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Topological superconductivity in two-dimensional altermagnetic metals
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Bringing magnetic metals into superconducting states represents an important approach for realizing uncon-
ventional superconductors and potentially even topological superconductors. Altermagnetism, classified as a
third basic collinear magnetic phase, gives rise to intriguing momentum-dependent spin-splitting of the band
structure and results in an even number of spin-polarized Fermi surfaces due to the symmetry-enforced zero net
magnetization. In this work, we investigate the effect of this new magnetic order on the superconductivity of a
two-dimensional metal with d-wave altermagnetism and Rashba spin-orbital coupling. Specifically we consider
an extended attractive Hubbard interaction and determine the types of superconducting pairing that can occur
in this system and ascertain whether they possess topological properties. Through self-consistent mean-field
calculations, we find that the system in general favors a mixture of spin-singlet s-wave and spin-triplet p-wave
pairings and that the altermagnetism is beneficial to the latter. Using symmetry arguments supported by detailed
calculations, we show that a number of topological superconductors, including both first-order and second-order
ones, can emerge when the p-wave pairing dominates. In particular, we find that the second-order topological
superconductor is enforced by a C4zT symmetry, which renders the spin polarization of Majorana corner modes
into a unique entangled structure. Our study demonstrates that altermagnetic metals are fascinating platforms for
the exploration of intrinsic unconventional superconductivity and topological superconductivity.

DOI: 10.1103/PhysRevB.108.184505

I. INTRODUCTION

Magnetism and superconductivity are two fundamental
phenomena in nature, whose interplay in materials is one of
the central topics in condensed matter physics [1–12]. Mag-
netism can influence superconductivity in many ways, and its
effect on the pairing symmetry is of particular interest [13,14].
Generally speaking, magnetism is detrimental to spin-singlet
superconductivity but is conducive to the emergence of
unconventional superconductivity. Take ferromagnetism for
example. Its adverse effect on spin-singlet pairings can be
attributed to the breaking of time-reversal symmetry (TRS)
which lifts the spin degeneracy of the electronic bands; this
results in spin-split Fermi surfaces on which electrons can
no longer find time-reversal partners to form spin-singlet
Cooper pairs. Fortunately, a realistic system admits of many
competing pairing channels [15]. While the spin-singlet pair-
ing normally wins out in time-reversal-invariant systems, its
suppression by magnetism means that other unconventional
pairings could stand to benefit.

Recently, it has been observed in a series of materials
with compensated magnetization that a third basic collinear
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magnetic order [16–29], referred to as altermagnetism (AM)
[30–32], exists beyond the conventional dichotomy between
ferromagnetism and antiferromagnetism. The nomenclature is
intended to convey the most important characteristic of this
new magnetic order: that the spin polarization alternates in
both coordinate and momentum spaces. The effect of AM on
the electronic band structure is rather different from those
of the ferromagnetism or antiferromagnetism. Unlike usual
antiferromagnetism due to symmetry reason [19,20], AM
results in momentum-dependent spin splitting to the band
structure, resembling a spin-orbital coupling effect but with-
out spin-momentum locking [32]. Although these spin-split
bands also lead to spin-polarized Fermi surfaces like in ferro-
magnetic metals, the Fermi surfaces are generally anisotropic
as a result of the momentum-dependent spin polarization.
In addition, the number of spin-polarized Fermi surfaces in
AM metals is constrained to be even due to the symmetry-
enforced zero net magnetization. Because of these unique
properties, AM metals are emerging as another intriguing
class of systems to study the interaction between magnetism
and superconductivity [33]. Several novel phenomena, such as
orientation-dependent Andreev reflection [34,35], Josephson
effect [36], and finite-momentum Cooper pairing [37], have
already been predicted in heterostructures composed of AM
materials and superconductors. Notably, some parent com-
pounds of high-temperature superconductors are revealed to
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be altermagnets [31,32], raising the prospect that the coex-
istence of AM and superconductivity may be observed in a
single material. However, the study of AM in general is still at
an early stage, and fundamental questions such as what types
of superconductivity may emerge in AM metals and whether
they are topological remain to be answered.

In this work, we address these questions in the context
of two-dimensional (2D) metals with d-wave AM [32] and
Rashba spin-orbital coupling (RSOC). We incorporate the
RSOC because it arises naturally when the AM metal is grown
on a substrate [38]. Focusing on representative short-range
attractive interactions allowing for both s- and p-wave pair-
ing channels, we first determine the pairing phase diagram
spanned by the RSOC strength and the relative s-to-p-wave
pairing interaction strength. Our calculations show that the
AM metal with RSOC favors a mixture of spin-singlet s-wave
and spin-triplet p-wave pairings, in contrast to the case of pure
s- or p-wave pairings without RSOC; such mixed-parity pair-
ings are a result of the simultaneous breaking of the TRS by
AM and the inversion symmetry by RSOC. For finite RSOC,
two mixed-parity pairing phases are found, namely the s + he-
lical p-wave phase and the s + chiral p-wave phase. Notably,
the former can prevail over the latter for weak RSOC strengths
even though the TRS is broken. We further investigate the
topological properties of these pairings and identify a crucial
set of symmetries that can be used to delineate various topo-
logical phases. Using symmetry arguments corroborated by
detailed calculations, we show that the superconducting phase
is topologically trivial when the s-wave pairing dominates,
regardless of the nature of the p-wave component; on the other
hand, a multitude of topologically nontrivial phases can be
realized when the p-wave pairing dominates. Specifically, it
realizes a chiral TSC [39–43] characterized by an even Chern
number for dominant chiral-p wave pairings and a helical TSC
or a second-order TSC for dominant helical-p wave pairings.
In the latter scenario, the superconductor is a helical TSC
[44–52] if, as in the case of no RSOC, a mirror symmetry
or subsystem chiral symmetry exists to protect the helical
Majorana modes; otherwise, it becomes a second-order TSC
with Majorana corner modes [53–74] when these symmetries
are broken by finite RSOC. These results spotlight 2D super-
conducting AM metals as a remarkable platform in which both
1D and 0D Majorana modes can be achieved.

