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Triplet superconductivity and spin density wave in biased AB bilayer graphene
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We examine spin density wave and triplet superconductivity as possible ground states of the Bernal bilayer
graphene. The spin density wave is stable for the unbiased and undoped bilayer. Both the doping and the applied
bias voltage destroy this phase. We show that, when biased and slightly doped, a bilayer can host a triplet
superconducting phase. The mechanisms for both ordered phases rely on the renormalized Coulomb interaction.
The consistency of our theoretical conclusions with recent experimental results is discussed.
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I. INTRODUCTION

The experimental observation of Mott insulating states and
superconductivity in magic-angle twisted bilayer graphene
[1–3] encouraged further studies of correlated phases in
bilayer [4] and multilayer graphene systems. The most well-
researched type of bilayer graphene is AB, or Bernal, bilayer
graphene (AB-BLG). There is experimental evidence [5–8]
that the ground state of AB-BLG is gapped even at zero
bias voltage and zero doping, and the gap is of a many-body
nature. The kind of ground state hosted by AB-BLG is un-
der discussion. Different candidates for this low-temperature
phase, such as ferromagnetic [9], spin-density wave (SDW)
[10–12], “pseudomagnetic” [13], and nematic [14], among
other possibilities, have been proposed.

Recently, a cascade of transitions between several non-
superconducting states [15–17], as well as superconductivity
[16], were observed in doped and biased AB-BLG. In
Ref. [12], we argued theoretically that the transitions cas-
cade reported in Refs. [15–17] can be connected to the
sequence of several fractional metallic states (with spin and
valley polarizations) that become stable in the doped SDW
phase.

As for the AB-BLG superconducting phase, its transition
temperature was experimentally estimated to be Tc ≈ 26 mK.
Curiously, the superconductivity appeared only when a mag-
netic field of about 150 mT was applied parallel to the
bilayer. To explain the superconductivity in AB-BLG, both
phonon [18,19] and electronic mechanisms [20–24] have been
proposed.

Unlike our previous paper [12], which was dedicated
to the nonsuperconducting states of the AB-BLG, here we
focus on the superconductivity in the same system. Our
starting point is the usual four-band tight-binding model
with Coulomb interaction [4]. The model is studied using
the zero-temperature mean-field approximation. To account
for screening, the renormalized Coulomb potential is cal-
culated within the random phase approximation (RPA). In
contrast to similar approaches (see, e.g., Refs. [21,22]), we
use the tight-binding model and distinguish intralayer and
interlayer Coulomb potentials, which, as demonstrated below,
experience dissimilar screening.

Our analysis begins with a mean-field study of the SDW
phase in the undoped unbiased bilayer. Typically one expects
that the SDW phase is more robust than superconductiv-
ity, which is indeed consistent with our findings. Thus, the
SDW must be weakened to allow for stabilization of the
superconductivity. Application of the bias voltage and doping
favors the superconductivity. We prove that the renormalized
Coulomb potential is enough to stabilize the triplet supercon-
ducting p-wave pairing in the AB-BLG. Our estimates for
the superconducting state properties, and in particular Tc, are
consistent with experiment.

The paper is organized as follows. In Sec. II the tight-
binding Hamiltonian is described. Renormalized Coulomb
interaction in unbiased undoped AB-BLG is calculated in
Sec. III. We study the SDW phase in Sec. IV. Renormalized
interaction for the doped biased bilayer is calculated in Sec. V.
Section VI is dedicated to the superconducting phase. A more
informal discussion of our findings, as well as the conclusions
of our analysis, can be found in Sec. VII. Specific technical
details are placed in two Appendixes.

II. TIGHT-BINDING MODEL

In AB-BLG, carbon atoms in sublattice B of the top layer
are located right above the atoms of sublattice A of the lower
layer, while the atoms in sublattice A of the top layer are
located above the centers of the hexagons formed by the atoms
of the lower layer. There are four atoms per unit cell. The ele-
mentary translation vectors for the AB-BLG can be chosen as
a1,2 = a(

√
3,∓1)/2, where a = 2.46 Å is the elementary unit

length. Vector δ = (a1 + a2)/3 connects two atoms within a
single unit cell in the same layer. The interlayer distance for
AB-BLG is d = 3.35 Å.

We consider the following model Hamiltonian H = H0 +
Hint, the first term being the single-particle Hamiltonian, while
the second term describes the Coulomb interaction. These are

H0 =
∑
kσ

ψ
†
kσ

(Hk − μ)ψkσ
, (1)

Hint = 1

2N
∑

kk′qσσ ′
i jαβ

d†
k+qiασ dkiασ

V i j
q d†

k′−q jβσ ′dk′ jβσ ′ . (2)
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In these equations, μ is the chemical potential, N is the
number of unit cells in a bilayer sample, and the operators
d†

kiασ and dkiασ are the creation and annihilation operators
of the electrons with momentum k in the layer i (= 1, 2),
and in the sublattice α (= A, B) with spin projection σ . The
four-component operator-valued spinor ψ

†
kσ is defined as

ψ
†
kσ = (d†

k1Aσ , d†
k1Bσ , d†

k2Aσ , d†
k2Bσ ), (3)

and the 4 × 4 matrix Hk equals

Hk =

⎛
⎜⎜⎝

e�/2 −t fk 0 t0
−t f ∗

k e�/2 0 0
0 0 −e�/2 −t fk
t0 0 −t f ∗

k −e�/2

⎞
⎟⎟⎠, (4)

where e is the electron charge, � is the bias voltage, and the
function fk is

fk = eikδ[1 + e−ika1 + e−ika2 ]. (5)

Parameter t = 2.7 eV is the in-plane nearest-neighbor hop-
ping amplitude, and t0 = 0.4 eV is the out-of-plane hopping
amplitude between nearest-neighbor sites in positions 1A and
2B. We choose the values of the hopping amplitudes t and t0
in accordance with Ref. [4].

It is important to note that in our model the interaction
function V i j

q in Eq. (2) is not a bare Coulomb electron-electron
repulsion. It is a renormalized interaction, which accounts for
many-body screening effects. It will be evaluated below using
the RPA. As for electron-lattice coupling, it is ignored in our
analysis.

We distinguish in the interaction Hamiltonian (2) the in-
tralayer and interlayer couplings. This is done by introducing
the layer indices in V i j

q . The interaction can be represented
as a 2 × 2 matrix. In such a matrix, the diagonal elements
correspond to the intralayer interaction, while the off-diagonal
elements correspond to the interlayer one.

