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Quantized thermal Hall conductance and the topological phase diagram
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Two-dimensional topological superconductors with chiral edge modes are predicted to possess a quantized
thermal Hall effect proportional to the Chern number, exactly half that for chiral topological insulators. However,
not much work has been done in identifying the quantized heat conductance in the literature, even for some of
the standard models of topological superconductivity. Here we introduce a model based on a proximity induced
superconducting bismuth bilayer and directly calculate the thermal Hall conductance of this lattice model. This
model serves as a demonstration of the state of the art possible in such a calculation, as well as introducing an
interesting paradigmatic topological superconductor with a rich phase diagram. We demonstrate the quantized
thermal Hall plateaus in several different topological phases and compare this to numerical calculations of the
Chern number, as well as analytical calculations of the Chern number’s parity invariant. We demonstrate that
it is possible to get a reasonable topological phase diagram from the quantized thermal Hall calculations. The
technique used can be applied to a wide range of models directly in real space.
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I. INTRODUCTION

Applying a thermal gradient across an appropriate sample
can lead to a nondissipative thermal Hall current—a phe-
nomenon known as the Leduc-Righi effect [1]. Furthermore,
in fully gapped systems with chiral edge modes this results in
a nonzero quantized thermal Hall conductance κ/T [2,3]. In
fractional quantum Hall states it can be shown that the thermal
Hall conductance is quantized to cπ/6 in units of k2

B/h̄, where
c is the central charge of the conformal field theory describ-
ing the edge modes, whereas for a noninteracting topological
superconductor one has c = ν/2, where ν is the Chern number
leading to κ/T = νπ/12 in units of k2

B/h̄ [2–5]. In view of this
relation between the thermal Hall effect and the Chern number
the quantized thermal Hall conductance is a potentially very
useful probe of the topology of Chern insulators and super-
conductors [2–14].

Two-dimensional topological superconductors themselves
have also seen an explosion of interest; for some early exam-
ples see Refs. [15–32]. However, despite the relation between
these systems and the quantized thermal Hall effect being well
established, there are relatively few explicit calculations of
the thermal current or conductance in these systems. Some
exceptions include direct numerical calculation of the thermal
Hall conductance for simple tight binding Hamiltonians [10],
the linearized regime of mixed state d-wave superconductors
[4], and direct calculations of the thermal Hall effect from the
system bulk [5] or from a generalized Wiedemann-Franz law
[8]. Here we show that lattice calculations can be performed
for even fairly complicated models directly in real space to
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calculate the thermal Hall conductance. Thermal currents have
also been considered in the context of two-dimensional Z2

spin liquids [9], as a probe of superconducting gap anisotropy
[33], and in an interacting Kitaev-Heisenberg model [34].

On the experimental side the situation is rather complicated
due to the subtleties in measuring the required thermal cur-
rents. Nonetheless impressive progress has been made along
this direction looking at fractional quantum Hall states [35],
the topological thermal Hall conductance in gallium arsenide
based topological insulators [36], and in a graphene aero-
gel [37]. Another experiment has studied heat dissipation to
determine the thermal decay length of the edge states [38]. A
relatively recent experiment measured an unusually high value
of the thermal Hall conductivity in the pseudogap phase of a
few cuprates [39], an effect explained theoretically as the re-
sult of the orbital coupling driving the system close to a chiral
spin liquid phase with spinons becoming the neutral carriers
responsible for the thermal conductance [40]. Using noise
thermometry, the quantum limit for thermal transport across
a single channel has been measured in quantum point contacts
in two-dimensional electron gases [41] and in graphene based
devices [42]. Thermal conductance quantization has also been
measured in fractional quantum Hall states [43–48]. Finally
we note that phonons may alter the perfect quantization lead-
ing to an only approximately quantized thermal conductance
[49,50].