II. MODEL AND RESULTS

A. Two-dimensional metals with d-wave AM and RSOC

We consider a 2D metal with d-wave AM described by the
Hamiltonian Ĥ0 = ∑

kσ hσσ ′ (k)c†
kσ

ckσ ′ . Expressed in terms
of the Pauli matrices σx,y,z and the identity matrix σ0, hσσ ′ (k)
is given by (lattice constant is set to unity throughout) [32]

h(k) = −2t (cos kx + cos ky)σ0 + 2tAM(cos kx − cos ky)σz

+ 2λ(sin kyσx − sin kxσy), (1)

where the tAM term and the λ term describe the exchange
field associated with AM and the RSOC, respectively.
We note that the momentum dependence of the AM
exchange field resembles that of the d-wave pairing in
high-Tc superconductors [75].

FIG. 1. Band structures (left) and Fermi surfaces (right) of the
AM metal with and without RSOC. [(a) and (b)] λ = 0 and [(c) and
(d)] λ = 0.2. The color of the Fermi surfaces indicates the magnitude
of 〈σz〉, and the length and direction of the arrows indicate the
magnitude and direction of the in-plane spin polarization. The spin
textures clearly display the C4zT symmetry. Common parameters are
t = 0.5, tAM = 0.1, and μ = −1.

The AM exchange field brings significant changes to the
original band structure given by the first term of Eq. (1). First,
it breaks the TRS T = −iσyK (K is the complex conjugation
operator) and gives rise to spin-split bands. Second, its d-wave
nature breaks the fourfold rotational symmetry C4z = ei π

4 σz

and results in the deformation of the Fermi surfaces. Both
features can be clearly seen in Figs. 1(a) and 1(b). Now, the
additional RSOC also has important effects on the band struc-
ture. Because it breaks both the inversion symmetry P = σ0

and the mirror symmetry Mz = iσz of the AM metal, the
remaining degeneracies along the |kx| = |ky| axes are removed
[see Fig. 1(c)]. Furthermore, it introduces spin-momentum
locking on the spin-polarized Fermi surfaces, as shown in
Fig. 1(d). All these properties play a role in determining the
pairing symmetry and topological properties of the supercon-
ducting phases.

Another interesting fact about the Hamiltonian in Eq. (1)
is that it preserves the overall C4zT symmetry; this can be
seen from the fact that all three terms in Eq. (1) respect
this symmetry. Two important properties of the AM metal-
lic state immediately follow from this observation. First,
the net magnetization of the metallic state must be zero
even though the two bands become spin-split. Second, such
a state can be viewed as a critical metallic phase. To see
this, we first note that the Kramers theorem dictates the
existence of band degeneracies at the two C4zT -invariant
momenta, i.e., � = (0, 0) and M = (π, π ), as shown in
Fig. 1(c). Thus, an arbitrarily small out-of-plane magnetic
field, which breaks the C4zT symmetry, will open a gap
at � and M and drive the system to be a Chern metal
where the two bands will carry opposite Chern numbers
C = ±1 [76] (see Appendix A). In addition, a reversal of
the magnetic field’s direction will reverse the Chern number
of the two bands. Such a critical behavior is a manifesta-
tion of the fact that the band structure of AM metals differs
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drastically from those of ferromagnetic and antiferromagnetic
metals.

B. Pairing phase diagram

The pairing mechanism in a magnetic metal is known to be
nonunique [77], and the effects of magnetism on superconduc-
tivity are also known to be diverse. Importantly, magnetism
and superconductivity are not always exclusive. Indeed, the
coexistence of magnetic and superconducting orders has been
observed in many materials, ranging from heavy-fermion sys-
tems [5–9] to oxide interfaces [10–12]. In this work, we do
not examine the microscopic origin of the pairing interaction
and instead assume the following extended attractive Hubbard
interaction:

Ĥint = −Vs

∑
i

ni↑ni↓ − Vp

∑
〈i j〉,σ

niσ n jσ , (2)

where niσ is the density operator for electrons of spin σ on site
i and Vs and Vp are respectively the strengths of the on-site and
nearest-neighbor attraction. Equation (2) is a minimal form
of interaction that is capable of describing the competition
between spin-singlet and spin-triplet pairings.

Following the standard Bardeen-Cooper-Schrieffer (BCS)
theory, we define the gap function as

�σσ ′ (k) = − 1

NL

∑
k′

Vσσ ′ (k − k′)〈ck′σ c−k′σ ′ 〉, (3)

where NL is the number of lattice sites and Vσσ ′ (q) =
−(1 − δσ,σ ′ )Vs − δσ,σ ′2Vp(cos qx + cos qy) is the interaction
in Fourier space. The pair correlation can be calculated in
terms of the Bogoliubov amplitudes as

〈ckσ c−kσ ′ 〉 = uσ,1(k)v∗
σ ′,1(k) + uσ,2(k)v∗

σ ′,2(k). (4)

These amplitudes are determined by the Bogoliubov–de
Gennes (BdG) equation HBdG(k)χk,l = Ek,lχk,l , where Ek,l

with l = {1, 2} refer to the two positive eigenenergies,
χk,l ≡ [u↑,l (k), u↓,l (k), v↑,l (k), v↓,l (k)]T are the correspond-
ing eigenstates, and

HBdG(k) =

⎡
⎢⎢⎢⎣

ξk↑ 	(k) �↑↑(k) �↑↓(k)
	∗(k) ξk↓ �↓↑(k) �↓↓(k)
�∗

↑↑(k) �∗
↓↑(k) −ξk↑ −	∗(−k)

�∗
↑↓(k) �∗

↓↓(k) −	(−k) −ξk↓

⎤
⎥⎥⎥⎦.

(5)

Here 	(k) = 2λ(sin ky + i sin kx ) and ξks = −2(t − stAM)
cos kx − 2(t + stAM) cos ky − μ, where s = 1 (−1) for spin-up
(-down).