Solving the eigenvalue/eigenvector problem Hk�k =
εk�k for matrix (4), we obtain the single-particle spectrum
of AB-BLG. It consists of the four bands

ε
(1)
k = −

√√√√
t2
k + e2�2

4
+ t2

0

2
+

√
t2
k

(
e2�2 + t2

0

) + t4
0

4
,

ε
(2)
k = −

√√√√
t2
k + e2�2

4
+ t2

0

2
−

√
t2
k

(
e2�2 + t2

0

) + t4
0

4
,

ε
(3)
k =

√√√√
t2
k + e2�2

4
+ t2

0

2
−

√
t2
k

(
e2�2 + t2

0

) + t4
0

4
,

ε
(4)
k =

√√√√
t2
k + e2�2

4
+ t2

0

2
+

√
t2
k

(
e2�2 + t2

0

) + t4
0

4
, (6)

where tk = t | fk|. When e� = 0, the spectrum near the Dirac
points K1 = (0, 4π/3a) and K2 = −K1 consists of four
parabolic bands (two electron and two hole bands) with one
electron and one hole band touching each other at Dirac
points. At finite e� a single-particle gap opens, and the AB-
BLG becomes an insulator.

The bispinor wave functions

�
(S)
k = (

�
(S)
k1A, �

(S)
k1B, �

(S)
k2A, �

(S)
k2B

)
, (7)

corresponding to the eigenvalues ε
(S)
k , S = 1, . . . , 4, can be

expressed analytically as well. However, the resultant formu-
las are quite cumbersome. In what follows, we will evaluate
�

(S)
k numerically.
It is useful to introduce new electronic operators γ

†
kSσ and

γkSσ
according to

dkiασ
=

∑
S

�
(S)
kiαγkSσ

. (8)

Operator γ
†
kSσ (operator γkSσ

) creates (destroys) an electron in
an eigenstate with quasimomentum k in band S. In terms of
these operators, the single-particle Hamiltonian reads

H0 =
∑
kSσ

(
ε

(S)
k − μ

)
γ

†
kSσ γkSσ

. (9)

III. POLARIZATION OPERATOR AND RENORMALIZED
COULOMB POTENTIAL FOR UNDOPED BILAYER

Coulomb interaction in a solid experiences unavoidably
strong renormalization due to screening. As already men-
tioned, we assume that the interaction function V i j

q in
Hamiltonian (2) incorporates static screening effects. To cal-
culate V i j

q , the RPA can be used. It is commonly believed that
for graphene-based systems, the RPA is a more appropriate
approach due to the larger degeneracy factor Nd = 4.

A key element of any RPA scheme is a polarization oper-
ator. During two decades of theoretical research on graphene,
numerous workers calculated the polarization operator for
both biased and unbiased AB-BLG (see, e.g., Refs. [25–31]).
In most of those publications, the effective two-band model
of AB-BLG was employed. In Refs. [30,31], the polarization
operator is calculated in the framework of a four-band model
using the continuum approximation.

In this paper, we numerically evaluate the static polar-
ization operator �

i j
q for the four-band tight-binding model.

Both intralayer (i = j) and interlayer (i �= j) components will
be determined. This is to be contrasted with the majority of
the previous studies, which considered the total polarization
operator �q = ∑

i j �
i j
q only.

The polarization operator of undoped AB-BLG can be
presented as a 2 × 2 matrix. The elements of this matrix as
functions of the transferred momentum q read [31]

�i j
q = 2

∑
SS′

∫
d2k
vBZ

nF
(
ε

(S)
k

) − nF

(
ε

(S′ )
k+q

)
ε

(S)
k − ε

(S′ )
k+q

×
(∑

α

�
(S)
kiα�

(S′ )∗
k+qiα

)⎛
⎝∑

β

�
(S)∗
k jβ �

(S′ )
k+q jβ

⎞
⎠, (10)

where S, S′ = 1, . . . , 4, vBZ = 8π2/(a2
√

3) is the Brillouin
zone area, and nF(E ) = [e(E−μ)/T + 1]−1 is the Fermi func-
tion. We limit ourselves to zero temperature. The results of
the numerical calculations of �

i j
q are shown in Fig. 1 for two

different values of e� (e� = 0 and e� = 0.01t0).
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FIG. 1. The polarization operator components of undoped AB-BLG as functions of the momentum q for q = q(1, 0). Panels (a), (b), and
(c) show �11

q , �12
q , and the total polarization operator �q = ∑

i j �
i j
q , respectively. The curves in all panels are calculated for μ = 0. Solid

(red) curves correspond to e� = 0, while dashed (blue) curves correspond to e� = 0.01t0.

Analyzing the numerical data, we observe that �11
q = �22

q ,
which a manifestation of the charge-conjugation symmetry
(see also Appendix A). Furthermore, as long as q = |q| is
not too large, qa < 1, the polarization operator is virtually
independent of the direction of q. From Fig. 1 we see that the
intralayer components �11

q and �22
q are always negative, while

�12
q is positive. For small q, the value of −�11

q decreases with
the increase of q. This decay is replaced by a linear growth at
larger q, which is similar to the behavior of the polarization
operator of single-layer graphene [32]. The interlayer polar-
ization �12

q monotonously decreases with q. Asymptotically,
it behaves as 1/q at qa > 0.1.

The renormalized Coulomb interaction can be expressed in
matrix form as

V̂q = V̂ (0)
q

(
1 − �̂qV̂ (0)

q

)−1
. (11)

In this formula, the bare Coulomb interaction is a 2 × 2 matrix

V̂ (0)
q = A

q

(
1 e−qd

e−qd 1

)
, A = 2πe2

Sgrε
, (12)

where Sgr = a2
√

3/2 is the area of the graphene unit cell,
and ε is the dielectric constant of the media surrounding the
graphene sample. Thus, we obtain

V 11
q = V 22

q = A
1 − A

q �22
q [1 − e−2qd ]

q − A
(
�11

q + �22
q + 2e−qd�12

q

) + A2

q

[
�11

q �22
q − (

�12
q

)2]
[1 − e−2qd ]

, (13)

V 12
q = V 21

q = A
e−qd + A

q �12
q [1 − e−2qd ]

q − A
(
�11

q + �22
q + 2e−qd�12

q

) + A2

q

[
�11

q �22
q − (

�12
q

)2]
[1 − e−2qd ]

. (14)

Similar results can be found in the literature on the
Coulomb drag in two-dimensional systems; see, for example,
Refs. [33,34].

At zero bias we have �11
q + �12

q �= 0 at q → 0 (which is
consistent with the results obtained in Ref. [28]). Thus, the
matrix V̂q is regular at q → 0. In other words, the screened
Coulomb potential is finite at q = 0, which agrees with a
general expectation that the finite density of states at the Fermi
energy leads to the suppression of the long-range Coulomb
interaction.

When e� �= 0, the single-electron spectrum acquires a
gap that affects the low-q screening. Indeed, in this regime,
(�11

q + �12
q )|q=0 = 0, thus the matrix V̂q is singular at q = 0.