In a two-dimensional topological superconductor, the edge
states are often composed of electrically neutral Majorana
fermions. As Majorana fermions are each half an electron this
is often understood as the reason for the factor of one-half
difference between the quantized thermal Hall conductance
for the chiral insulators and superconductors. However, it
should be noted that in fact not all chiral bands inside the
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gap are composed of Majorana fermions. Only those bands
which pass through the time reversal invariant momenta can
be Majorana fermions, and this number can even depend on
the orientation of the edge [31]. The Chern number predicts
the number of topologically protected bands crossing the gap,
but not the number of Majorana fermion bands; the only
additional piece of information one can infer is that for an
odd Chern number the edge must possess at least one band of
Majorana fermions but could in principle have more. In our
results we find that the quantized thermal Hall effect is always
in agreement with the number of chiral bands, and hence the
Chern number, and not the number of Majorana fermions.
This result is in agreement with calculations performed
entirely using bulk states [5].

Additionally two-dimensional topological superconductors
have been investigated with other standard techniques such as
scanning tunneling microscopy and spectroscopy [51–56]. In
Josephson junction setups supercurrents have been measured
[57,58] and interference measurements have been done [59],
as well as spectroscopy [60,61]. A direct measurement of the
topological index remains however elusive.

The model which we introduce here is based on bismuth
[62–64], a common component of topological materials due to
its strong Rashba spin orbit coupling [65–67] and an interest-
ing material in its own right. Edge states are known to exist in
3, 5, and 7 monolayer thick bismuth structures [68], though for
a different structure than the one we will consider. We focus
on a (111) bilayer bismuth structure, a topological insulator
which possesses edge modes [69–76]. The structure of the
(111) surface of bismuth is known from a low-energy electron
diffraction (LEED) analysis and first-principles calculations
[77,78]. The (111) bismuth bilayer we consider is an AB
stacked and warped hexagonal lattice with strongest interlayer
coupling between the nonstacked BA atoms [62]. This bilayer
then has proximity induced s-wave superconductivity from a
substrate. The bulk topological phase diagram for isotropic
and nonisotropic hexagonal lattices with spin-orbit coupling
has been extensively studied [27,29,31,79–85]; however, the
model we introduce here has not been previously studied and
we first calculate its topological properties and Chern number.
This model proves a fertile playground for considering the
thermal Hall conductance both due to its complexity, which
probes the limits of the techniques we use, but also because it
has a rich phase diagram with relatively large Chern numbers
possible. This allows us to test the quantized thermal Hall
conductance in many different topological phases.

Although it has been shown that for noninteracting
fermionic tight binding Hamiltonians it is possible to numer-
ically calculate the thermal Hall conductance [10], the limits
of applicability of this approach have not been tested. Here we
probe the state of the art for such calculations by taking a rel-
atively complicated model with calculations purely on a real
space lattice, which we find converges faster, and performing
numerical calculations for the largest lattices we are able to.
The practical issues of calculation of sometimes very com-
plicated commutators we partially solve with new software
[86]. The thermal Hall conductance is compared directly to
the Chern number to test its quantization. As the calculation
of the Chern number is also numerically demanding we also
perform analytical calculations of the parity of the Chern

FIG. 1. Sideways on and top down schematics of the bilayer
system for bismuth (111). The upper layer consists of black (A) and
yellow (B) atoms. The lower layer consists of black (B) and purple
(A) atoms. Gray lines show the interlayer hopping terms. The A
atoms in the upper and B atoms in the lower plane (both black) are
not coupled due to the buckling of each layer [62].

number, which allows for exact results. These are compared to
the band structures showing the edge modes along both zigzag
and armchair edges of the bilayer. Overall we demonstrate
here how to apply these techniques to a very wide range of
topological superconductor models.

This article is organized as follows. In Sec. II we introduce
the tight binding model describing the proximitized bismuth
bilayer on which we base our calculations. In Sec. III we
demonstrate the analytical calculations of the Chern number
parity, as well as the numerical calculations of the Chern
number, and their results. Section IV compares this to the
direct calculations of the thermal Hall conductance. In Sec. V
we conclude with a discussion of the results.