To determine possible pairing channels, one may expand
both Vσσ ′ (k − k′) and �σσ ′ (k) in terms of the so-called square
lattice harmonics gη(k) (see Appendix B), i.e.,

Vσσ ′ (k − k′) =
∑

η

γ
η

σσ ′gη(k)g∗
η(k′); (6)

�σσ ′ (k) =
∑

η

�
η

σσ ′gη(k), (7)

where γ
η

σσ ′ is the strength of the pairing interaction in the η

channel. For the attractive interaction given in Eq. (2), the only

FIG. 2. A representative pairing phase diagram. The white solid
line divides the pairing phase diagram into two regions, with one
favoring the mixed s + helical p-wave pairing and the other favor-
ing the mixed s + chiral p-wave pairing. The former preserves the
C4zT symmetry, while the latter does not. Below the black dashed
line, along which |�s

↑↓| = |�p+
↑↑ |, is a sizable region with dominant

helical p-wave pairing. Here the parameters are t = 0.5, tAM = 0.1,
μ = −1, and Vp = 1.5.

relevant channels are the s-wave one gs(k) = 1 and the p-wave
ones gp±(k) = sin kx ± i sin ky. Pairing channels with higher
angular momentum, e.g., d-wave or f -wave pairing channel,
are absent due to the Fermi statistics and the restricted range
of the interaction considered. Substituting the expansions in
Eqs. (6) and (7) into Eqs. (3)–(5), we can then solve for the
η-channel pairing amplitude �

η

σσ ′ self-consistently.
For finite RSOC, the gap equation admits only mixed-

parity solutions, of which two specific types are candidates
of the ground state. They are (i) mixture of s-wave and chiral
p-wave pairing for which �↑↓(k) = −�↓↑(k) = �s

↑↓gs(k),

�↑↑(k) = �
p+
↑↑gp+(k), and �↓↓(k) = �

p+
↓↓gp+(k) and (ii)

mixture of s-wave and helical p-wave pairing for which
�↑↓(k) = −�↓↑(k) = �s

↑↓gs(k) and �↑↑(k) = −�∗
↓↓(k) =

�
p+
↑↑gp+(k). We note that for the chiral p-wave pairing, an-

other degenerate solution exists corresponding to �↑↑(k) =
�

p−
↑↑gp−(k) and �↓↓(k) = �

p−
↓↓gp−(k). The fact that the solu-

tions are exclusively mixed parity is a natural consequence
of the lack of inversion symmetry in the system [78]. It is
also consistent with our findings that only pure s- or p-wave
solutions are found when the inversion symmetry is restored
by letting λ = 0.

Both types of the pairing solutions are found in the same
parameter space and so we need to compare their correspond-
ing condensation energies to determine the pairing ground
state. The resulting pairing phase diagram takes the generic
structure shown in Fig. 2. We see that the superconductor
favors a mixed s+ chiral p-wave pairing for strong RSOC
and a mixed s+ helical p-wave pairing for weak RSOC. In
the former phase, the s-wave component is always dominant,
whereas in the latter the p-wave component can dominate over
the s-wave one for a significant range of Vs/Vp. The s-wave
dominant and the p-wave dominant pairings indeed regress
to the pure s-wave and the pure p-wave pairings respectively
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in the λ → 0 limit. However, in the case of pure p-wave
pairing, chiral and helical p-wave pairings are completely
degenerate.

The two phases in Fig. 2 are not only distinguished by the
nature of the p-wave pairings but also by their different mag-
netic properties. Since the pairing amplitudes among spin-up
and spin-down electrons are not equal for mixed chiral p-
wave pairing, a finite net magnetization emerges in this phase.
Thus, the fact that this phase is favored for strong RSOC
is rather reminiscent of the charge-neutral atomic superfluid
with SOC, where a strong SOC leads to chirality as well
as finite magnetization [79,80]. Last, these two phases can
also be differentiated by whether they preserves the C4zT
symmetry. As we shall see immediately, this turns out to
be very consequential for the topological properties of the
superconducting phases.

C. Diverse topological superconducting phases

Based on the pairing phase diagram and the BdG Hamilto-
nian (5), we investigate possible topological superconducting
phases. We begin with the λ = 0 axis on the phase diagram,
where only pure-parity pairing occurs. Since the three possible
pairings can be classified by symmetry properties, the first
thing to note is that if the superconducting state possesses the
C4zT symmetry it will forbid the presence of chiral TSC even
though the TRS has been broken by AM. This fact can be
intuitively recognized since in such a scenario two edges
related by C4z rotation will carry chiral Majorana modes with
opposite chiralities due to the concomitant time-reversal op-
eration, implying a zero net Chern number. This symmetry
argument suggests that among the three possible pairings,
only the chiral p-wave pairing, which breaks the C4zT sym-
metry of the normal state, can lead to the realization of chiral
TSCs. For a chiral p-wave superconductor, the Chern number
C has a simple relation to the number of Fermi surfaces
NFS enclosing one time-reversal-invariant momentum, i.e.,
(−1)C = (−1)NFS [81]. Since the zero net magnetization of the
normal state in the AM metal demands an even NFS, an even
Chern number is thus enforced. For example, we find C = −2
for the Fermi surface configuration shown in Fig. 1(b).

We focus on the chiral p-wave pairing for the moment and
move into regions of finite λ in the phase diagram, where
the pairings are now mixed with an s-wave component. In
this case, whether such a mixed-parity superconducting phase
supports a chiral TSC hinges on the relative weight between
the two pairing components. When the s-wave component
dominates, the superconducting phase is topologically trivial
since it is adiabatically connected to the pure s-wave limit
with C4zT symmetry as long as the bulk gap remains open.
Similarly, when the chiral p-wave pairing dominates, the
superconducting phase is adiabatically connected to the pure
chiral p-wave limit and retains the topological properties of
that limit. A calculation of the energy spectrum of a cylindri-
cal sample shows the existence of two chiral Majorana modes
on an open edge, also confirming the realization of a chiral
TSC with C = −2 when the chiral p-wave pairing dominates,
as shown in Fig. 3(a). Due to the even C constraint, this mixed
chiral p-wave phase must transition directly to a trivial phase
with C = 0 when the s-wave component gradually increases.

