hall effect. In
the semiclassical theory, the low-temperature Hall conduc-
tivity is mainly influenced by the Berry curvature near the
Fermi surface [49]. Therefore we can utilize the calculation
of the Berry curvature to understand the intrinsic thermal Hall
conductivity and attempt to connect it with the topological
number of the system, the Chern number, through the Berry
curvature. Berry curvature, which is one of the most important
topological representations, is derived from the Berry phase
γn = (1/2)

∫
S dRμ ∧ dRν�n

μν (R). The Berry phase is an ob-
servable quantity that is also known as a geometric phase, so
it must be gauge-invariant module 2π . Therefore the Berry
curvature must be able to be written in a gauge-invariant form
[50]

�n
μν = i

∑
n′ �=n

〈n| ∂H/∂Rμ |n′〉 〈n′| ∂H/∂Rν |n〉 − (μ ↔ ν)

(εn − εn′ )2 ,

(12)

where |n〉 , |n′〉 are both the eigenstates of the Hamiltonian,
and εn, εn′ are the eigenvalues of the Hamiltonain. The Chern
number is calculated by integrating the Berry curvature di-
vided by 2π ,

Cn = 1

2π

∫
BZ

�n
kx,ky

(k)d2k, (13)

where Cn represents the Chern number for the nth band. BZ
represents the integral are done inside the Brillouin region,
and �n

kx,ky
(k) represents the Berry curvature respect to the

two-dimensional momentum space.
When energy degeneracy occurs, the gauge-invariant form

of Berry curvature is no longer well-defined, rendering Cn ill-
defined as well. However, we can still describe the topological
properties of superconducting states through the Chern num-
ber C = ∑

n∈occ Cn. To achieve this, we introduce the pseudo
Berry curvature as follows:

�∗n
μν = i

∑
n′ /∈occ

〈n| ∂H/∂Rμ |n′〉 〈n′| ∂H/∂Rν |n〉 − (μ ↔ ν)

(εn − εn′ )2 ,

(14)

where n ∈ occ and n′ /∈ occ. Note that �∗n
μν is not the Berry

curvature, and its integral divided by 2π is not the Chern
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number for the nth band. Nevertheless, it can be proven that
the Chern number is

C = 1

2π

∑
n∈occ

∫
BZ

�∗n
kx,ky

(k)d2k. (15)

where BZ represents the integration over the Bril-
louin zone, and �∗n

kx,ky
(k) represents the pseudo

Berry curvature with respect to the two-dimensional
momentum space. (See Appendix C for a detailed
proof.)

After calculating the Berry curvature, we can determine
the quasiparticle transport, particularly the thermal Hall effect
which we investigate in this paper.

The thermal Hall effect is a crucial observable effect that
is possible to distinguish different superconducting pairings.
The intrinsic anomalous Hall effect (AHE) is governed by
the Berry curvature [51], which can also be obtained through
semiclassical theory that considers wave-packet dynamics
[52,53]. However, neither quantum nor semiclassical theory
involves the superconductivity that relies on the effective
attraction between electrons. Therefore we employ the semi-
classical theory for superconductors [49] to derive the thermal

Hall conductivity given by

κq
xy = 2

T

∫
d2k

(2π )2
(�k )xy

∫ ∞

Ek

f ′(η, T )η2dη, (16)

where we set kB = 1 for convenience. The factor 2 comes
from the spin contribution. �k represents the Berry curvature
with the subscript xy indicating the flat where the Hall con-
ductivity locates. f (E , T ) is the Fermi-Dirac distribution and
f ′ is its derivative with respect to E . The zero-temperature
thermal Hall conductivity can be written as κ0 = πC1k2

BT/6h̄,
where C1 is the first Chern number of the system. However, the
low-temperature Hall conductivity depends on both the Berry
curvature and energy band structures. Thus, to understand the
low-temperature results, we must combine these two aspects.

IV. ANALYSIS AND RESULTS WITHOUT SOC

We present a model that describes superconducting states
on a kagome lattice with chiral charge density wave, and
we analyze the topological phase diagrams and quasiparticle
transport in the absence of SOC. In the absence of SOC, the
system retains spin symmetry. The Hamiltonian in the case
without SOC can be written as shown below

H =

⎛
⎜⎜⎜⎝
HTB(k) +HCDW(k) 0 0 	

0 HTB(k) +HCDW(k) −	 0

0 −	† −[HTB(−k) +HCDW(−k)]∗ 0

	† 0 0 −[HTB(−k) +HCDW(−k)]∗

⎞
⎟⎟⎟⎠, (17)

where 	 represents a part of the Hamiltonian for the superconducting term. Without SOC, the Hamiltonian can eliminate the
influence of spins and be reduced to half of its original dimensions. One of the reduced matrices comes from the first and fourth
row, and the other comes from the second and third row. It can be easily proved that the two matrices are the same by performing
a unitary transformation with σz. The reduced Hamiltonian can be written as shown below

H =
(
HTB(k) +HCDW(k) 	

	† −[HTB(−k) +HCDW(−k)]∗

)
, (18)

which is expressed using the basis of (c†
k1, · · · , c†

k12,

c−k1, · · · , c−k12).
The topological phase diagram was calculated using

Eq. (15), as shown in Fig. 2. Although the phase diagram
was calculated for the parameters (ξ,	) = (1, 0.3, 0.03), we
verified that the phase diagram is valid for 	 ∈ [0.01, 0.03],
indicating that the superconducting gap does not affect the
system’s topological properties.