This singularity indicates that in the insulating state of the
biased AB-BLG, the long-range interaction cannot be com-
pletely screened and the resultant Coulomb potential behaves
as V i j

q ∝ 1/q at small q. However, such a behavior persists for
small momenta only. Additional details can be learned from
Fig. 2 where numerically calculated V i j

q is plotted for e� = 0
and e� = 0.01t0.

Concluding this section, we would like to make the follow-
ing observation. If d → 0, then Eqs. (13) and (14) are replaced

by one simple formula,

V i j
q = A

q − A�q
. (15)

The right-hand side of this expression is independent of i
and j. In other words, such an approximation implies that
the interlayer and intralayer interactions are identical. In the
literature, theoretical results essentially similar to Eq. (15) are
not uncommon (see, for example, Refs. [25,26,28], to name a
few). Unfortunately, the reliability of this approximation is not
clear: our numerical data suggest that formula (15) is a rather
crude simplification that is poorly applicable even in the limit
of small q. More details can be found in Appendix B.

IV. SPIN-DENSITY-WAVE STATE

The computed renormalized Coulomb interaction can be
applied to the study of the AB-BLG ordered states. We char-
acterize the SDW by the following expectation value:

ηSDW
k = 〈γ †

k3σ̄ γk2σ
〉, (16)
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FIG. 2. The renormalized interaction components as functions of
the momentum q, at q = q(1, 0), calculated for undoped AB-BLG
(μ = 0) and two values of the bias potential e�. Diagonal com-
ponents V 11

q = V 22
q are plotted as red and blue curves; off diagonal

V 12
q = V 21

q components are plotted as green and magenta curves. The
solid (dashed) curves represent the e� = 0 case (e� = 0.01t0 case).
For all curves, ε = 1.

which we assumed to be independent of σ (the bar over σ

means not σ ). This relation implies that in our SDW state, a
hole in the band S = 2 is coupled to an electron with opposite
spin in the band S = 3.

Equation (8) allows us to express Hint in terms of the band
operators γ

†
kSσ , γkSσ

. Keeping only the terms relevant to the
SDW pairing, one derives

Hint = − 1

2N
∑
kk′σ

(
γ

†
k2σ γk3σ̄

�
(1)
kk′γ

†
k′3σ̄

γk′2σ

+ γ
†
k2σ γk3σ̄ �

(2)
kk′γ

†
k′2σ̄ γk′3σ + H.c.

)
, (17)

where

�
(1)
kk′ =

∑
i j

(∑
α

�
(2)∗
kiα �

(2)
k′iα

)
V i j

k−k′

⎛
⎝∑

β

�
(3)
k jβ�

(3)∗
k′ jβ

⎞
⎠,

�
(2)
kk′ =

∑
i j

(∑
α

�
(2)∗
kiα �

(3)
k′iα

)
V i j

k−k′

⎛
⎝∑

β

�
(3)
k jβ�

(2)∗
k′ jβ

⎞
⎠. (18)

Note that Eq. (17) ignores retardation effects in screening
physics, implying that the screening is instantaneous. The
validity of this approximation will be discussed in Sec. VII B.

Introducing the SDW order parameter as

�SDW
k = 1

N
∑

k′

(
�

(1)
kk′η

SDW
k′ + �

(2)
kk′η

SDW∗
k′

)
, (19)

and performing the standard mean-field decoupling scheme in
Eq. (17), we obtain the mean-field Hamiltonian, which allows
us to calculate the grand potential �. Minimization of � gives
the following equation for the SDW order parameter:

�SDW
k =

∫
d2k′

vBZ

�
(1)
kk′�

SDW
k′ + �

(2)
kk′�

SDW∗
k′

2
√[

ε
(3)
k′

]2 + ∣∣�SDW
k′

∣∣2
. (20)

Let us consider first the case of e� = 0. We do not solve the
integral equation (20) directly. Instead, we perform a trans-
parent and physically motivated approximate evaluation of
�SDW

k . First, we observe that the main contribution to the in-
tegral on the right-hand side of Eq. (20) comes from momenta
k′ near the Dirac points Kξ (ξ = 1, 2). Thus, it is necessary
to know the behavior of �

(1)
kk′ and �

(2)
kk′ with momenta k and k′

close to Kξ . It is possible to show that, for e� = 0, the wave
functions �

(2,3)
kα

near the Dirac point Kξ are

�
(2)
Kξ +piα = 1√

2

⎛
⎜⎜⎝

0
e−i[ π

2 −(−1)ξ φp]

ei[ π
2 −(−1)ξ φp]

0

⎞
⎟⎟⎠,

�
(3)
Kξ +piα = 1√

2

⎛
⎜⎜⎝

0
−e−i[ π

2 −(−1)ξ φp]

ei[ π
2 −(−1)ξ φp]

0

⎞
⎟⎟⎠, (21)

where φp is the polar angle of the vector p → 0. Substituting
these equations in formulas (18), we approximate �

(1,2)
Kξ +pKξ +p′

for small |p| and |p′| as

�̃
(1,2)
pp′ ≈ 1

2

{
V 11

p−p′ ± V 12
p−p′ cos[2(φp − φp′ )]

}
. (22)

Here and below, the tilde over a function of momentum in-
dicates that the momentum is measured from the Dirac point
Kξ . The approximate quantities �̃

(1,2)
pp′ are the same in both

valleys, consequently the dependence on ξ is suppressed.
Additionally, Eq. (22) implies that �̃

(1,2)
pp′ are real functions

of momenta p and p′ when p, p′ are close to a Dirac point.
Therefore, one can expect that the SDW order parameter is
also a real function of p.

To estimate the SDW order parameter, we assume that
�SDW

k is a step function of the momentum inside some region
near each Dirac point, that is,

�SDW
Kξ +p =

{
�SDW, |p| < K0,

0, |p| > K0,
(23)

where the cutoff momentum K0 is chosen such that the re-
gions corresponding to different Dirac points do not intersect.
Below we neglect coupling of the order parameters from dif-
ferent valleys and assume that k and k′ in Eq. (20) lie in the
same valley. Taking k = Kξ and using the ansatz (23), one
derives the equation for �SDW,∫

|p|<K0

d2p
vBZ

�̃
(1)
0p + �̃

(2)
0p

2
√[

ε̃
(3)
p

]2 + (�SDW)2
= 1. (24)

We solve this equation numerically, taking K0 by its maximum
possible value K0 = 2π/(3a). We choose ε = 1. Other pa-
rameters are fixed as explained above. In so doing, we obtain
�SDW = 0.0018t = 4.9 meV. This result is in agreement with
experimentally available data, Ref. [7], where the measured
transport gap in the Bernal bilayer graphene, which is twice
the order parameter, is equal to �tr = 8 meV.