II. TIGHT BINDING MODEL

We start from a Bogoliubov–de Gennes (BdG) Hamil-
tonian for the particle and hole spaces on a general
two-dimensional lattice written in the Nambu basis, �̂ j =
(ĉ j,↑, ĉ j,↓, ĉ†

j,↓,−ĉ†
j,↑)T , where ĉ†

j,σ creates a particle of spin
σ at site j. We use Pauli matrices �σ for the spin subspace and
�τ for the particle-hole subspace; the full space is therefore a
tensor product between these spaces. However, we will adopt
the common notation that this is written as τa ⊗ σb → τaσb

and identity matrices are not written at all. The lattice structure
is based upon a bismuth (111) bilayer [62], which consists
of two AB stacked hexagonal lattices, with warping in the
vertical direction; see Fig. 1. Due to the warping there is no
hopping between the vertically aligned A and B sites, but there
is interlayer hopping between adjacently spaced sites. Both
inter- and intralayer hopping terms form hexagonal lattices.
Note that we set t = h̄ = kB = 1 throughout.
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Crucially the Hamiltonians we consider anticommute with
an antiunitary particle hole operator, {C, H} = 0, where
C = eiϕτyσyK with K complex conjugation and ϕ an arbitrary
phase. There is no chiral or time reversal symmetry present,
which means this system is in the D class of the topological
Periodic Table and has a Z invariant [87], which here is the
Chern number [88,89]. We calculate both the Chern number
and its parity [90] in Sec. III.

The full lattice Hamiltonian, written in BdG form, is

Ĥ = Ĥ0 + Ĥ1 + ĤIL. (1)

The first contribution consists of the on-site terms:

Ĥ0 = −
∑

j

�̂
†
j [μτz + �τx + Bσz]�̂ j . (2)

μ is the chemical potential, B a Zeeman field, and � a prox-
imity induced s-wave superconducting pairing. The second
contribution consists of the intraplane hopping terms:

Ĥ1 = −
∑
〈 j,	〉

�̂
†
j [tτz − iατzẑ · (�δ j	 × �σ )]�̂	. (3)

α is a Rashba spin-orbit interaction, present when inversion
symmetry is broken, and t is the usual hopping strength. 〈 j, 	〉
is used to refer to nearest neighbor pairs of sites j and 	 in
each layer, but not between the layers. �δ j	 is the real space
vector between sites j and 	. Finally the interlayer hopping is

ĤIL = −t ′ ∑
〈 j,	〉′

�̂
†
j τ

z�̂	. (4)

〈 j, 	〉′ denotes pairs of sites in different layers, connected by
the hopping terms shown as gray lines in Fig. 1.

After a standard Fourier transform the Hamiltonian can be
written as Ĥ = ∑

�k �̂
†
�kH(�k)�̂�k with

H(�k) =

⎛
⎜⎜⎜⎝

f �k − B L�k −� 0
L†

�k f �k + B 0 −�

−� 0 −B − f ∗
−�k LT

−�k
0 −� L∗

−�k − f ∗
−�k + B

⎞
⎟⎟⎟⎠.

(5)
Each entry in this matrix is itself a matrix for the sublattice
structure. Labeling the upper and lower layers as U and L and
the sublattice sites in each layer as A and B, the explicit form
of the operator is

�̂T
�k = (ψ̂k,↑ ψ̂k,↓ ψ̂

†
k,↓ − ψ̂

†
k,↑), (6)

with

ψ̂T
�k,σ

= (
ĉ�k,σ,UA ĉ�k,σ,UB ĉ�k,σ,LA ĉ�k,σ,LB

)
. (7)

The sublattice matrices are

f �k = −
3∑

j=1

⎛
⎜⎜⎜⎝

μ/3 t ei�k·�δ j 0 0
t e−i�k·�δ j μ/3 t ′e−i�k·�δ j 0

0 t ′ei�k·�δ j μ/3 t ei�k·�δ j

0 0 t e−i�k·�δ j μ/3

⎞
⎟⎟⎟⎠ (8)

TABLE I. Parameters for the examples used throughout this
paper. Examples are taken from phases with several different Chern
numbers ν.