For μ ∈ [−0.1, 0], the Chern number for all pairing sym-
metries is 2. This is because the system becomes an insulator
for μ ∈ [−0.1, 0], and the sum of the Chern numbers of
all occupied bands equals 2. Since the Fermi surface is al-
ready gapped, the superconducting pairing symmetry does not
contribute to the system’s topology, and hence all supercon-
ducting pairing symmetries are topologically trivial. However,
for μ ∈ (0, 0.1], the system becomes a metal, and the Chern
number for s-wave pairing remains 2, while the Chern num-
ber for d+id-wave pairing increases by 2 to become 4, and
the Chern number for d-id-wave pairing decreases by 2 to
become 0. s-wave superconducting pairing is topologically

trivial and does not affect the system’s Chern number. On the
other hand, complex d-wave contributes to a Chern number of
2, where d+id-wave and d-id-wave possess opposite angular
momenta, with the former SC pairing contributing +2 and the
latter contributing -2.

Strictly speaking, there are no topological superconducting
terms when μ ∈ [−0.1, 0]. That is, when the normal states of
the system are insulating, there are no differences in topology
among s-wave, d+id-wave, and d-id-wave. Our objective
is to calculate the thermal Hall conductivity curves, which
depend on the system’s topological properties, to distinguish
different SC pairings. If there are no differences among
the three pairing symmetries, we cannot differentiate them.
Hence, we study the parameter regions where μ ∈ (0, 0.1],
and we take μ = 0.1 as an example.

The Fermi surface of the model at parameters (ξ,	,μ) =
(0.3, 0.03, 0.1) is shown in Fig. 3(a), mainly distributed
around the � and M points. The Berry curvatures for the three
different pairing symmetry superconducting states is shown in
Figs. 3(b)–3(d), whose integral equals the Chern numbers of
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FIG. 2. The topological phase diagrams of the superconducting
states without SOC are presented. It is worth noting that although the
phase diagram is obtained for 	 = 0.03, it has been verified that the
topological phase diagram remains unchanged even when 	 ranges
from 0.01 to 0.03. Additionally, it should be mentioned that the case
μ = 0 corresponds to the left portion of the phase diagrams. Please
note that the region where μ < 0 is not a superconducting state. We
only marked it in this way to indicate the appearance of topological
superconductivity in certain parameters.

the systems representing the topology of the whole system.
The distribution of Berry curvatures of the three different
pairing symmetry states matches that of the Fermi surface
because the superconducting terms gap the Fermi surface,
making the system fully gapped and topologically nontriv-
ial, while having topological superconducting term. Focusing
on the differences among the three pairing states, we can
see that the main difference is the Berry curvature on the
ringlike regions around the � point. Berry curvature on the
ringlike region of s-wave and d+id-wave pairings are both
positive, but that of s-wave is significantly smaller than that
of d+id-wave, while Berry curvature on the ringlike region of
d-id-wave pairing is negative. The results make sense because
complex d-wave superconducting states contribute a ringlike
region of Berry curvature around the � point in the hexagonal
lattice [49].

As Eq. (16) states, thermal Hall conductivity depends on
Berry curvature. Due to the Fermi-Dirac distribution, the low
temperature portion of the thermal Hall conductivity curve
is primarily determined by the highest occupied band, which
is the band closest to zero energy. Therefore we calculated
the Berry curvatures of the highest occupied band [shown
in Figs. 3(f)–3(h)] and the thermal Hall conductivity curves
[shown in Fig. 3(e)]. The qualitative differences in the curves

make it easy to distinguish among different pairing symmetry
states, which can be inferred from the Berry curvatures of
the highest band. The thermal Hall conductivity of the s-wave
pairing state, represented by the red curve, is nearly zero near
0 K and gradually increases with temperature, while that of
the d+id-wave pairing state, represented by the blue curve,
increases rapidly near 0 K. On the other hand, the thermal Hall
conductivity of the d-id-wave pairing state, represented by the
green curve, decreases to a negative value as the temperature
increases. Although all three types of SC pairing symmetry
states have nonzero Berry curvature at the K and M points,
they are almost identical at these points. The primary differ-
ence among these three states is the ringlike region around
the � point, which we have explained arises from different
topological superconducting states.

Therefore different superconducting states can be qual-
itatively distinguished by examining the thermal Hall con-
ductivity curves since different pairing symmetry SC states
contribute different topological properties, or more precisely,
different Berry curvature in the ringlike region around the �

point.

V. ANALYSIS AND RESULTS WITH-SOC

In this section, we investigate the impact of SOC on a
model of superconducting states on a kagome lattice with
chiral CDW, where the spin symmetry is absent. We analyze
two scenarios: (i) the normal state is a metal, such that a small
SOC can split the Fermi surface, resulting in a nonzero Chern
number and providing different topological superconducting
states; (ii) the normal state is an insulator, requiring a large
SOC to break the spin symmetry violently. In this case, a
Fermi surface will emerge, and the superconducting terms can
gap the new Fermi surface and produce topological supercon-
ducting states.

When λ �= 0, the Hamiltonian can no longer be reduced
to a block diagonal form, so we must consider the complete
Hamiltonian. It is important to note that Fig. 2 depicts the
phase diagram for the reduced Hamiltonian in Eq. (18). How-
ever, we must consider Eq. (18) as a part of Eq. (17), so the
complete Hamiltonian’s topological phase diagrams only need
to double the Chen number in Fig. 2.