FIG. 3. (a) A chiral TSC with Chern number C = −2. The blue
and red solid lines refer to chiral Majorana modes on two opposite
edges. (b) A helical TSC with a pair of helical Majorana modes.
The blue and red solid lines are doubly degenerate. [(c) and (d)]
A second-order TSC with gapped edge spectra and four Majorana
corner modes. The four red dots in the inset of (d) refers to four Majo-
rana zero modes, with their probability density profiles concentrating
around the four corners. Common parameters are t = 0.5, tAM = 0.1,
and μ = −1. The rest of parameters are as follows: (a) λ = 0.2,
�s

↑↓ = 0.05, and �
p+
↑↑ = �

p+
↓↓ = 0.25 for the chiral p-wave pairing

amplitude; (b) λ = 0, �s
↑↓ = 0; and [(c) and (d)] λ = 0.2, �s

↑↓ =
0.05. In (b)–(d), the helical p-wave pairing amplitude is chosen to be
�

p+
↑↑ = 0.25.

Now let us turn to the helical p-wave pairing. In the λ = 0
limit, we find that the superconductor with pure helical p-
wave pairing supports helical Majorana modes protected by
mirror symmetry Mz [52,82,83] or subsystem chiral sym-
metries [84,85]. An example is provided in Fig. 3(b), where
we show that the resulting superconductor carries a pair of
helical Majorana modes on the boundary for a Fermi surface
configuration shown in Fig. 1(b). When the RSOC becomes
finite, gapless Majorana modes are always absent, regardless
of which component of the mixed s + helical p-wave pairing
dominates, as exemplified in Fig. 3(c). Despite being triv-
ial in first-order topology, the superconductor is in fact a
second-order TSC when the helical p-wave pairing dominates.
Indeed, considering a square sample with open boundary con-
ditions in both x and y directions, we find the hallmark of a
second-order TSC, the existence of Majorana corner modes
[53–59], as shown in Fig. 3(d).

The arising of a second-order TSC in the region with
dominant helical p-wave pairing can also be understood via
adiabatic and symmetry arguments. As mentioned above the
helical Majorana modes in the λ = 0 limit are protected by
the mirror symmetry Mz or subsystem chiral symmetries
(see Appendix C). However, all these symmetry protections
are removed once λ becomes finite, giving rise to a Dirac
mass on the boundary to gap out the helical Majorana modes.
On the other hand, the C4zT symmetry is retained in this
mixed-parity superconductor, which forces the Dirac masses
on two nearby C4z-related edges to be opposite and hence
leads to the emergence of Majorana corner modes according
to the Jackiw-Rebbi theory [86]; this is very reminiscent of the
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scenario for the C4zT symmetry-enforced second-order topo-
logical insulator in 3D [87]. A rather unique property of this
symmetry-enforced second-order TSC is that the spin polar-
ization of the four Majorana corner modes are entangled. That
is, owing to the constraint from the C4zT symmetry, their out-
of-plane spin polarizations will form a quadrupole structure
[88], and the in-plane spin polarization will form a four-hour-
clocklike structure. In experiments, such entangled structures
of spin polarization can be detected by spin-polarized scan-
ning tunneling microscopes as a defining signature of this
second-order TSC [89–91].

III. DISCUSSIONS AND CONCLUSIONS

We have investigated the basic question of what kind of
superconductivity and TSCs may emerge in 2D AM metals.
A set of important symmetries relevant to the 2D AM metal
with RSOC are unveiled, which place various constraints on
the band structure, spin textures, and the pairing types for
the realization of TSCs. Guided by the symmetry analysis,
we have shown that the AM metal favors mixed-parity pair-
ings, and a multitude of TSCs, including both first-order and
second-order TSCs, can emerge when the spin-triplet p-wave
pairings dominate. We have also shown that the spin polar-
izations of Majorana corner modes on a square lattice take
intriguing structures as the second-order TSC is enforced by
the C4zT symmetry. All these findings prove that AM metals
have unique band structures and can give birth to unconven-
tional pairings and TSCs with fascinating properties.
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APPENDIX A: CHERN METALS DRIVEN
BY AN OUT-OF-PLANE MAGNETIC FIELD

By applying an out-of-plane magnetic field and only taking
into account the resulting Zeeman-splitting effect, the Hamil-
tonian becomes

h(k) = −2t (cos kx + cos ky)σ0 + 2tAM(cos kx − cos ky)σz

+ 2λ(sin kyσx − sin kxσy) + Bzσz, (A1)

where the last term, Bzσz, denotes the Zeeman field. It is read-
ily checked that the Zeeman field preserves the C4z rotational
symmetry but breaks the time-reversal symmetry, thereby
breaking the combined C4zT symmetry. As a result, a nonzero
Chern number becomes allowed.

For the two-band Hamiltonian, the Berry curvature can be
simply determined by the following formula [76]:


±(k) = ±d(k) · [∂kx d(k) × ∂ky d(k)]

2d3(k)
(A2)

where ± refer to the upper and lower band, respectively;
d(k) = [2λ sin ky,−2λ sin kx, Bz + 2tAM(cos kx − cos ky)];
and d (k) = |d(k)|. A straightforward calculation gives


±(k) = ±2λ2[Bz cos kx cos ky − 2tAM(cos kx − cos ky)]

d3(k)
.

(A3)

In the limit of Bz = 0, the Berry curvature has the property

±(kx, ky) = −
±(ky,−kx ), also implying that the Chern
number, which is the integral of the Berry curvature over
the Brillouin zone, identically vanishes. For a finite Bz, a
calculation of the Chern number yields

C± = 1

2π

∫
BZ


±(k)d2k

= ±
{

sgn(BztAM), 0 < |Bz| < 4|tAM|,
0, |Bz| > 4|tAM|. (A4)

This result shows that an arbitrarily small out-of-plane mag-
netic field will open a gap to the spectrum and renders a
nonzero Chern number to the bands. In addition, it is easy
to see from Eq. (A4) that a reversal of the magnetic field’s
direction will reverse the Chern number of the two bands,
indicating that the Hamiltonian (1) describes a critical metallic
phase.