ν μ B α � t ′

0 1.2t 2t 0.3t 0.4t 0.5t
−1 0.8t 3.5t 0.3t 0.4t 0.5t

2 3.1t 1.3t 0.3t 0.4t 0.5t
4 2t 2.3t 0.3t 0.4t 0.5t

−5 1.6t 1.2t 0.3t 0.4t 0.5t

and

L�k = α

3∑
j=1

�δ j · (1, i)

⎛
⎜⎜⎜⎝

0 −ei�k·�δ j 0 0
e−i�k·�δ j 0 0 0

0 0 0 −ei�k·�δ j

0 0 e−i�k·�δ j 0

⎞
⎟⎟⎟⎠.

(9)

Both B and � are diagonal in the sublattice space. �δ j are the
nearest neighbor vectors between A and B atoms:

{�δ1, �δ2, �δ3} =
{(√

3

2
,−1

2

)
,

(
−

√
3

2
,−1

2

)
, (0, 1)

}
. (10)

See Fig. 1 for a schematic of the convention used. For com-
pleteness we finally note that

�k =
(

2πn√
3Nx

,
4πm

3Ny

)
, (11)

where n = 1, 2, . . . , Nx and m = 1, 2, . . . , Ny. In this form
the time reversal invariant (TRI) momenta are �
i =
{(0, 0), (0, 2π/3), (π/

√
3, π/3), (π/

√
3,−π/3)}. Through-

out the rest of this paper we focus on this model.
In Table I we give the parameters which are used for

the different examples contained throughout the paper when
considering band structures, thermal Hall conductance, and
current maps. We demonstrate our results with examples from
several different topological phases and focus on parameter
ranges which allow us to find reasonable numerical results at
the largest system sizes we are able to probe.

Examples for the band structure showing the edge modes
along both zigzag and armchair edges are shown in Figs. 2

FIG. 2. Band structures projected along the x and y directions
for zigzag, panel (a), and armchair, panel (b), edges, respectively,
for a point in the ν = −5 phase; see Fig. 4. Parameters are given in
Table I. Light yellow shows the bulk bands and the green and purple
lines show the edge modes on the two different edges. Along the edge
a single mode passes through kx = 0, which is a Majorana fermion
mode; all other modes are not Majorana fermions [31,91].
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FIG. 3. Band structures projected along the x and y directions for
zigzag, panel (a), and armchair, panel (b), edges, respectively, for a
point in the ν = 0 phase; see Fig. 4. Parameters are given in Table I.
Light yellow shows the bulk bands and the green and purple lines
show the edge modes on the two different edges. A careful view will
show that there are no topologically protected modes, in agreement
with the bulk boundary correspondence.

and 3. From the bulk boundary correspondence we know
that the Chern number is equal to the number of topolog-
ically protected bands on an edge. Some further examples
are given in Appendix B for the other exemplary points in
the phase diagram we use. We take the Hamiltonian given
by Eq. (1) and Fourier transform along either the x direction
for zigzag edges or along the y direction for armchair edges.
The perpendicular direction is kept finite with open boundary
conditions, resulting in edge modes propagating along the two
edges.

In Fig. 3 we show the band structure in the ν = 0 phase.
According to the bulk boundary correspondence there should
be no topologically protected edge modes. A close look
reveals that although there are edge modes present, they are
not topologically protected as they always connect the upper
bulk bands to themselves or the lower bulk bands to them-
selves, and can therefore easily be removed by a continuous
deformation. This ν = 0 phase therefore gives a nice check
for the quantized Hall conductance as it should result in zero,
despite the presence of these edge modes.