In our approach, the SDW order arises due to the long-
range Coulomb interaction. Thus, the result is sensitive to the
value of the dielectric constant: if ε is increased, the order
parameter decreases. For example, for ε = 5, we find that
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�SDW = 0.15 meV, which is about 30 times smaller than the
value of �SDW at ε = 1.

Consider now the case of e� �= 0. At finite bias, the gap
between bands 2 and 3 arises even in the single-particle ap-
proximation. Therefore, one can expect that the bias voltage
destroys the SDW ordering. Indeed, if the gap is open, the
denominator in Eq. (20) never reaches zero even in the limit
of �SDW → 0. As a result, we obtain from �SDW → 0 the
following criterion for the existence of the SDW ordering at
finite bias voltage:∫

|p|<K0

d2p
vBZ

�̃
(1)
p′p + �̃

(2)
p′p

2ε̃
(3)
p

> 1, (25)

where the momentum p′ is to be chosen to maximize the
integral. The values V i j

q for e� = 0 and e� �= 0 almost coin-
cide at larger q (see Fig. 2) and we assume that e� is small
enough. Then, in Eq. (25) we can use the functions �

(1,2)
kk′

calculated at e� = 0 (divergence of V i j
q for e� �= 0 at q → 0

is an integrable one). In this case, one can take k = Kξ , or,
equivalently, p′ = 0 in Eq. (25).

Numerical analysis shows that SDW ordering is com-
pletely suppressed for e� > e�c, where the critical bias value
is found to be e�c = 0.0038t = 0.025t0 = 10 meV at ε = 1.
Thus, we obtain the quite natural result that the critical bias
voltage e�c is of the order of �SDW calculated at e� = 0.

V. POLARIZATION OPERATOR AND RENORMALIZED
COULOMB POTENTIAL FOR DOPED BILAYER

The nonsuperconducting ordered state (for example, the
SDW discussed above, or a similar phase) is expected to dom-
inate any superconducting state in pristine graphene-based
systems. Indeed, experimentally measured energy scales as-
sociated with nonsuperconducting ordered phases are in the
range of several meV (see, for example, Refs. [6,7,35,36]),
while the relevant superconducting energy is several orders
of magnitude lower [16]. Consequently, it is necessary to
suppress a nonsuperconducting order parameter to make su-
perconductivity possible.

The suppression of the SDW by the bias voltage, consid-
ered in Sec. IV, is not suitable since it leads to a change from
the SDW insulator to the band insulator. A more convenient
approach is doping. Doping destroys the SDW ordering, re-
placing it by a metal with a well-developed Fermi surface.

The presence of a Fermi surface drastically changes the
screening properties of AB-BLG. To account for these, we
present here the results of our numerical calculations of the
polarization operator and renormalized Coulomb potential
of the doped and biased bilayer graphene. We consider an
electron doping and assume that under doping only the band
S = 3 crosses the Fermi level μ, while the band S = 4 re-
mains empty. It is also assumed that the following restriction
on the chemical potential is met: μmin < μ < μmax, where
μmin = e�t0/(2

√
e2�2 + t2

0 ) and μmax = e�/2. In this case,
the Fermi surface consists of four approximately circular
pockets. A pair of these, with Fermi momenta k(1)

F and k(2)
F ,

are centered at Dirac point K1. An identical pair is centered
at K2. Using Eq. (6) and linear expansion |tk| ≈ vF k, where
vF = √

3ta/2 is the graphene Fermi velocity, we derive an

FIG. 3. Band structure of the biased bilayer graphene near the
Dirac point, calculated at e� = 0.5t0. Four bands S = 1, . . . , 4 are
plotted as functions of the deviation of momentum from the Dirac
point δk. The inset shows the fine structure of the band ε

(3)
k close

to the Dirac point. The horizontal dashed line is the position of the
chemical potential μ.

expression for the Fermi momenta k(1)
F and k(2)

F ,

k(1,2)
F = 1

vF

√√√√e2�2

4
+ μ2 ∓

√
e2�2μ2 +

(
μ2 − e2�2

4

)
t2
0 .

(26)
Each inner Fermi surface is holelike, while the outer one is
electronlike. Absolute values of the Fermi velocities at each
Fermi surface are equal to (s = 1, 2)

v
(s)
F = v2

Fk(s)
F

μ

∣∣∣∣∣∣∣1 − e2�2 + t2
0√

4
[
vFk(s)

F

]2(
e2�2 + t2

0

) + t4
0

∣∣∣∣∣∣∣. (27)

When μ → μmin, these velocities vanish, v
(s)
F → 0, and the

density of states at the Fermi level diverges. The band struc-
ture near the Dirac point K1 and the typical position of the
chemical potential are plotted in Fig. 3.

The electron concentration (per one site) is a function of μ

and can be expressed as

x = 1

2

∫
d2k
vBZ

�
(
μ − ε

(3)
k

) ≈ π

vBZ

[(
k(2)

F

)2 − (
k(1)

F

)2]
, (28)

where �(E ) is the Heaviside step function.
The numerical analysis of Eq. (10) shows that the doping

substantially modifies the polarization operator at small q and
the change comes mainly from the intraband term (the term
with S = S′ = 3) in Eq. (10), which is zero if μ = 0. The
bias voltage breaks the symmetry between graphene layers.
As a result, extra charge introduced by the doping accumulates
mainly, say, in layer 1. Thus, we have �11

q �= �22
q . It turns out

that |�11
q | � |�22

q | ∼ |�12
q | at small q, that is, the screening in

layer 1 is much greater than that in layer 2. The dependencies
of �11

q , �22
q , and �12

q on q are shown in Fig. 4. We clearly

see three Kohn anomalies located at momenta q = k(2)
F − k(1)

F ,
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FIG. 4. The polarization operator components for biased doped AB-BLG, as functions of the momentum q, for q = q(1, 0). Panels (a),
(b), and (c) show �11

q , �22
q , and �12

q , respectively. The curves in all panels are calculated for e� = 0.3t0 and μ = 0.021t .

q = 2k(1)
F , and q = 2k(2)

F . Under doping, the value of �12
q is

negative at small q for a definite doping level; in this case, it
changes sign at some value of q. The polarization component
�11

q is the main contributor to the total polarization �q. The
dependence of �q on q computed in this work is consistent
with the results obtained in the framework of the four-band
continuum model in Ref. [31].

The typical dependence of V i j
q on q (for ε = 1) at finite

doping and bias voltage is shown in Fig. 5. In this regime,
�11

q �= �22
q , consequently V 11

q �= V 22
q . When q � 2k(2)

F , we
have V 11

q � V 22
q . At small q the screening in layer 2 is

the weakest, thus the interaction inside this layer is the
strongest. The screening effects of the carriers introduced by
doping become less important for larger q, where V 11

q and V 22
q

are of the same order.
The important feature of the curves shown in Fig. 5 is that,

when q � 2k(2)
F , the interaction V i j

q increases with q. As we
will prove in the next section, such a behavior is sufficient to
stabilize a triplet superconducting state.