In the first scenario with SOC, we gradually increase the
strength coefficient λ ∈ [0, 0.1] in Eq. (17), the Hamiltonian
is given by

H =

⎛
⎜⎜⎜⎜⎝
HTB(k) +HCDW(k) H↑↓

SOC(k) 0 	

H↓↑
SOC(k) HTB(k) +HCDW(k) −	 0

0 −	† −[HTB(−k) +HCDW(−k)]∗ −H↑↓
SOC(−k)∗

	† 0 −H↓↑
SOC(−k)∗ −[HTB(−k) +HCDW(−k)]∗

⎞
⎟⎟⎟⎟⎠, (19)

where HSOC(k) depends on the strength coefficient λ. We
choose a small λ to observe how SOC breaks the spin sym-
metry and splits the Fermi surface shown in Fig. 3(a) more
clearly.

We have computed phase diagrams at the fixed param-
eter values (	,μ) = (0.03, 0.1), which are presented in
Figs. 4(a)–4(c). To identify the topological phase transition
boundaries, we observed that the gap closing always accom-
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FIG. 3. (a) Fermi surface of the model, which mainly distributes around � point and beside M points. [(b)–(d)] The summation of Berry
curvatures of the all occupied bands for s-wave, d+id-wave, d-id-wave pairings, which represent the topological properties and relate to Chern
number. (e) Thermal Hall conductivity curves for s-wave, d+id-wave, and d-id-wave pairings. We can tell the differences of curves of the
three pairing symmetry superconducting states without considering the quantitative features. [(f)–(h)] Berry curvatures of the 13th band for
s-wave, d+id-wave, d-id-wave pairings, which connect tightly to the properties of thermal Hall conductivity curves. All of the results are
calculated at the parameters (ξ,	, μ) = (0.3, 0.03, 0.1).

panied the topological phase transition. The phase transition
boundary is discerned as a diagonal slash from the bottom
left to the top right, indicating that it is more challenging to
gap the Fermi surface for larger values of ξ . Furthermore,
we note that the phase transition is primarily driven by the

FIG. 4. Topological phase diagrams for (a) s-wave pairing SC
state, (b) d+id-wave pairing SC state, (c) d-id-wave pairing SC state.
All of them are calculated at the parameter (	,μ) = (0.03, 0.1).

SOC term. By increasing the value of λ from 0 to 0.1, the
SOC term re-gaps the Fermi surface and causes a reduction
of Chern number by 3. For our analysis of the impact of
the SOC term on the topological properties and thermal Hall
conductivity of the system, we choose the parameter values
(ξ, λ,	,μ) = (0.3, 0.1, 0.03, 0.1).

In Figs. 5(a) and 5(b)–5(d), we present the Fermi surface
and the Berry curvatures of the summation of the occupied
bands related to the Chern numbers for the three pairing
symmetry SC states. In the ringlike region around the � point,
which is contributed by the SOC term, both the Fermi surface
and the Berry curvature are split into two pieces. Furthermore,
we observe changes in the shapes of the Berry curvature
around the M points.

The thermal Hall conductivity curves for three different
SC states with distinct pairing symmetries are displayed in
Fig. 5(e). It is observed that, despite the variation of λ from
0 to 0.1, the curves exhibit little change. This is due to two
factors that are consistent with the scenario without SOC.
First, the changes in the Chern numbers of all three SC states
with distinct pairing symmetries are identical, which implies
that the SOC term’s impact on the topological properties is
uniform. Second, the Berry curvature, which is crucial for
determining the thermal Hall conductivity, is illustrated in
Figs. 5(f)–5(h). Although the pattern of Berry curvature in
the presence of SOC is more intricate than that without it, the
principal differences among the three SC states are found in
the ringlike region around the � point. To be specific, there
are only two rings that differ in the ringlike region of the
Berry curvature shown in Figs. 5(f)–5(h) because the Fermi
surface [Fig. 5(a)] is only divided into two pieces in this
region. The rings of s-wave pairing are fainter, which means
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FIG. 5. (a) Fermi surfaces at the parameter (ξ, λ, 	,μ) = (0.3, 0.1, 0.03, 0.1), where the ringlike part around � point is broken into
two pieces by SOC term. [(b)–(d)] Berry curvatures related to Chern number for s-wave, d+id-wave, and d-id-wave pairing symmetry
superconducting states, which is the summation of the occupied bands. (e) Thermal Hall conductivity curves at the parameter (ξ, λ, 	, μ) =
(0.3, 0.1, 0.03, 0.1). [(f)–(h)] Berry curvatures connected to thermal Hall conductivity for s-wave, d+id-wave, and d-id-wave pairing
symmetry superconducting states, which belongs to the 25th band calculating from the highest energy band (counting from the highest energy
band).

that the Berry curvature here is small, whereas the rings of
d+id-wave pairing are significantly thicker. In contrast, the
Berry curvature in the rings of d-id-wave pairing is negative.
The explanation of the similiarity between Figs. 3(e) and 5(e)
is given in Appendix D.

Consequently, the differences in the thermal Hall conduc-
tivity curves arise from the distinct pairing symmetry SC
states rather than from the SOC term, which is the same as
the situation in the absence of SOC. It is noteworthy that
the strength of the SOC term is relatively small compared to
the strength of the CDW and SC terms and can therefore be
treated as a perturbation. Thus, in this case, the differences in
the thermal Hall conductivity curves are protected by topology
provided by the topological SC state.

Up to this point, we have focused on the scenario where
μ = 0.1, in which case the system is a superconductor even
if λ = 0, due to the fact that the normal state without SOC
term ĤTB + ĤCDW is metallic. Therefore the breaking of spin
symmetry in a superconducting state by the SOC term can be
considered as a perturbation.