III. TOPOLOGICAL PHASE DIAGRAM

One of the main focuses of this article is the quantized
thermal Hall conductance, which is proportional to the Chern
number, ν ∈ Z. Hence we wish to compare the calculated
thermal conductance and an independent calculation of the
Chern number. Naturally the calculation of the Chern number
also informs us about the rich topological phase diagram
of this model. The Chern number for such a complicated
model can only be calculated numerically; however, we can
find an analytical expression for its parity δ = (−1)ν . Both
of these can be compared to the band structure, as one
expects that the Chern invariant gives the number of chi-
ral propagating modes along the edge of the system due to
the bulk boundary correspondence. We remind the reader
here that the chiral modes are not necessarily Majorana
fermion modes [91] and the number of chiral modes which
are Majorana fermion modes can depend on the type of
edge [31].

A. Chern number

The Chern number, equivalent to the TKNN invariant [88],
can be calculated numerically [31,81,92]. It is given by

ν = i
∫

d2k dω

8π2
Tr

[
G2

�k,ω
[∂kyH(�k)]G�k,ω

[∂kxH(�k)]

− G2
�k,ω

[∂kxH(�k)]G�k,ω
[∂kyH(�k)]

]
, (12)

with the Green’s function G�k,ω
= [H(�k) − iω]−1 and mo-

mentum �k = (kx, ky). By diagonalizing the Hamiltonian the
frequency integral in Eq. (12) can be performed analytically.
Let S be a rotation to the energy eigenbasis of the Hamiltonian
so that S−1H(�k)S is diagonal with eigenvalues ε j . If we define
S−1∂kx,yH(�k)S ≡ Hx,y, then we find

ν = i
∫

d2k dω

8π2

∑
j	

Hy
j	Hx

	 j − Hx
j	H

y
	 j

(ε j − iω)2(ε	 − iω)
. (13)

Performing the frequency integral leaves [88]

ν =
∫

d2k

2π

∑
j	

Hx
j	H

y
	 j

sgn[ε j]�[−ε jε	]

(ε j − ε	)2
, (14)

where � is the Heaviside theta function. The momentum
integral over the Brillouin zone can be performed numerically,
with the matrix multiplication and determination of S also
calculated numerically. For the integration we use Romberg’s
method over the hexagonal Brillouin zone [93].

An example topological phase diagram, which contains all
points in Table I, is given in Fig. 4. The bilayer model allows
for a rich topological phase diagram with Chern numbers as
large as 10 and in the following we will focus on several
different phases. Further examples of phase diagrams can be
found in Appendix C.

B. Parity of the Chern number

There is a relatively simple method for calculating the
parity of the Chern number [94] which can be generalized
to hexagonal lattices [31,82]. It can be shown that the parity
can only be changed at the TRI momenta and hence it can be
expressed in terms of quantities only at these momenta. Fol-
lowing a suitable transformation [27,31,82] the Hamiltonian
can be written in block diagonal form at the TRI momenta,
from which the parity is extracted. Let H̃(�k) = U†

�k H(�k)U�k
with the rotation

U�k = 1 − τyσy

2
A�kA−�k + τzσz − τxσx

2
B�kB−�k, (15)

where

A�k =
(

ei
ky
2 0

0 e−i
ky
2

)
, B�k =

(
0 ei

ky
2

e−i
ky
2 0

)
. (16)

The order of matrix products here should be understood as
tensor multiplication from left to right over the particle-hole,
spin, AB sublattice, and finally layer subspaces.
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FIG. 4. Exemplary topological phase diagram for the Chern number ν as a function of Zeeman field B and chemical potential μ with
� = 0.4t , α = 0.3t , and t ′ = 0.5t . Also shown is the calculation of the quantized Hall conductance, normalized so it can be directly compared
to the Chern number, and the parity of the Chern number δ = (−1)ν . Solid black lines show the gap closings at the TRI momenta, which can
lead to changes in parity, and the red lines show gap closings at the Dirac points. Dashed blue lines show the parameters focused on in Fig. 7.