APPENDIX B: THE DETERMINATION
OF PAIRING PHASE DIAGRAM

In this part, we provide more details on the determination
of the pairing phase diagram. We consider density-density
interactions between electrons and assume the existence of
discrete translational symmetry. Accordingly, the interaction
takes the generic form

Ĥint = 1

2

∑
i jσσ ′

Vσσ ′ (Ri − R j )niσ n jσ ′

= 1

2NL

∑
qσσ ′

Vσσ ′ (q)nqσ n−qσ ′ , (B1)

where Ri is the lattice site, NL is the total number of sites,

nqσ =
∑

i

niσ e−iq·Ri =
∑

k

c†
kσ

ck−qσ , (B2)

and

Vσσ ′ (q) =
∑

j

Vσσ ′ (Ri − R j )e
−iq·(Ri−R j )

= Vσσ ′ (−q). (B3)

For the last equation, we have used the property Vσσ ′ (Ri −
R j ) = Vσσ ′ (R j − Ri ).

Following the BCS theory, the pairing interaction is sim-
plified as

Ĥint ≈ 1

2

∑
kσσ ′

�σσ ′ (k)c†
kσ

c†
−kσ ′ + H.c., (B4)
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where the gap function is defined as

�σσ ′ (k) = − 1

NL

∑
k′

Vσσ ′ (k − k′)〈ck′σ c−k′σ ′ 〉. (B5)

Fermi statistics and the fact that Vσσ ′ (q) = Vσ ′σ (−q) lead to
the following property of the gap function,

�σσ ′ (k) = −�σ ′σ (−k). (B6)

To determine possible pairing channels, one may expand
Vσσ ′ (k − k′) in terms of the so-called square lattice harmonics
gη(k),

Vσσ ′ (k − k′) =
∑

η

γ
η

σσ ′gη(k)g∗
η(k′), (B7)

where γ
η

σσ ′ is the strength of the pairing interaction in the
η channel. Examples of the harmonics include the s-wave
gs(k) = 1, the extended s-wave ges(k) = cos kx + cos ky, the
p-waves gp±(k) = sin kx ± i sin ky, and the d-wave gd (k) =
cos kx − cos ky. The gap function can similarly be written as

�σσ ′ (k) =
∑

η

�
η

σσ ′gη(k). (B8)

Substituting Eq. (B8) into Eq. (B5), we obtain the amplitudes
of each pairing channel as

�
η

σσ ′ = − 1

NL

∑
k′

γ
η

σσ ′g∗
η(k′)〈ck′σ c−k′σ ′ 〉. (B9)

Introducing the Nambu basis �k = (ck↑, ck↓, c†
−k↑, c†

−k↓)T ,
the BCS Hamiltonian can be written as

Ĥ − μN̂ = 1

2

∑
k

�
†
kHBdG(k)�k, (B10)

with

HBdG(k) =

⎡
⎢⎢⎢⎣

ξk↑ 	(k) �↑↑(k) �↑↓(k)
	∗(k) ξk↓ �↓↑(k) �↓↓(k)
�∗

↑↑(k) �∗
↓↑(k) −ξk↑ −	∗(−k)

�∗
↑↓(k) �∗

↓↓(k) −	(−k) −ξk↓

⎤
⎥⎥⎥⎦,

(B11)

where

ξk↑ = −2(t − tAM) cos kx − 2(t + tAM) cos ky − μ,

ξk↓ = −2(t + tAM) cos kx − 2(t − tAM) cos ky − μ,

	(k) = 2λ(sin ky + i sin kx ). (B12)

The above Hamiltonian can be diagonalized by the following
Bogoliubov transformation:

ckσ = uσ,1(k)bk,1 + v∗
σ,1(−k)b†

−k,1

+ uσ,2(k)bk,2 + v∗
σ,2(−k)b†

−k,2, (B13)

where uσ,l , vσ,l with l = {1, 2} are the Bogoliubov amplitudes
and bk,l refer to the two quasiparticle operators. The Bogoli-
ubov amplitudes are obtained from the eigenvalue equation,

HBdG(k)χk,l = Ek,lχk,l , (B14)

where Ek,l refer to the two positive eigenenergies and
χk,l ≡ [u↑,l (k), u↓,l (k), v↑,l (k), v↓,l (k)]T are the correspond-
ing eigenstates. Using Eq. (B13), the gap equation (B9) can
be written as

�
η

σσ ′ = − 1

NL

∑
k

γ
η

σσ ′g∗
η(k)

× [uσ,1(k)v∗
σ ′,1(k) + uσ,2(k)v∗

σ ′,2(k)]. (B15)

Once the gap functions are obtained, the free energy of the
superconductor at zero temperature can be calculated as

FS = −1

2

∑
k

[Ek,+ + Ek,− − ξk↑ − ξk↓] + 1

2

∑
σσ ′k

�∗
σσ ′ (k)

× [uσ,1(k)v∗
σ ′,1(k) + uσ,2(k)v∗

σ ′,2(k)]. (B16)

The condensation energy is

δE = FS − FN , (B17)

where FN is the free energy of the normal state

FN =
∑

k,α=±
[εα (k) − μ]θ [μ − εα (k)]. (B18)

where the energy spectra ε±(k) = −2t (cos kx + cos ky) ±
2
√

[tAM(cos kx − cos ky)]2 + λ2(sin2 kx + sin2 ky).
Now we turn to our specific short-range interaction (an

extended attractive Hubbard interaction),

Ĥint = −Vs

∑
i

ni↑ni↓ − Vp

∑
〈i j〉,σ

niσ n jσ (B19)

for which

Vσσ ′ (q) =
{−Vs, σ �= σ ′,
−2Vp(cos qx + cos qy), σ = σ ′.