In contrast, when μ � 0 in the absence of SOC, the normal
state is an insulator, and thus it cannot be considered a super-
conducting state. However, if we examine the situation where
λ is large enough to shift at least one band across the Fermi
energy level, the system can undergo a phase transition and
become a metallic state. In such a scenario, topological super-
conducting states may exist as well. We wish to investigate
whether it is possible to differentiate among various pairing
symmetry SC states based on their thermal Hall conductivity
curves in this context. For the sake of convenience, we will
assume μ = 0 as an illustrative example.

The phase diagrams in Fig. 6 illustrate the s-wave, d+id-
wave, and d-id-wave pairing symmetry SC states. Our focus is

on understanding how the Chern number changes with param-
eters ξ and λ, and how different Chern numbers control the
shapes of thermal Hall conductivity curves. Specifically, we
are interested in the region with well-defined Chern number

FIG. 6. Topological phase diagrams for (a) s-wave pairing SC
state, (b) d+id-wave pairing SC state, (c) d-id-wave pairing SC state.
The orange zone in (b) has a Chern number C = 6. All of them are
calculated at the parameter (	, μ) = (0.03, 0).
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FIG. 7. (a) Fermi surfaces. [(b)–(d)] Berry curvatures for s-wave, d+id-wave and d-id-wave pairings related to Chern number which is
the summation of occupied bands. (e) Thermal Hall conductivity curves. [(f)–(h)] Berry curvatures for s-wave, d+id-wave and d-id-wave
pairing related to the low-temperature quasiparticle transport which belongs to the 25th band. All the data are calculated under the parameter
(ξ, λ, 	,μ) = (0.3, 0.4, 0.03, 0), which is based on the experimental data.

where there is a complete Fermi surface and well-defined
quasiparticle transports.

The first boundary is a diagonal line running from around
(ξ, λ) = (0.32, 0.35) to (0.35, 0.37) for d+id-wave and d-
id-wave pairings [Figs. 6(b) and 6(c)]. Under this boundary,
the Chern number equals 4 for complex d-wave pairing sym-
metry states, indicating that there is no superconducting state
in this parameter zone. Note that we do not observe any
points whose Chern number is not well-defined, and therefore
we believe that there is no phase transition at this boundary
for s-wave. The second boundary is a diagonal line running
from about (ξ, λ) = (0.25, 0.38) to (0.34, 0.45) exclusively
for s-wave pairing [Fig. 6(a)]. Below this boundary, the Chern
number equals 4, and above it, the Chern number equals 10.
The third boundary is a diagonal line running from (ξ, λ) =
(0.25, 0.40) to (0.33, 0.45) exclusively for d-id-wave pairing
[Fig. 6(c)], and it does not exist in the d+id-wave pairing
state. The upper left corner in Fig. 6(c) falls in the region
C = 2, and the small region beside the first boundary in
Fig. 6(b) falls in the region C = 6. We did not analyze them
because the phase space areas they cover are too small. Our
focus is on regions with well-defined Chern numbers and
larger phase space areas. Such regions are more representative
and ensure the universality of our conclusions. Moreover, it is
worth mentioning that the physics near the topological phase
transition boundaries is also highly interesting. For example,
near the phase transition boundaries of the phase diagrams
shown in Fig. 6, we have discovered the presence of Weyl
superconducting states. This finding deserves further investi-
gation in subsequent research.

We have observed that the topological phase diagrams in
the case of μ = 0.1 exhibit some notable differences when
compared to those for μ = 0. Firstly, the positions of bound-
aries are dissimilar for μ = 0, whereas they are quite similar

for μ = 0.1. Secondly, the variation of Chern number is not
uniform for μ = 0, whereas it is uniform for μ = 0.1. To
understand these differences, we can examine the Berry curva-
ture and explore the nature of interactions that might account
for the dissimilarities in both the topology and quasiparticle
transport. In essence, we aim to investigate the topological
origin of the differences in thermal Hall conductivity curves
for the three pairing symmetry states and the reason behind
the contrast in the phase diagrams for s-wave and complex
d-wave pairing symmetry states.

We will focus on two regions: (i) the region in which the
Chern number for s-wave equals 4, d+id-wave equals 0, and
d-id-wave equals 2, and (ii) the region where the Chern num-
ber for s-wave equals 10, d+id-wave equals 0, and d-id-wave
equals -4. We do not consider the situation where the Chern
number for all three pairing symmetry states is 4 because
it implies they are all topologically trivial. Furthermore, we
do not analyze the situation where the Chern number for
s-wave equals 10, d+id-wave equals 0, and d-id-wave equals
2 separately, as the differences can be inferred by examining
the aforementioned regions.

In the first case, we consider the parameters (ξ, λ,	,μ) =
(0.3, 0.4, 0.03, 0), resulting in Chern numbers of 4, 0, and 2
for the s-wave, d+id-wave, and d-id-wave pairing SC states,
respectively. As shown in Fig. 7(a), the Fermi surface is
notably different from that of the situation when μ = 0.1.
Although the Fermi surface in the ringlike region also splits
into two pieces, the Fermi surface around M points moves to
K points, which is a distinguishing feature.