We then find at the TRI momenta a block diagonal Hamiltonian

H̃(�
i ) =
(
H̄(�
i ) 0

0 −H̄(�
i)

)
(17)

and the parity topological invariant is simply [82,94]

δ = (−1)ν = sgn[det H̄(�
1) det H̄(�
2)]. (18)

Due to the symmetry of the lattice H̄(�
2) = H̄(�
3) = H̄(�
4) and therefore it is sufficient here to consider just two TRI momenta.
When δ = −1 there is a band inversion, i.e., the parity switches between TRI momenta an odd number of times and the system
is topologically nontrivial in the sense that the Chern number is odd. For δ = 1 the system is topologically trivial in the limited
sense that the Chern number is even.

Finally one finds the analytical expressions

det H̄(�
1) = [(M2 − 9t2)2 − 9M2t ′2]2 − 36μ2[2t2(M2 − 9t2)2 + t ′2(M4 + 81t4)] + 1296μ4t4,

det H̄(�
2) = M8 − 2M6(−8α2 + 2t2 + t ′2) + M4{32α2(3α2 + �2) + 6t4 + 4t2[t ′2 − 2(2α2 + μ2)] + t ′4 − 4t ′2(4α2 + μ2)}
− 2M2[2t6 + t4[8(α2 − μ2) + t ′2] − 8α2t2(4α2 − 4�2 − 4μ2 + 3t ′2) + 16α2[(α2 + �2)(t ′2 − 8α2) + μ2t ′2]]

+ t8 + 8t6(2α2 − μ2) + 4t4[24α4 + 8α2(�2 − 2μ2) + 4μ4 − μ2t ′2]

+ 32α2t2[4(α2 + �2)(2α2 − μ2) + t ′2(2�2 + μ2)] + 64α4[4(α2 + �2)2 − μ2t ′2], (19)

where we have introduced M2 = B2 − �2 − μ2.
See Fig. 4 for an example of the parity invariant compared

to the numerical calculations of the Chern number and the
quantized Hall conductance. Although the parity does not
contain all information about the topological phase it does in-
clude some of the most important information. It is the parity
invariant which determines whether a Majorana fermion mode
must be present. Additionally the parity invariant is very quick
to calculate, as it is based on fully analytical expressions, in
contrast to the Chern number, the numerical calculation of
which can be slow for such a complicated model as the one
used here.

In the following section we will show how to calculate the
thermal current, from which we can find the quantized thermal
Hall conductance to compare with the direct calculation of the
Chern number.

IV. QUANTIZED THERMAL HALL CONDUCTANCE

The heat current for a lattice system can be found by
defining a local energy term and calculating its rate of change
using Heisenberg’s equation of motion [10]. Although there
is no unique definition of the local energy, any reasonable
definition will give the same results for the quantized edge
current and we will use a natural definition. Let us write the
Hamiltonian as

Ĥ =
∑

j

Ĥos
j +

∑
j,i∈R j

Ĥbond
ji ≡

∑
j

Ĥloc
j , (20)

where the index j labels all sites in the two-dimensional lattice
and R j is the set of all neighbors of site j. The Hamiltonian
has been divided into two contributions—one defined purely
on site and one which includes all the hopping terms. The
local energy current operator is then given by Heisenberg’s

184502-5



SZCZEPAN GŁODZIK AND NICHOLAS SEDLMAYR PHYSICAL REVIEW B 108, 184502 (2023)

equation of motion [10,95,96]

Ĵ j ≡ 1

2
∂tĤloc

j = 1

4
i
[
Ĥ, Ĥloc

j

]
. (21)

The numerical factors arise as we calculate the commutators
using a BdG Hamiltonian. As we are interested in the currents
flowing around the edges of our nanoflake we define an edge
current operator

ĴE =
∑
j∈E

Ĵ j, (22)

where the set E contains all sites j for which Ĵ j contains terms
which cross a line extending from the center to the edge;
see Appendix D for an example. Thus it defines the current
crossing a particular boundary. In practice we take boundaries
which extend from the middle of one edge to the center of our
nanoflake.