(B20)

In terms of gη(k), one finds

V↑↓(k − k′) = V↓↑(k − k′) = −Vsgs(k)g∗
s (k′),

V↑↑(k − k′) = V↓↓(k − k′) = −Vp[ges(k)g∗
es(k

′)

+ gd (k)g∗
d (k′) + gp+(k)g∗

p+(k′)

+ gp−(k)g∗
p−(k′)]. (B21)

It is worth mentioning that, in the above decomposition,
V↑↑ and V↓↓ not only contain p-wave harmonic compo-
nents but also contain extended s-wave and d-wave harmonic
components. However, because this attractive interaction oc-
curs between electrons with the same spin, it cannot result
in extended s-wave pairing or d-wave pairing due to the
Fermi statistics. As extended s-wave and d-wave pairings are
spin singlet, their formation requires an attractive interaction
between two electrons possessing opposite spins and located
at two nearest-neighbor sites, i.e., −Vsd

∑
〈i j〉 ni↑n j↓. To have

pairings with even higher angular momentum, such as an
f -wave spin-triplet pairing, one needs to further consider
longer-range attractive interactions, such as the next-nearest-
neighbor attractive interaction. In this work, to have an
understanding of the pairing phase diagram and the potential
topological superconducting phases, we will focus on the sim-
ple interaction given in Eq. (B19). Accordingly, only on-site
s-wave pairing and p-wave pairing will show up. Despite
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FIG. 4. The s+ chiral p-wave solution of the gap equations. Here t = 0.5, tAM = 0.1, Vp = 1.5, and μ = −1. Left: The pairing amplitudes.
Right: The condensation energy.

focusing on this simple interaction, we would like to empha-
size that it is sufficient to capture all key physics, including
the competition of even-parity and odd-parity pairings in
an inversion-asymmetric system and all possible topological
superconducting phases at a qualitative level. In the following,
we explain how we determine the superconducting ground
state and the pairing phase diagram.

As a result of the pairing interaction and the symmetry
property of the gap function in Eq. (B6), we have

�↑↓(k) = −�↓↑(k) = �s
↑↓,

�↑↑(k) = �
p+
↑↑gp+(k) + �

p−
↑↑gp−(k),

�↓↓(k) = �
p+
↓↓gp+(k) + �

p−
↓↓gp−(k). (B22)

The general forms of �↑↑(k) and �↓↓(k) do not necessarily
preserve the lattice symmetry. The two types of solutions that
do are (i) chiral p-wave with (�↑↑(k), �↓↓(k)) = (�p+

↑↑gp+
(k),�p+

↓↓gp+(k)) or (�↑↑(k), �↓↓(k)) = (�p−
↑↑gp−(k),

�
p−
↓↓gp−(k)) and (ii) helical p-wave with (�↑↑(k), �↓↓(k)) =

(�p+
↑↑gp+(k),�p−

↓↓gp−(k)) or (�↑↑(k), �↓↓(k)) = (�p−
↑↑gp−

(k),�p+
↓↓gp+(k)). It is noteworthy that for the chiral p-wave

pairing, the two situations (�↑↑, �↓↓) = (�p+
↑↑gp+,�

p+
↓↓gp+)

and (�↑↑, �↓↓) = (�p−
↑↑gp−,�

p−
↓↓gp−) lead to the same

condensation energy and similar topological property for the
superconducting phase (only the sign of the Chern number
will be different since the pairings for the two cases carry
opposite angular momentum). For this reason we only discuss
the case of (�↑↑, �↓↓) = (�p+

↑↑gp+,�
p+
↓↓gp+). For the helical

p-wave pairing, similarly, the two situations (�↑↑, �↓↓) =
(�p+

↑↑gp+,�
p−
↓↓gp−) and (�↑↑, �↓↓) = (�p−

↑↑gp−,�
p+
↓↓gp+)

lead to the same condensation energy and similar topological
property for the superconducting phase, so we also only need
to focus on one of the cases. Below, we focus on the case
(�↑↑, �↓↓) = (�p+

↑↑gp+,�
p−
↓↓gp−). When both chiral p-wave

pairing and helical p-wave pairing are solutions in the same
parameter region, we need to compare their corresponding
condensation energies in order to determine the ground state.
When the Rashba spin-orbit coupling is absent, we find that
the pairing has definitive parity, i.e., either even-parity or
odd-parity. Whether the ground state favors the even-parity

spin-singlet s-wave pairing or the odd-parity spin-triplet
p-wave pairing naturally depends on the relative strength of
Vs and Vp. It turns out that helical p-wave and chiral p-wave
pairings are degenerate in ground-state energy in the limit
λ = 0. If both tAM and the spin-orbit coupling constant λ are
finite, then we find that the general solution is a coexistence
of s-wave and p-wave pairings (either chiral or helical); in
other words pure s-wave or pure p-wave pairings are absent
when the Rashba spin-orbit coupling enters. In Figs. 4 (left)
and 4 (right) we show respectively the pairing amplitudes
and the condensation energy for the solution of mixed s+
chiral p-wave pairing. We note that the two p-wave pairing
amplitudes, �

p+
↑↑ and �

p+
↓↓ , are the same in magnitude when

the spin-orbit coupling λ is absent but they begin to gradually
deviate as λ increases. In Figs. 5 (left) and 5 (right) we show
respectively the pairing amplitudes and the condensation
energy for the solution of mixed s+ helical p-wave pairing.
In contrast to the chiral solutions, the two p-wave pairing
amplitudes, �

p+
↑↑ and �

p−
↓↓ , are always the same so that the net

angular momentum of this superconducting state is zero.
The phase diagram in the main text is obtained by first

comparing the condensation energies of the s+ chiral p-wave
and the s+ helical p-wave pairing solutions. Shown in Fig. 6
(left) is δEchiral − δEhelical in the region where it is positive,
namely in the region where the s+ helical p-wave pairing
is the ground state. This region can be further divided into
one where the p-wave pairing is dominant and one where
s-wave pairing is dominant, by a direct comparison of the
pairing amplitudes. Shown in Fig. 6 (right) is |�p

↑↑| − |�s
↑↓|

in the region where it is positive. The phase diagram is then
straightforwardly determined from the two plots in Fig. 6.