We cannot directly compare our current results with the
previous findings; therefore, we further verified the symmetry
of the system. It has been confirmed that the Fermi surface
displays a sixfold rotational symmetry, consistent with the D∗

6h
symmetry of the CDW term [36] and at least C6h symmetry
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FIG. 8. (a) Fermi surfaces. [(b)–(d)] Berry curvatures for s-wave, d+id-wave and d-id-wave pairings related to Chern number which is
the summation of occupied bands. (e) Thermal Hall conductivity curves. [(f)–(h)] Berry curvatures for s-wave, d+id-wave, and d-id-wave
pairing related to the low-temperature quasiparticle transport which belongs to the 25th band. All the data are calculated under the parameter
(ξ, λ, 	,μ) = (0.27, 0.43, 0.03, 0).

of the SOC term in our model. Furthermore, we explored the
topological superconductivity of spin singlet pairing at the
atomic level, where the energy gap function of the s-wave
pairing possesses the same D6h symmetry as the lattice, and
the modulus of the energy gap function of the d-wave pairing
has at least C6h symmetry. Hence, we can infer that the Berry
curvature of all energy bands also exhibits at least a sixfold
rotational symmetry. This confirms the precision of our calcu-
lations.

Let us examine the Berry curvature, whose integral equals
the Chern number, shown in Figs. 7(b)–7(d). Two main char-
acteristics emerge: (i) the inner ring in the ringlike region is
affected by the superconducting pairing symmetry. The inner
ring of the s-wave pairing state is the largest, followed by the
d+id-wave pairing state, while the d-id-wave pairing state
has a negative inner ring. (ii) The outer ring of the ringlike
region is influenced by the interaction between SOC and SC
term. Fragments on the ring facing M points of s-wave pairing
states are negative, while those of d+id-wave and d-id-wave
pairing states are positive. Furthermore, the number of frag-
ments on outer ring for s-wave and d+id-wave pairing states
is 12, while that for d-id-wave is double.

Moving on to the thermal Hall conductivity curves in
Fig. 7(e), we observe significant differences from the situation
when μ = 0.1. The curve for the s-wave pairing state goes
negative in the low-temperature region and quickly becomes
positive again. The curve for the d+id-wave pairing state
remains flat, while that for the d-id-wave pairing state goes
positive in the low-temperature region. Combined with the
above, we conclude that the low-temperature behavior of the
thermal Hall conductivity curves depends on the outer ring of
the ringlike region around � point, which is determined by the
topology contributed by the interaction of SOC and SC. Al-
though there are other differences in the Berry curvature of the

25th bands [Figs. 7(f)–7(h)], they are either too small to con-
tribute to the curve shape or far away from the Fermi surface.

Here we consider the second case, where the param-
eter values of (ξ, λ,	,μ) = (0.27, 0.43, 0.03, 0) are used
as an example. In this case, the Chern numbers for the s-
wave, d+id-wave, and d-id-wave pairing SC states are 10,
0, and −4, respectively. The differences in the Fermi sur-
faces between (ξ, λ,	,μ) = (0.3, 0.4, 0.03, 0) [Fig. 7(a)]
and (ξ, λ,	,μ) = (0.27, 0.43, 0.03, 0) [Fig. 8(a)] are mini-
mal, with only a slight expansion of the outer ring and a slight
shrinkage of the inner ring.

The summation of the Berry curvature of the occupied
bands is shown in Figs. 8(b)–8(d). The change in the Chern
number of the s-wave pairing symmetry SC state from 4 to
10, a large leap, is due to the change from negative to positive
on the outer ring. The change in the Chern number of the
d+id-wave pairing from 2 to −4 is due to some of the positive
segments on the outer ring becoming negative. Consequently,
the topological phase transitions arise from the outer ring of
the ringlike region.

The thermal Hall conductivity is shown in Fig. 8(e). Exam-
ining the Berry curvature shown in Figs. 8(f)–8(h), we observe
that they are almost identical except for the region around
the Fermi surface. The curve for s-wave pairing becomes
positive, the curve for d-id-wave pairing becomes negative,
and the curve for d+id-wave pairing remains almost flat. All
of these differences arise from the outer ring of the ringlike
region, which is the origin of the topological properties at this
parameter.

Hence, it can be concluded that, for chemical potential
μ = 0, the shapes of the thermal Hall conductivity curves are
determined by the outer ring of the ringlike region of the Berry
curvature. This outer ring is closely linked to the topology that
arises from the interplay between the SOC and SC terms.

184506-10



TOPOLOGICAL SUPERCONDUCTING STATES AND … PHYSICAL REVIEW B 108, 184506 (2023)

VI. DISCUSSION AND CONCLUSION

Based on the AV3Sb5 system, where A is either K, Rb,
or Cs, we have developed a model on the kagome lattice
to describe topological superconducting states characterized
by chiral charge density waves. We have also predicted
their quasiparticle transport. We have considered different
superconducting pairing symmetry states, namely s-wave,
d+id-wave, and d-id-wave pairings, and we aim to differen-
tiate these states based on a measurable value, which is the
thermal Hall conductivity.

In the absence of spin-orbit coupling, the phase diagrams
of the superconducting states are divided into two regions. For
μ ∈ [−0.1, 0], the normal states are insulators, and thus, topo-
logical superconducting states do not exist. For μ ∈ (0, 0.1],
topological superconducting states exist, and the thermal Hall
conductivity curves of different superconducting pairing sym-
metry states are qualitatively distinct. The Chern number
contributed by the s-wave pairing state’s SC term is 0, whereas
that contributed by the d ± id-wave pairing states is ±2. No-
tably, the primary difference in the Chern number arises from
the ringlike region around the � point of the Berry curvature,
which also determines the qualitative difference among the
three superconducting pairing symmetry states. Hence, the
thermal Hall conductivity curves of the three superconducting
pairing symmetry states are qualitatively distinct and topolog-
ically protected in the absence of SOC.