FIG. 5. The renormalized interaction components at finite dop-
ing as functions of the momentum q for q = q(1, 0). The curves are
calculated at e� = 0.3t0 and μ = 0.0021t . Components V 11

q , V 22
q ,

and V 12
q are plotted as a (red) solid curve, a (blue) dashed curve, and

a (green) dash-dotted curve, respectively. All curves are computed at
ε = 1.

VI. TRIPLET SUPERCONDUCTIVITY

The following consideration of superconductivity in bi-
ased, and doped bilayer graphene assumes that the bias
voltage e� exceeds the critical value e�c, thus the SDW
state is suppressed. The type of superconductivity considered
herein arises due to Coulomb interaction. In contrast to the
usual BCS s-wave superconductivity, this phase exists only in
the p-wave channel, as will be discussed below.

To derive the mean-field form of the model, we rewrite the
interaction Hamiltonian (2) in the form

Hint = 1

2N
∑
kk′σσ ′

i jαβ

d†
kiασ d†

−k jβσ ′V
i j

k−k′d−k′ jβσ ′dk′iασ
, (29)

where all contributions unimportant for the superconductivity
are omitted. Substituting Eq. (8) in the formula above and
keeping only terms with S = 3, one obtains

Hint = 1

2N
∑
kk′σσ ′

i jαβ

γ
†
k3σ γ

†
−k3σ ′�

SC
kk′γ−k′3σ ′γk′3σ

, (30)

where

�SC
kk′ =

∑
i j

(∑
α

�
(3)∗
kiα �

(3)
k′iα

)
V i j

k−k′

⎛
⎝∑

β

�
(3)∗
−k jβ�

(3)
−k′ jβ

⎞
⎠.

(31)

The role of �SC
kk′ in the theory of the superconducting phase is

analogous to the role of �
(1,2)
kk′ for the SDW; see Sec. IV.

Similar to Eq. (17), we ignored screening retardation in
Eq. (30) as well. For more discussion, see Sec. VII B.

We assume that our triplet (p-wave) superconducting state
is characterized by the following anomalous expectation
values:

ηSC
k = 〈γ−k3↑γk3↑〉 = 〈γ−k3↓γk3↓〉. (32)

This specific choice is one possibility among many; others are
connected to Eq. (32) through unitary transformations repre-
senting O(3) rotations of electron spin. The superconducting
order parameter can be defined as

�SC
k = 1

N
∑

k′
�SC

kk′η
SC
k′ . (33)
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When momentum k is close to the Dirac point Kξ , the
expectation value ηSC

k couples electrons belonging to
different valleys. Since ηSC

k couples electrons with the same
spin, one has

ηSC
−k = −ηSC

k ⇔ �SC
−k = −�SC

k . (34)

Indeed, as the spin part of the Cooper pair wave function is
even, the orbital wave function must be odd.

Performing the standard mean-field decoupling in Eq. (30)
and minimizing the grand potential, we derive the zero-
temperature self-consistency equation for �SC

k ,

�SC
k = −

∫
d2k′

vBZ

�SC
kk′�

SC
k′

2
√[

ε
(3)
k′ − μ

]2 + ∣∣�SC
k′

∣∣2
. (35)

The minus sign on the right-hand side of the self-consistency
equation is due to the repulsive Coulomb interaction. How-
ever, as we will show below, the right-hand side of Eq. (35)
can be positive for the specific choice of the form of the order
parameter.

The main contribution to the integral in Eq. (35) comes
from the momenta k′ near each Dirac point. In these regions,
it is convenient to define

ε̃p = ε
(3)
Kξ +p, (36)

where

ε̃p =

√√√√
v2

F p2 + e2�2

4
+ t2

0

2
−

√
v2

F p2
(
e2�2 + t2

0

) + t4
0

4
(37)

depends on the absolute value of the vector p. We propose the
following ansatz for �SC

k :

�SC
Kξ +p =

{
�̃SC

ξ p cos φp, |p| < K0,

0 otherwise,
(38)

where �̃SC
ξ p depends only on the absolute value of vector p.

We can show that near the Dirac points the following relation
is true:

�SC
Kξ +pKξ +p′ = �̃SC(p, p′, φp − φp′ ). (39)

In this formula, the function �̃SC(p, p′, φp − φp′ ) depends on
the absolute values of the vectors p and p′, and the polar angle
φp − φp′ between them. Then, it is easy to derive∫ 2π

0

dφ′

2π
�̃SC(p, p′, φp − φ′) cos φ′ = − cos φpW (p, p′),

(40)
where the kernel W is

W (p, p′) = −
∫ 2π

0

dφ

2π
�̃SC(p, p′, φ) cos φ. (41)

The value W (p, p′) depends on the interactions V i j
p−p′ , which

in turn depend on q = |p − p′|. The most important point
for us here is that, when q increases from 0 to ∼2k(2)

F , the
functions V i j

q demonstrate a growing trend (see Fig. 5). As
a result, the integral

∫
dφ�̃ cos φ in Eq. (41) is negative at

sufficiently small p and p′, making W (p, p′) positive at small
p, p′. Taking into account Eqs. (38), (39), (40), and (41),

FIG. 6. The dependencies of the superconducting order parame-
ter �̃SC

ξ p on p calculated at e� = 0.1t0 = 40 meV and at four different
values of the chemical potential (see the legend in the figure). For all
curves, we take ε = 1.

and neglecting the intervalley coupling, we can rewrite the
self-consistency equation (35) in the form

�̃SC
ξ p = π

vBZ

∫ K0

0
p′d p′ W (p, p′)�̃SC

ξ p′√
(ε̃p′ − μ)2 + (

�̃SC
ξ p′

)2
. (42)

We solve this integral equation numerically using the suc-
cessive iterations technique. The typical curves �̃SC

ξ p versus
p, calculated for e� = 0.1t0 = 40 meV, ε = 1, and several
values of μ, are plotted in Fig. 6. In this figure, we observe
that as p grows, the function �̃SC

ξ p first increases from zero,
and then, passing the maximum, it goes back to zero when
p ≈ 4k(2)

F . The order parameter �̃SC
ξ p vanishes at p = 0 be-

cause the integral over φ in Eq. (41) is zero when p = 0. At
momenta p � 4k(2)

F , we have �̃SC
ξ p = 0 because the function

W (p, p′) is negative at sufficiently large p and p′.
Figure 7 shows the dependence of �SC

0 ≡ max(�̃SC
ξ p ) on

the chemical potential. The value of �SC
0 decreases with the

increase of the chemical potential. We attribute such behav-
ior to the fact that the density of states at the Fermi level
decreases with μ. Experimental data [16] also suggest that
the large density of states is crucial for the superconductivity.
The data in Fig. 7 indicate that, similar to the SDW case, the
superconductivity weakens when ε increases.