For the expectation value we find

JE =
∑

n

f (εn)〈n|ĴE |n〉, (23)

with f (εn) the Fermi function. The thermal Hall conductance,
which is the thermal current flowing due to a temperature
gradient across the sample, can be shown to be equivalent to
[2]

κ = ∂JE
∂T

(24)

and the quantized thermal Hall conductance is then

κ

T
= πν

12
. (25)

For a noninteracting particle-hole symmetric system one can
quickly verify that π/12 is the correct expression for the
contribution of a single chiral edge band; see Appendix A.

Evaluation of the commutator Eq. (21), performed using
the SNEG library [86], leads to the following expression for
the thermal current:

Ĵ j =
∑
	∈R j

�̂
†
j [αμ( �d j	 × �σ ) · ẑ − i(t + t ′)(μ + B τzσz )]�̂	

+ 1

2

∑
	∈R2

j

�̂
†
j [α(t + t ′)( �d j	 × �σ ) · ẑ − i(t2 + t ′2 + t ′)

− α2(δxσzν j	 − iδy)]�̂	 ≡
∑

	

Ĵ j	. (26)

R2
j is the set of next-nearest-neighbor sites to site j. Here ν j	

implicitly depends on the vectors connecting the intermediate
site k to the sites j and 	 which are second nearest neigh-
bors, ν j	 = (d̂ jk × d̂k	) · ẑ = ±1, where d̂ j	 is the unit vector
between sites j and 	.

The system is solved on a finite lattice using the PYBINDING

package [97]. To obtain the thermal Hall conductance we
must find all terms in (26) which cross the boundary E ; see
Appendix D. We checked calculations for different E perpen-
dicular to all four edges of our system and for different edge
terminations, but find no dependence on these factors once
the results have converged for large enough system sizes. In
practice the sum in Eq. (23) is performed only for states inside

FIG. 5. Examples of the heat current in four different topological
phases; see Table I for parameters. Plotted is Jp

j ; see Eq. (27). Each
example focuses on a different corner of the open nanoflake system.
Although several phases follow the expected convention for the
direction of flow of the heat current, we stress that it is the conduc-
tance that is quantized, not the current. The color and size of the
arrows is a guide to the magnitude of the heat current; the maximum
size of Jp

j to be found in each example is given in the center next to
the arrow corresponding to this size.

the gap, which are the only ones which contribute to the heat
current. Results here are for a fictitious boundary on the top
zigzag edge of the system, with the thermal Hall conductance
calculated via Eq. (24).

Some examples of the real space map of the heat current
are given in Fig. 5. As 〈Ĵ j	〉 would be too complicated to show
we instead plot a version of the current projected onto each
site, which retains the sense of the direction of hopping. This
projected current is given by

Jp
j =

∑
	

〈Ĵ jl d̂ j	〉. (27)

Again d̂ j	 denotes the unit vector between sites j and 	 and
not an operator.

To observe a correct, well-developed plateau at the value
reflecting the topological invariant of the occupied bands (and
the central charge of the underlying effective field theory),
one has to meet certain requirements. On the one hand, the
temperature has to be smaller than the effective topological
energy gap, so as to not excite any bulk states and only probe
the edge mode. On the other hand, the temperature has to be
larger than the mean in-gap level spacing, effectively repre-
senting the velocity of the edge modes, which vastly varies
among the different phases in the phase diagram. We can
summarize these temperature requirements as �eff < T <

�eff/�Eg. To make sure that we can find a reasonable plateau
in every identified topologically nontrivial phase, we exhaust
our high performance computing (HPC) resources, limiting
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FIG. 6. Thermal Hall conductance as a function of temperature
T . See Table I for parameters for each data set. At low temperatures
the plateaus can clearly be seen at the correct values in each phase.

the lattice to a rectangular flake of size 280a × 262a, where
a = 1 is the distance between the first neighbors in one hon-
eycomb layer. This results in our finite size sample containing
about 105 lattice sites. This is an order of magnitude larger
than previously considered in other works [10], allowing one
to move beyond some of the limitations there and consider
models with complicated internal structure and which can
require larger system sizes to have well separated edge modes.