In the presence of spin-orbit coupling, our analysis can be
divided into two classical scenarios. First, we add an SOC
term as a perturbation to a topological superconducting state
(μ = 0.1). Second, we apply a large SOC term to drive the
system into an insulator-metal phase transition, followed by
adding an SC term (μ = 0).

At μ = 0.1, as the strength of the SOC term increases, the
system undergoes a topological phase transition, and the SOC
contribution to the Chern number equals −3, which primarily
arises from the ringlike region of the Berry curvature. Thus the
qualitative differences in the thermal Hall conductivity curves
are topologically protected by the contribution of the SC term,
since the SOC term contributes the same Chern number for all
three superconducting pairing symmetry states.

At μ = 0, varying the strength ratio of the SOC and CDW
leads to topological phase transitions in our parameter range.
Notably, the topological phase transition boundaries for the
s-wave, d+id-wave, and d-id-wave pairing symmetry SC
states are different, owing to the complex interaction among
the CDW, SOC, and SC terms. We have considered two pa-
rameters as examples and concluded that the differences in
the thermal Hall conductivity curves arise from the outer ring
of the ringlike region of the Berry curvature. Therefore the
qualitative differences in the thermal Hall conductivity are
also topologically protected by the interaction between SOC
and SC terms of the system.

In summary, our study investigates topological supercon-
ducting states and the thermal Hall effect on a kagome
lattice. The interplay of superconductivity, CDW, and SOC
on the kagome lattice results in the emergence of topological
properties in the system. Different superconducting pairing
symmetries give rise to distinct topological phases and dif-
ferent Chern numbers. We emphasize that the qualitative

differences in thermal Hall conductivity curves originate from
the different topological regimes. This disparity is primarily
driven by the superconducting term, which is topologically
protected. Therefore employing the thermal Hall effect as a
criterion for determining superconducting pairing symmetry
is very helpful.
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APPENDIX A: CONSTRUCTION
OF TIGHT-BINDING MODEL

1. Nearest-neighbor tight-binding model

Fourier transformation of creation and annihilation opera-
tors can be written as

c†
jασ = 1√

N

∑
k

e+ik·rj c†
kασ

cjασ = 1√
N

∑
k

e−ik·rj ckασ (A1)

So the tight-binding model can be written in k space as

HTB =
⎡
⎣ −μ −2t cos (k1/2) −2t cos (k2/2)

−2t cos (k1/2) μ −2t cos (k3/2)
−2t cos (k2/2) −2t cos (k3/2) −μ

⎤
⎦.

(A2)

2. Spin-orbit coupling

In this section, we are deriving the Rashba SOC Hamilto-
nian, which can be written as [46]

HSOC(r) = −λ(σ × p) · ẑ = λ(p × σ ) · ẑ, (A3)

where we can see that the momentum of the electron is per-
pendicular to the Pauli matrix vector. Note that in the language
of second quantization, the electron’s transition between lat-
tice sites can be expressed in the form of hopping, with its
momentum direction aligned with the lattice vector. Now, we
are able to rewrite the Hamiltonian into the second quantiza-
tion form in the basis of c†

iα = (c†
iα,↑, c†

iα,↓).

HSOC(r) = λ
∑
〈i, j〉

∑
〈α,α′〉

c†
iασiα, jα′c jα′

= λ
∑
〈i, j〉

∑
〈α,α′〉

c†
iα (Rπ/2eiα, jα′ · σ )c jα′ , (A4)

where σiα, jα′ represents the Pauli matrix vector that is per-
pendicular to the bond direction. Rπ/2 is the 3D in-plane
rotation matrix with rotation angle π/2. eiα, jα′ = riα − rjα′

is the vector connecting the nearest sites. λ is the parameter
of SOC strength. More clearly, when electrons hop or bond
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FIG. 9. Calculated energy spectrum of model. [(a)–(d)] System without SOC for normal state, s-wave, d+id-wave, and d-id-wave pairings,
and the parameter is (ξ, 	, μ) = (0.3, 0.03, 0.1). [(e)–(h)] System with SOC for normal state, s-wave, d+id-wave, and d-id-wave pairings,
and the parameter is (ξ, λ, 	,μ) = (0.3, 0.1, 0.03, 0.1). The red line corresponds to the bands near the Fermi surface.

with the neighbor electron, there is a certain direction for the
momentum, which is actually the bond direction represented
by the creation and annihilation operators on certain sites.

Fourier transformation of the SOC Hamiltonian can be
written as

ĤSOC(k) = λ
∑

k

∑
〈α,α′〉

eik·eiα, jα′ c†
kα (Rπ/2eiα, jα′ · σ )ckα′ , (A5)

where c†
kα

= (c†
kα,↑, c†

kα,↓) is the Fourier transformation op-

erator of c†
i . The ĤSOC(k)is the Fourier transformation value

of HSOC(r), marked as HSOC(r)
F←→ĤSOC(k). For the kagome

lattice with CDW modulation, there are 12 atoms in the unit
cell, so the Hamiltonian expands to a 24 × 24 matrix in the
basis of c†

k = (c†
k1, c†

k2, · · · , c†
k12).

We calculate the energy spectrum of the system without
and with SOC [as shown in Figs. 9(a) and 9(e)]. It can be
seen that after considering SOC, the original spin degenerate
energy bands will split.

It is worth emphasizing that the Rashba spin-orbit in-
teraction we adopted is not the only choice. However, the
qualitative differences in the thermal Hall conductivity curve
arise from variations in the Chern numbers. Rashba interac-
tion, as the simplest and the most possible SOC in the system,
offers limited topological phases. If Rashba interaction alone
is sufficient for us to distinguish between different parameter
regimes in terms of superconducting pairing symmetry, more
complex interactions will be even more effective.