The numerical results shown in Fig. 7 demonstrate that
�SC

0 can be as large as several hundred mK, which exceeds
by an order of magnitude the superconducting transition
temperature Tc = 26 mK measured experimentally [16]. To
reconcile the theory with the experiment, let us estimate
Tc for our model. The finite-temperature generalization of
the self-consistency equation (42) was derived using a stan-
dard technique, and it differs from the equation for T = 0
only by multiplication of the function under the integral by
tanh[

√
(εp′ − μ)2 + �2

ξ p′ /(2T )]. We solve numerically the
self-consistency equation for �̃SC

ξ p at finite temperature T for
several values of μ, and we observe a significant disparity
between the order parameter and the transition temperature.
For example, at μ/t = 7.374 × 10−3, we could not find a
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FIG. 7. The dependence of �SC
0 ≡ max(�̃SC

ξ p ) on the chemical
potential μ calculated for various values of the bias voltage e� and
dielectric constant ε. Panel (a) presents the data for e� = 0.1t0 =
40 meV, while the curves in panel (b) are plotted for e� = 0.3t0 =
120 meV. In both panels, the (red) solid curves with filled circles
correspond to ε = 1. The (blue) dashed curves with filled triangles
correspond to ε = 5.

nontrivial solution �̃SC
ξ p �= 0 when T > 23 mK, which is

≈0.11�SC
0 � �SC

0 . Therefore, for this value of μ the tran-
sition temperature is about 23 mK, which agrees well with
the experiment. We associate that “strange” feature of our
model, Tc � �SC

0 , with the fact that the considered Fermi sea
in the AB-BLG is very shallow: the Fermi energy defined as
εF = μ − μmin is comparable to, or even smaller than, �SC

0 .
All the results above can be summarized in the phase dia-

gram of the model in the x-e� plane. Let us consider first the
SDW phase. For a given bias voltage e� the critical chemical
potential μSDW

c , above which the SDW state is suppressed, can
be found from the equation [compare it with Eq. (25)]

∫
|p|<K0

d2p
vBZ

�̃
(1)
0p + �̃

(2)
0p

2ε̃
(3)
p

�
(
ε̃(3)

p − μ
) = 1. (43)

Solving this equation and using Eq. (28), we obtain the
curve xSDW

c = xSDW
c (e�) separating the SDW phase from

the superconducting (SC) and paramagnetic (PM) phases. In

FIG. 8. Schematic phase diagram of the system in the x-e�
plane. The red solid curve separates the SDW state from the SC and
PM states. The blue dashed curve is the curve of the crossover be-
tween the SC and PM states. The critical doping xc corresponding to
the SDW to PM transition at � = 0 is estimated as xc ≈ 1.3 × 10−5

(for t = 2.7 eV, t0 = 0.4 eV, and ε = 1). Green circles depict the
points (x, e�) at which the superconducting order parameter was
calculated numerically [see Fig. 7(a)].

connection with the SC state, we restrict ourselves by con-
sidering the chemical potentials μ < e�/2 when the system
has two Fermi surface sheets near each Dirac point. The
case of larger chemical potentials requires separate analysis.
Note, however, that for μ > e�/2 the superconducting or-
der parameter, even if nonzero, will be small [see Eq. (27)
and the text below it]. Thus, one can consider the curve
xSC

c (e�) = x(e�/2) ≈ e2�2/(2π
√

3t2) as the curve of the
crossover between SC and PM states. The resultant phase
diagram is shown in Fig. 8.

VII. DISCUSSION AND CONCLUSIONS

We argued above that the doped and biased Bernal
stacked bilayer graphene can host a Coulomb-interaction-
driven triplet superconducting state. In this section, we will
discuss certain important details of the mechanism that remain
untouched in the more formal presentation.

A. Kohn-Luttinger roots of superconductivity

The superconducting state becomes stable due to the fact
that the functions V i j

q increase with q at small transferred
momenta. Such a behavior of V i j

q is obtained with the help
of the RPA.

As the RPA is an uncontrollable approximation, one may
wonder if our superconducting phase is indeed a genuine
article, and not an artifact of careless theoretical assumptions.
To allay those concerns, the validity of the RPA is discussed
below; see Sec. VII B. In addition, we argue that our mecha-
nism of superconductivity is not rooted in the particulars of the
RPA approach. Rather, one can trace its origins to the proposal
[37] of Kohn and Luttinger (KL).

It is instructive to compare the two mechanisms. Unlike our
RPA-based formalism, the classical KL calculations [37] rely
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on the second-order perturbation theory in powers of the bare
Coulomb interaction. Since the second-order correction rep-
resents screening, it reduces the electron-electron repulsion.
Loosely speaking, it is a kind of attraction that counteracts the
bare Coulomb repulsion. Further, this correction is singular
due to the Kohn anomaly in the polarization operator. KL’s
paper demonstrated that, for sufficiently large Cooper pair
orbital momentum, the polarization operator, being singular,
overcomes the nonsingular bare Coulomb interaction. In such
an orbital channel, effective attraction emerges, leading to the
superconducting instability.

The second-order correction, as a separate theoretical ob-
ject, does not occur in our formalism. However, similar to the
KL idea, the role of the polarization operator is quite essential
for our mechanism as well. We see that the strong screening
at low q dominates in the effective interaction, as attested by
the curves in Fig. 5. (This is particularly true for V 11 and V 12.)
The polarization operator, controlling the renormalized inter-
action at small q, causes the overall growth of the effective
interactions for growing q in the interval 0.025 < qa < 0.1.
The latter growth of V i j

q is the cornerstone of the mechanism
suggested in Sec. VI.

B. RPA validity

Let us briefly discuss to which extent the static RPA in-
teraction can be considered as a reliable approach for our
purposes. This problem contains two subproblems: (i) Is the
RPA by itself reliable in our situation? (ii) Can the static
version of the RPA effective interaction be used to study the
SDW and superconductivity?

In connection to (i), let us consider the following. It is
generally accepted that the RPA works well for phenomena
involving distances greater than a characteristic screening
(Debye) length lD [38–40]. From the data shown in Fig. 5,
we can conclude that lD is of the order of 10 a, while the
superconducting and SDW orders are determined mostly by
the structure of the screened Coulomb interaction on scales
larger than lD. From our numerical results, it follows that the
superconducting coherence length ξSC ∼ h̄v

(2)
F /�SC is about

100 a in the parameter range of interest, which is larger than
lD. Moreover, it is commonly believed that using the RPA
approach is especially reasonable for graphene-based systems
since each bubble diagram enters the RPA expansion with a
degeneracy factor Nd = 4 (this is due to the spin and valley
degeneracies) [32].