APPENDIX C: TOPOLOGICAL PROPERTIES
OF THE SUPERCONDUCTING PHASE WITH

MIXED s + helical p-WAVE PAIRING

When the pairing is a mixture of s-wave pairing and helical
p-wave pairing, the BdG Hamiltonian is given by

HBdG(k) = [−2t (cos kx + cos ky) − μ]τzσ0

+ 2tAM(cos kx − cos ky)τzσz

184505-7
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FIG. 5. The s+ helical p-wave solution of the gap equations. Here t = 0.5, tAM = 0.1, Vp = 1.5, and μ = −1. Left: The pairing amplitudes.
Right: The condensation energy.

+ 2λ(sin kyτ0σx − sin kxτzσy)

+ 2�p(sin kxτxσz − sin kyτyσ0)

+�s
↑↓τyσy, (C1)

where �
p+
↑↑ = −�

p−
↓↓ = �p is set for notational simplicity. In

this section, we give a detailed discussion about the symmetry
protection of the topological superconducting phase in the
λ = 0 limit. When λ = 0, our numerical calculations in fact
show that the pairing has fixed parity for the investigated
parameter region. Here for a generic discussion of the sym-
metry protection of the band topology we ignore this parity
constraint and still assume that the s-wave and helical p-wave
pairings can coexist even in the λ = 0 limit.

We first consider the �s
↑↓ = 0 limit. For this case, the BdG

Hamiltonian (C1) reduces to

Hp(k) = [−2t (cos kx + cos ky) − μ]τzσ0

+ 2tAM(cos kx − cos ky)τzσz

+ 2�p(sin kxτxσz − sin kyτyσ0). (C2)

This reduced Hamiltonian has mirror symmetry Mz, i.e.,
MzHp(k)M−1

z = Hp(k) with Mz = iτ0σz. According to the
two possible eigenvalues of Mz, i.e., ±i, the Hamiltonian
can be decomposed as Hp(k) = Hi(k) ⊕ H−i(k), where
H±i(k) = d±i(k) · τ with

d i(k) = (2�p sin kx,−2�p sin ky, ξk↑),

d−i(k) = (2�p sin kx,−2�p sin ky, ξk↓). (C3)

Each sector is a chiral p-wave superconductor and is
accordingly characterized by a Chern number. The Chern
numbers characterizing the two mirror-graded Hamiltonians
are simply given by [76]

C±i = − 1

4π

∫
BZ

d±i · [∂kx d±i × ∂ky d±i]

d3
±i

d2k, (C4)

where d±i = |d±i| denotes the norm of the d±i vector.
Without loss of generality, we take t > tAM > 0. Then a

FIG. 6. Left: The difference between the p-wave pairing amplitude and the s-wave pairing amplitude for the s+ helical p solutions (only
positive differences are shown). Right: The difference of condensation energies for the s+ chiral p-wave and the s+ helical p-wave solutions
(only positive differences are shown).
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straightforward calculation yields

Ci = −C−i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, μ > 4t,
1, 4tAM < μ < 4t,
0, −4tAM < μ < 4tAM,

−1, −4t < μ < −4tAM,

0, μ < −4t .

(C5)

The result suggests that the total Chern number, which is given
by the sum of the two mirror-graded Chern numbers, is always
zero. We have previously explained that this is a natural result
due to the constraint from the C4zT symmetry. Although the
total Chern number is zero, the mirror Chern number, which is
defined as CM = (Ci − C−i )/2 [82], has an absolute value of 1
when 4tAM < |μ| < 4t . When |CM | = 1, the superconducting
phase is a topological mirror superconductor with a pair of
helical Majorana modes on the open edges [83].

When �s
↑↓ is nonzero, the Hamiltonian becomes

Hsp(k) = [−2t (cos kx + cos ky) − μ]τzσ0

+ 2tAM(cos kx − cos ky)τzσz

+ 2�p(sin kxτxσz − sin kyτyσ0)

+�s
↑↓τyσy. (C6)

Since the s-wave pairing term anticommutes with the mir-
ror symmetry operator, i.e., {�s

↑↓τyσy, iτ0σz} = 0, the mirror
symmetry is broken. Without the protection of mirror sym-
metry, the helical Majorana edge modes are expected to be
gapped due to potential hybridization. However, we find that
the helical Majorana edge modes remain robust, suggesting
that there exists some additional symmetry protection. This
can be seen as follows. From the view point of dimensional
reduction, we may view the momentum for the direction with
periodic boundary conditions as a tuning parameter. Then the
spectrum crossing of the helical Majorana edge modes sug-
gests that the one-dimensional Hamiltonian is a topological
superconductor with two Majorana zero modes at each bound-
ary. To be more specific, let us take kx as a tuning parameter.
We can then view the two-dimensional Hamiltonian as a
one-dimensional parameter-dependent Hamiltonian Hkx (ky).
Now only the argument ky in the bracket has the meaning
as a momentum. For this parameter-dependent Hamiltonian
Hkx (ky), one finds that the Hamiltonian has an emergent chiral
symmetry at kx = 0 and kx = π , i.e., {C,Hkx (ky)} = 0. The
explicit form of the chiral symmetry operator is C = τxσ0. The
existence of chiral symmetry suggests that a winding number
can be assigned to characterize the band topology of H0(ky)
and Hπ (ky) [84]. To determine the winding number, the first
step is to rewrite the Hamiltonian by changing the original
basis to a new one in which the chiral symmetry operator
takes a diagonal form, i.e., C̃ = τzσ0. Apparently, this can be
realized by a unitary operation of the form U = eiπτyσ0/4, i.e.,
UCU −1 = C̃. In the new basis, the form of the Hamiltonian
becomes off-diagonal. Let us take H0(ky) as a specific exam-
ple. It is straightforward to find

UH0(ky)U −1 =
[

0 Q0(ky)

Q†
0(ky) 0

]
, (C7)

where Q0(ky) is a two-by-two matrix of the form

Q0(ky) =
[

q−(ky) −�s
↑↓

�s
↑↓ q+(ky)

]
, (C8)

where q±(ky) = [2(t ± tAM) + μ+ 2(t ∓ tAM) cos ky] + 2i�p

sin ky. The winding number is given by [84]