APPENDIX B: SUPERCONDUCTIVITY

AV3Sb5 is the first quasi-2D superconductor in kagome
lattice. As the result, the superconductivity is widely inter-
ested. However, the SC pairing symmetry is not yet clear,
and there are conflicting experimental results that indicate
different pairing symmetries. We are considering both spin
singlets and spin triplets.

1. s-wave pairing

s-wave SC is the so-called conventional SC which is ex-
plained by the BCS theory. Based on the self-consistent field
approximation, the BCS Hamiltonian can be written as

Ĥs-wave = V

2

∑
kk′

(c†
k′α,↑c†

−k′α,↓c−kα,↓ckα,↑ + c†
k′α,↓c†

−k′α,↑

× c−kα,↑ckα,↓), (B1)

where we ignore the interband coupling. This is the simplest
pairing, and the self-consistent field approximation(SCFA) is
the usual simplification of the Hamiltonian, which can be
written as

〈c−kα,↓ckα,↑〉 = −〈c−kα,↑ckα,↓〉 �= 0

〈c†
k′α,↑c†

−k′α,↓〉 = −〈c†
k′α,↓c†

−k′α,↑〉 �= 0, (B2)

where we ignore the difference of the index k because
the average energy is k-independent. Define that 	 =∑

k〈c−k↓ck↑〉, so the SCFA Hamiltonian can be written as

Ĥs-wave = 	

2

∑
k,α

(
c†

kα,↑c†
−kα,↓ − c†

kα,↓c†
−kα,↑

)

+ 	∗

2

∑
k,α

(c−kα,↓ckα,↑ − c−kα,↑ckα,↓), (B3)

where we have used the equation∑
k,α

c†
kα,↓c†

−kα,↑ =
∑
−k,α

c†
−kα,↓c†

kα,↑

=
∑
k,α

c†
−kα,↓c†

kα,↑ =
∑

k �=0,α

−c†
kα,↑c†

−kα,↓,

(B4)

which is the same as
∑

k,α c−kα,↑ckα,↓.
We hope that we can easily expand the BCS Hamiltonian

into a topological SC Hamiltonian, so we rewrite the s-wave
SC in a tight-binding form which means the superconducting
electrons have limited spatial mobility. The Hamiltonian can
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be written as

Ĥs-wave = 	

2

∑
k,α

eik·eiα, jα c†
kα,↑c†

−kα,↓ + H.c.

− 	

2

∑
k,α

eik·eiα, jα c†
kα,↓c†

−kα,↑ + H.c. (B5)

Bogoliubov Hamiltonian is written in the basis of Nambu
representation

(c†
k, c−k )r = (c†

k1,↑, · · · , c†
k12,↑, c†

k1,↓, · · · , c†
k12,↓,

c−k1,↑, · · · , c−k12,↑, c−k1,↓, · · · , c−k12,↓),

(B6)

where the subscript r on the left of the equation represents
the rearrangement of the creation and annihilation operators.
Note that we are here considering the in-band coupling and
ignore the interband coupling, so the site indexes i, j should
be considered to be the identical sublattice of different unit
cells.

Under certain parameters, the energy spectrum of an s-
wave superconducting state without and with SOC are shown
in Figs. 9(b) and 9(f). It can be seen that the s-wave su-
perconductivity successfully gaps out the energy bands that
cross through the Fermi surface, and causes the particle hole
symmetry.

2. d ± id-wave pairing

For another spin-singlet pairing SC, we are here consider
a chiral d+id-wave SC. This kind of SC has an angular-
momentum two times faster than the rotation speed of k
vector. One of the simple methods to construct such a gap
function 	d+id (k) on the lattice model is transforming a
real-space effective Hamiltonian to k space. The real-space
Hamiltonian can be written as

Hd+id-wave =
∑
i, j

∑
α

	(iα, jα)c†
iα,↑c†

jα,↓ + H.c., (B7)

where 	(iα, jα) = 	ei2θiα, jα is the SC gap function which
depends on sublattice of the unit cell. θi j is the angle be-
tween vector ex and eiα, jα = riα − r jα , and the double-angle
phase represent the l = 2 angular momentum of d-wave. The
Fourier transformation of the d+id-wave pairing Hamiltonian
can be written as

Ĥd+id-wave = 	
∑
k,α

ei2θiα, jα eik·eiα, jα c†
kα,↑c†

−kα,↓ + H.c. (B8)

It might be a little bit weird to involve real-space indexes
into a k-space Hamiltonian. However, ei j is independent of
the position of cell i and j, but depend on the relative position
between i and j, which is actually some confirmed vector and
we can tell them without knowing the site index. Here we can
do a similar trick, rewrite the Hamiltonian as

Ĥd+id-wave = 	

2

∑
k,α

ei2θiα, jα eik·eiα, jα c†
kα,↑c†

−kα,↓ + H.c.

− 	

2

∑
k,α

ei2θiα, jα e−ik·eiα, jα c†
kα,↓c†

−kα,↑ + H.c.

(B9)

As is well-known, the d-id-wave superconducting pairing is
the chiral opposite of the d+id-wave complex d-wave pairing.
Hence, the difference in their forms in real space lies solely in
the sign of the phase, and we can directly provide its form as

Ĥd-id-wave = 	

2

∑
k,α

e−i2θiα, jα eik·eiα, jα c†
kα,↑c†

−kα,↓ + H.c.