(ii) The use of static effective interaction, as expressed
in Eqs. (17) and (30), is valid as long as the full dynamic
polarization operator �

i j
q (ω) does not vary significantly over

the frequency scale set by the order parameter. For the SDW
phase, the order parameter is several meV. Does �

i j
q (ω) for the

undoped AB-BLG vary strongly over this scale? To answer
this question, we want to make a simple observation. The
only parameters entering �

i j
q (ω) are t and t0, both of which

are much larger than �SDW. This indicates clearly that, for ω

limited to the interval whose width is of the order of �SDW, the
dynamical polarization operator may be safely approximated
by its static version.

The situation with the superconducting phase requires
more diligence: since the superconductivity is observed under

the doping, in addition to the tunneling amplitudes, the Fermi
energy enters �

i j
q (ω). Since εF is the smallest of the three

energy parameters in �
i j
q (ω), we conclude that, when the

superconducting energy scale does not exceed εF, the static
approximation works well.

C. Magnetic field effect

In experiment [16], a superconducting state was observed
only at finite in-plane magnetic field. This finding supports our
assumption about the triplet structure of the superconducting
order parameter. Indeed, it is known that the p-wave supercon-
ducting state, unlike its singlet counterpart, possesses a finite
paramagnetic (Zeeman) susceptibility [41]. Consequently, the
p-wave superconductivity is much more robust against ap-
plied magnetic field. We can speculate that, in the experiment,
at finite applied field, the superconducting state replaces a
nonsuperconducting phase that has lower zero-field energy but
weaker Zeeman susceptibility. In such a scenario, application
of the field can invert the relative stability of the two phases,
leading to the realization of the superconductivity, which is
metastable at zero field.

The nature of the phase supplanted by the superconduc-
tivity is an interesting question worth further research. For
example, this phase can be one of several fractional metal-
lic states (doped SDW with a spin- and valley-polarized
Fermi surface), considered theoretically for graphene bilayer
systems in Refs. [12,42]. Experimental results in Ref. [16]
support such a hypothesis.

D. Other types of superconducting order parameter

The superconducting order parameter discussed above
is not the only possibility, as other types of supercon-
ductivity might be stabilized in our AB-BLG model. To
illustrate this point, consider the following reasoning. The
anomalous expectation ηSC

k = 〈γ−k3σ
γk3σ

〉 suggested above
couples electrons in different valleys, and the total momen-
tum of the Cooper pair is zero. One can consider another
choice, when both electrons constituting a pair belong to the
same valley. The corresponding expectation value is η̃SC

pξ =
〈γKξ −p3σ γKξ +p3σ 〉. The total momentum of such a pair is
2Kξ . Consequently, the superconducting order parameter os-
cillates in real space, making this state a type of pair-density
wave [43].

Since we limit ourselves to small doping, only one band
crosses the Fermi level. The situation becomes richer at
stronger doping, when two bands are partially filled. When
this happens, an interband order parameter may be defined.
It also oscillates in real space. However, the absence of van
Hove singularities at higher μ implies that the corresponding
condensation energy is low.

In general, the valley degeneracy is a peculiar feature of
graphene-based materials, which introduces additional com-
plications in the task of superconducting phase classification.
Recent work [44] on the classification of nonsuperconducting
phases in graphene bilayer demonstrated the challenges that
one faces when the discrete index space grows twofold (from
twofold spin degeneracy of BCS-like models to fourfold spin-
valley degeneracy of graphene-based metals). In Ref. [44] we
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offer an SU(4)-based approach to the nonsuperconducting-
order classification that could possibly be extended to the
superconducting phases as well.

E. Trigonal warping

The single-particle Hamiltonian of our model is con-
structed under the assumption that the interlayer hopping
occurs only between nearest-neighbor interlayer sites located
in positions 1A and 2B, and more distant interlayer hoppings
are neglected. When this simplification is lifted, the low-
energy electronic spectrum experiences certain modifications.
For example, in the case e� = 0, if we include the hopping
amplitude t3 between nearest-neighbor sites in positions 1B
and 2A (see, e.g., Ref. [4]), two parabolic bands touching each
other at the Dirac points are converted to four Dirac cones
located near the Dirac points. Such a low-energy structure is
called trigonal warping. Incorporation of the trigonal warping
in our model alters the results in some aspects. First, it can
change the estimate of the value of the SDW order parameter.
Strictly speaking, Eq. (24) has a solution for arbitrarily small
interaction, since the integral on the right-hand side of this
equation diverges logarithmically when �SDW

ξ → 0. If the
trigonal warping is taken into account, the nontrivial solution
to Eq. (24) appears only at finite interaction strength, since
the density of states vanishes at zero energy. However, the
analysis reveals that the interaction is rather strong, while
the trigonal warping modifies the electron spectrum only at
energies about 1 meV (see, e.g., Ref. [4]), thus we expect that
the estimate for the SDW order parameter does not change
substantially when the trigonal warping is accounted for.

The trigonal warping, of course, transforms the low-energy
spectrum of the AB-BLG, which affects the superconducting
state. We believe, however, that the trigonal warping does not
change our results qualitatively. Studies of the superconduct-
ing state via the renormalized Coulomb interaction, which
take into account the trigonal warping, have been reported in
Refs. [21,22]. The characteristic critical temperatures found
there are consistent with our results.

F. The role of the order parameter fluctuations

In two-dimensional systems, finite-temperature fluctu-
ations of the Goldstone modes destroy any non-Ising
long-range order. Specifically, in the SDW phase [45] the
Goldstone mode is the spin-wave excitations described by
the O(3) nonlinear σ model in (2 + 1)-dimensional space.
As temperature grows, the O(3) field correlations smoothly
decay. As a result, a continuous transition, expected within the
mean-field framework, is replaced by a smooth crossover. It is
expected that the characteristic crossover temperature T SDW

∗
is of order of the mean-field transition temperature

T SDW
∗ ∼ T SDW

MF ∼ �SDW. (44)

This relation indicates that, for 0 < T � �SDW, robust
signatures of short-range SDW order must be detectable ex-
perimentally.

Now we discuss the superconducting state. Since the bi-
layer sample is very thin, the magnetic field screening by
the superconducting currents may be neglected. In such a

situation, the fluctuations of the complex phase of �SC can
be described by the XY nonlinear σ model. At sufficiently
large T , this model demonstrates the Berezinskii-Kosterlitz-
Thouless transition whose critical temperature, similar to
estimate (44), is of the order of the mean-field critical tem-
perature Tc.