W0 = i

2π

∫ π

−π

Tr
[
Q−1

0 (ky)∂ky Q0(ky)
]
dky. (C9)

The winding number W0 also does not change its value as long
as the energy gap of H0(ky) remains open. Again let us first
focus on the limiting case of �s

↑↓ = 0, for which Q0(ky) is
diagonal, i.e.,

Q0(ky) =
[

q−(ky) 0
0 q+(ky)

]
. (C10)

Accordingly, it is easy to find that

W0 = W (−)
0 + W (+)

0 , (C11)

where

W (±)
0 = i

2π

∫ π

−π

[
q−1

± (ky)∂ky q±(ky)
]
dky. (C12)

A straightforward calculation yields

W (−)
0 =

⎧⎨
⎩

0, μ > 4tAM,

−1, −4t < μ < 4tAM,

0, μ < −4t,
(C13)

and

W (+)
0 =

⎧⎨
⎩

0, μ > −4tAM,

−1, −4t < μ < −4tAM,

0, μ < −4t .
(C14)

Similar analysis shows that for Hπ (ky) with �s
↑↓ = 0,

W (−)
π =

⎧⎨
⎩

0, μ > 4t,
−1, −4tAM < μ < 4t,

0, μ < −4tAM,

(C15)

and

W (+)
π =

⎧⎪⎪⎨
⎪⎪⎩

0, μ > 4t,

−1, 4tAM < μ < 4t,

0, μ < 4tAM.

(C16)

Based on the above analysis, we reach the following result:

(W0,Wπ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0), μ > 4t,

(0,−2), 4tAM < μ < 4t,

(−1,−1), −4tAM < μ < 4tAM,

(−2, 0), −4t < μ < −4tAM,

(0, 0), μ < −4t .

(C17)

Comparing with the mirror Chern number, we see that CM = 1
and CM = −1 correspond to (W0,Wπ ) = (−2, 0) and (0,−2),
respectively. Obviously, the value −2 of the winding number
also guarantees the robustness of the spectrum-crossing fea-
ture of the helical Majorana modes. Interestingly, using the
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FIG. 7. Common parameters are t = 0.5, tAM = 0.1, λ = 0.2,
μ = −0.0, and �p = 0.25. (a) �s

↑↓ = 0.0 and (b) �s
↑↓ = 0.2. The

red and blue solid lines refer to midgap states on opposite edges.
The edge-state energy spectra tangentially touch with the bulk
energy spectra when �s

↑↓ = 0, and become floating bands when �s
↑↓

becomes nonzero.

winding number, we find that the superconducting phase is
also topologically nontrivial in the region −4tAM < μ < 4tAM

even though the mirror Chern number is zero. In this region,
the two winding numbers W0 and Wπ both take value 1. It
means that if the translational symmetry is preserved in the x
direction, then on each y-normal edge there are two branches
of chiral Majorana modes with opposite chiralities, with one
branch traversing the gap at kx = 0 and the other traversing
the gap at kx = π , as shown in Fig. 7. This superconducting
phase can be categorized as a weak topological superconduct-
ing phase as it is protected by topological invariants defined
in noncontractible subspaces of the Brillouin zone. In this
case whether the Majorana modes comes about relies on the
orientation of the edges.

When �s
↑↓ becomes finite, the winding numbers retain

their values as long as the energy gap remains open along
those high symmetry lines. For the superconducting phase
with W0 = −2 or Wπ = −2, the robustness of the winding
number explains the robust spectrum-crossing feature of the
helical Majorana modes even when the mirror symmetry is
broken by the mixture of s-wave and helical p-wave pairings.
Due to the existence of C4zT symmetry, the physics is similar
when the directions for the open boundary conditions and the
periodic boundary conditions are reversed.

Below we provide a discussion on the condition for the
change of winding number when �s

↑↓ is nonzero. Without loss
of generality, we focus on the Hamiltonian H0(ky) in Eq. (C7)
for a detailed discussion. The energy spectra of H0(ky) can be

analytically determined, which read

E (ky) = ±
√

h2
1 + h2

2 + h2
3 + h2

4 ± 2
√

h2
1h2

2 + h2
2h2

3 + h2
3h2

4,

(C18)

where h1 = 2t (1 + cos ky) + μ, h2 = 2tAM(1 − cos ky), h3 =
�s

↑↓, and h4 = 2�p sin ky. The band gap becomes closed
when the parameters fulfill either one of the following two
conditions:

(I) : h4 = 0, h2 =
√

h2
1 + h2

3;

(II) : h1 = 0, h3 =
√

h2
2 + h2

4. (C19)

For case (I), if �s
↑↓ is nonzero, then the band gap closes only at

the time-reversal-invariant momentum ky = π and only when

4tAM =
√

(�s
↑↓)2 + μ2. For case (II), the band gap closes at

the momenta

ky = ±
[
π − arccos

(
2t + μ

2t

)]
(C20)

when

�s
↑↓ =

√
t2
AMμ2

t2
+ (�p)2(μ2 + 4tμ)

t2
. (C21)

According to the number of band-closing points, the winding
number W0 will change by 1 for the case (I) and by 2 for the
case (II).

When λ �= 0, both the mirror symmetry Mz and chiral
symmetries along the high symmetry lines are broken, and
the helical Majorana modes become gapped. The gapped
helical Majorana modes on the open edges can effectively be
described by a low-energy massive Dirac Hamiltonian

h(xb) = −iv∂xbρz + m(xb)ρy, (C22)

where v denotes the velocity of the Majorana modes, ρy,z are
Pauli matrices acting on the Hilbert space spanned by the
edge states, and xb denotes the coordinate along the edges
[57]. Since the Hamiltonian does not have the C4z rotational
symmetry or the time-reversal symmetry but has the C4zT
symmetry, the Dirac mass m(xb) will take opposite signs on
two nearby edges related by C4z rotation [87]. This leads to
the formation of Dirac-mass domain walls at the corners of
a square lattice whose geometry is C4z-rotationally invariant,
and hence the appearance of Majorana corner modes [86].
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