− 	

2

∑
k,α

e−i2θiα, jα eik·eiα, jα c†
kα,↓c†

−kα,↑ + H.c.,

(B10)

where the sign convention for the parameter θ is the same as
that for the d+id-wave case.

We used the same parameters as for the s-wave super-
conducting states, and Figs. 9(c), 9(d) 9(g), and 9(h) display
the band structure of d ± id-wave superconducting states. It
is challenging to discern the differences among different su-
perconducting pairing states directly from the band structure.
Therefore we rely more on thermal Hall conductivity curves
as observable quantities to help distinguish among different
superconducting pairing states, which is the core focus of this
paper.

APPENDIX C: PROOF OF EQ. (15)

Consider the situation that n, n′ ∈ occ. One of the terms of
�n

μν can be written as

i
〈n| ∂H/∂Rμ |n′〉 〈n′| ∂H/∂Rν |n〉 − (μ ↔ ν)

(εn − εn′ )2 . (C1)

And one of the terms of �n′
μν can be written as

i
〈n′| ∂H/∂Rμ |n〉 〈n| ∂H/∂Rν |n′〉 − (μ ↔ ν)

(εn′ − εn)2

= −i
〈n| ∂H/∂Rμ |n′〉 〈n′| ∂H/∂Rν |n〉 − (μ ↔ ν)

(εn − εn′ )2 . (C2)

Therefore the two terms that belongs to �n
μν and �n′

μν

canceled, which means when we add them together, the sum-
mation do not include the matrix elements labeled by (n, n′),
even if there is energy degeneracy.

As a result, when we add up all the �n
μν, n ∈ occ, the

summation will not include the matrix elements labeled by
(n, n′),∀n, n′ ∈ occ. The result can be written as∑
n∈occ

�n
μν

=
∑
n∈occ

∑
n′ /∈occ

i
〈n| ∂H/∂Rμ |n′〉 〈n′| ∂H/∂Rν |n〉 − (μ ↔ ν)

(εn − εn′ )2 ,

(C3)

which can guarantee we are able to obtain a well-define Chern
number.
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FIG. 10. (a) Berry curvatures of the system without SOC un-
der the parameters (ξ,	, μ) = (0.3, 0.03, 0.1). (b) Berry curvatures
of the system with SOC under the parameters (ξ, λ, 	, μ) =
(0.3, 0.1, 0.03, 0.1). It is clear that the SOC is to split the Berry
curvature peaks, and the primary reason behind the splitting of Berry
curvature peaks is the splitting of the Fermi surface.

APPENDIX D: EFFECT OF SOC ON BERRY CURVATURE

In this section, we are going to explain the similarity
between Figs. 3(e) and 5(e). We have to explain that the
similarity is not the primary task of our study, while our
primary aim is to distinguish different SC pairing symmetry
states by calculating (or measuring) thermal Hall conductiv-
ity curves. Therefore, while we mentioned little change in
thermal Hall conductivity when λ changes from 0 to 0.1,
the actual significance lies in the fact that even as λ shifts
from 0 to 0.1, we can still distinguish different superconduct-
ing pairing symmetry states qualitatively from the behavior
of thermal Hall conductivity curves. Essentially, we seek to
elucidate that the qualitative differences in thermal Hall con-
ductivity curves solely originate from the superconducting
terms.

The first rationale is deduced from topological numbers.
The Chern number of s-wave shifts from 4 to 1, of d+id-wave
from 8 to 5, and of d-id-wave from 0 to −3, all undergoing a
change of −3. Notably, this uniform −3 shift across all Chern
numbers corresponding to different superconducting terms
signifies a contribution from the SOC. Thus, upon the affect
of the SOC term into the system, the differences in Chern
numbers for distinct superconducting pairing states continue
to be solely shaped by the superconducting terms.

The second rationale stems from Berry curvature: The shift
in λ from 0 to 0.1 causes a splitting of the Fermi surface
near the � point, transforming the ringlike region around the
� point in Figs. 3(b)–3(d) into a double-ring pattern seen in
Figs. 5(b)–5(d). The Berry curvature distribution contributed
by complex d-wave pairing on a lattice with hexagonal
symmetry (e.g., honeycomb, kagome) forms a circular ring
around the � point. Notably, the primary discrepancy between
Figs. 5(b)–5(d) and 5(f)–5(h) lies in the vicinity of the �

point. Therefore we posit that the key factor behind the dif-
ferences in thermal Hall conductivity curves at this juncture
predominantly stems from variations in superconducting pair-
ing symmetries, rather than from the SOC term.

We have drawn Berry curvature distribution as Fig. 10.
These graphs highlight that the main impact of the SOC
on high-symmetry lines involves the splitting of significant
Berry curvature peaks. However, substantial rearrangements
of Berry curvature are not widespread, particularly among
the smaller peaks around the � point. Notably, significant
shifts are observed near the K and M points, where the SOC
primarily competes with the CDW term, resulting in changes
in Chern numbers, while exhibiting less substantial interaction
with the SC term. (In this context, the primary reason behind
the splitting of Berry curvature peaks is the splitting of the
Fermi surface.) These findings substantiate our viewpoint that
the qualitative differences in the behavior of thermal Hall
conductivity curves solely originate from the superconducting
terms. It is worth noting that in regions with small band gaps,
the absolute value of the Berry curvature tends to be very
large, although this does not alter the Chern number. In order
to provide a clearer visualization of the distribution of Berry
curvature at different positions in k space, we have chosen the
range [−40, 40] for plotting purposes.
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