G. The role of the substrate’s dielectric constant

Our calculations show that both the SDW and the super-
conductivity are weakened when the dielectric constant of
the substrate grows. This is a straightforward consequence
of the fact that both ordered states rely on the long-
range Coulomb interaction. At the same time, these phases
have dissimilar sensitivities to the increase of ε. Specifically,
we have seen that the growth of the dielectric constant from
ε = 1 to 5 suppresses the SDW order parameter by more
than an order of magnitude. In contrast, the characteristic val-
ues of the superconducting order parameter decrease roughly
twofold at most. This suggests that a substrate with a larger di-
electric constant shifts the balance between the SDW and the
superconductivity in favor of the latter. Such a possibility can
be tested experimentally. One must remember, however, that
here we ignore short-range interactions, which are insensitive
to screening but may affect the properties of the ordered states.
If these contributions are indeed significant in AB-BLG, the
expected effect of ε might be weak.

H. Conclusions

In this paper, we suggested a mechanism of superconduc-
tivity in the AB-BLG. This mechanism is based on the renor-
malized Coulomb electron-electron repulsion, and is similar
in certain aspects to the Kohn-Luttinger mechanism. The su-
perconducting state competes against the spin-density-wave
state, which is also stabilized by the Coulomb interaction.
The superconductivity in the proposed model has a p-wave
structure. Our estimate for the critical temperature, as well as
order parameter sensitivity to the doping, is consistent with
recent experiment. Likewise, an in-plane magnetic field as
a stabilization factor of the superconducting phase fits the
proposed theoretical framework.
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APPENDIX A: CHARGE-CONJUGATION SYMMETRY
OF BIASED UNDOPED AB-BLG

Here we prove that our model is invariant under a certain
charge-conjugation transformation. This invariance explains
why the polarization operator components �11

q and �22
q are

equal to each other as long as AB-BLG remains undoped. To
start the discussion, we rewrite the matrix Hk from Eq. (1) as
follows:

Hk = e�

2
τz − tf · ν

+ t0
4

[(νx +iνy)(τx + iτy) + (νx − iνy)(τx − iτy)], (A1)
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FIG. 9. The renormalized interaction components V i j
q as func-

tions of q, calculated using different approximations; q = q(1, 0),
μ = 0, and e� = 0. Panel (a) shows V 11

q , while panel (b) shows V 12
q .

In both panels, the RPA interaction components, Eqs. (13) and (14),
are plotted as a (red) solid curve, while approximate expressions
(B1) and (B2) are represented by (blue) dashed curves. Dash-
dotted (green) curves correspond to approximation (B3). We see that
Eqs. (B1) and (B2) work quite well for small q, while formula (B3)
is a very crude approximation for our choice of parameters.

where the Pauli matrices νi act in the sublattice space, while
another set of Pauli matrices τi acts in the layer space, and
f · ν = νxRe ( fk ) − νyIm ( fk ). For such a matrix, an equality

νyτxH∗
kνyτx = −Hk (A2)

holds true. This relation is the signature of the charge-
conjugation symmetry. To reveal the invariance of H0

under the charge conjugation, we turn our attention to the
second-quantization formalism. We write

H0 =
∑
kσ

∑
ζ ζ ′

[Hk]ζ ζ ′d†
kζσ dkζ ′σ , (A3)

where [Hk]ζ ζ ′ are matrix elements of Hk, and summation
variables ζ , ζ ′ are multi-indices containing layer and sublat-
tice labels: ζ = (i, α).

If we apply a charge-conjugation Bogoliubov transforma-
tion

dkζσ ↔ d†
kζσ , (A4)

the Hamiltonian H0 transforms to

HC
0 =

∑
kσ

∑
ζ ζ ′

[Hk]ζ ζ ′dkζσ
d†

kζ ′σ

=
∑
kσ

Tr Hk −
∑
kσ

∑
ζ ζ ′

[Hk]ζ ζ ′d†
kζ ′σ dkζσ

= −
∑
kσ

∑
ζ ζ ′

[H∗
k]ζ ζ ′d†

kζσ dkζ ′σ , (A5)

where we used the fact that Hk has zero trace for any k, and
[Hk]ζ ζ ′ = [H∗

k]ζ ′ζ due to hermiticity. Thus

HC
0 = −

∑
kσ

ψ
†
kσ
H∗

kψkσ
. (A6)

Defining the new operator vector ψC
kσ by the relation

ψkσ = νyτxψ
C
kσ , (A7)

we can confirm, using Eq. (A2), that HC
0 is unitarily equivalent

to H0.
At the same time, in the first-quantization formalism,

Eq. (A2) implies that the transformation νyτx�
(S)∗
k converts

the bispinor eigenvector �
(S)
k corresponding to the energy ε

(S)
k

into another bispinor eigenvector representing −ε
(S)
k . Exam-

ining our definitions (6) one can check that −ε
(S)
k = ε

(5−S)
k .

Thus, it is convenient to introduce the abbreviation S̄ = 5 − S.
It allows us to write ε

(S̄)
k = −ε

(S)
k and

�
(S̄)
k1A = −i� (S)∗

k2B ,

�
(S̄)
k1B = i� (S)∗

k2A . (A8)

Substituting these formulas into expression (10) for �11
q , and

exploiting the relation

nF(ε) − nF(ε′) = −[nF(−ε) − nF(−ε′)], (A9)

one can explicitly demonstrate that �11
q = �22

q .
Note that the Hamiltonian of the doped system does not

possess this symmetry. Indeed, the charge conjugation inverts
the sign of μ, making the whole Hamiltonian noninvariant.

APPENDIX B: APPROXIMATE EXPRESSION FOR THE SCREENED INTERACTION

Let us investigate here the accuracy of approximation (15). We assume that �11
q = �22

q due to the charge-conjugation
symmetry. In the limit qd � 1, we expand exp(−qd ) ≈ 1 − qd to derive

V 11
q = V 22

q =
1
2

(
1 − E�22

q

)
E

(qd )
(
1 + E�12

q

) − E
(
1 + 1

2E�12
q − 1

2E�11
q

)(
�11

q + �12
q

) , (B1)
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V 12
q = V 21

q =
1
2

(
1 − qd + E�12

q

)
E

(qd )
(
1 + E�12

q

) − E
(
1 + 1

2E�12
q − 1

2E�11
q

)(
�11

q + �12
q

) , (B2)

where we introduce the energy scale E = 2Ad . For permittivity ε = 5 one finds E = 23.2 eV, or, equivalently, E = 8.6t . This
energy can be used to rewrite formula (15),

V i j
q =

1
2E

(qd ) − E
(
�11

q + �12
q

) . (B3)

Comparing this relation and Eqs. (B1) and (B2), one concludes that Eq. (B3) is valid only when E�
i j
q is much smaller than

unity at small qd . However, for our model parameters, the quantity E�
i j
q is of order unity, making Eqs. (B3) and (15) a poor

approximation. Figure 9 allows one to compare the accuracy of the two approximations.
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