The temperature dependence of κ/T in units of the thermal
conductance quantum is presented in Fig. 6. At low tempera-
tures, a plateau develops, whose value reflects the topological
invariant, in line with Eq. (25). The quality of the plateau
depends strongly on the specific phase considered and more
precisely on the shape of the edge band. The examples of band
structures for the probed phases are shown in Appendix B.
The velocity of the edge mode in the phase with ν = 4 is the
biggest out of all probed points and it results in the shortest
plateau. We extract the value in the middle of each plateau
and summarize our findings as a phase diagram in the middle
panel of Fig. 4. It correctly reproduces the numerical calcula-
tion of the topological invariant. For every region we are able
to find points which give the correct value. The points which
fail to reproduce the topological phase diagram are either due
to too steep an edge band or too small a gap. This is visible
in detail in Fig. 7, where we show cuts through the phase
diagram. Values found by calculating the Chern number and
the thermal Hall plateau are represented by different point
shapes and the value of the gap is also visible. The thermal
conductance approach performs well when there is a large
enough gap in the spectrum and is seen to fail close to the
phase boundaries (i.e., the gap closings).

In an experimental situation, one cannot ignore the pres-
ence of phonons in the system, which would complicate the
picture. By coupling to the edge mode the phonons start
serving as a sink for the heat and additionally the longitudinal
conductance (vanishing in an ideal situation) can exceed the
transverse (Hall) conductance. The low temperatures required
to observe topological superconductivity can however serve
as an aid. The mean free path of phonons in low temperatures
is expected to be large enough to achieve ballistic transport
of phonons through the bulk. While in this situation a new

FIG. 7. Chern number compared to the thermal Hall conductance
in the middle of a plateau; see Fig. 6. The size of the topological gap
εG is also shown as a solid line. Results are shown for a cut through
Fig. 4 at μ = 2.5t as a function of B, upper panel (a), and at B = t as
a function of μ, lower panel (b). The other parameters are � = 0.4t ,
α = 0.3t , and t ′ = 0.5t . Large open circles show the numerically
calculated κ/T and filled squares show the Chern number. Arrows
indicate the relevant axes for the data points.

channel for the heat current appears and the quantization can-
not be expected, a careful design of the temperature probing
system and contacts can circumvent such problems [49]. It
is nevertheless expected that, even when the coupling of the
edge modes with phonons cannot be ignored, the thermal Hall
conductance should be approximately quantized, as the edge
contribution is only renormalized by a much smaller phonon
thermal Hall term κ ph [50].

V. CONCLUSIONS

In this article we have introduced and solved a two-
dimensional topological superconductor based on an s-wave
proximitized (111) bismuth bilayer. We first calculate the
Chern number and find the topological phase diagram as a
function of the various possible parameters of the model. This
is then compared to the band structure along both zigzag and
armchair edges of the model, which can differ in details. As
the numerical calculation of the Chern number is numerically
costly we then demonstrate how to calculate its parity analyt-
ically and compare this to the Chern number phase diagrams.

We then calculate the appropriate expression for the quan-
tized thermal Hall conductance, starting with Heisenberg’s
equation of motion for a suitably defined local energy oper-
ator. We demonstrate that plateaus at the correct quantized
values form in the κ/T as a function of temperature in several
different topological phases. We also check a topologically
trivial phase, which nonetheless has many trivial in-gap bands,
to confirm it has zero thermal Hall conductance. Using these
results as a basis we then calculate an exemplary topological
phase diagram based on the quantized thermal Hall conduc-
tance to compare to the Chern number phase diagram and
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FIG. 8. Band structures projected along the x and y directions
for zigzag and armchair edges, respectively, for points in the ν =
−1, 2, 4 phases as labeled; see Fig. 4. Parameters are given in Table I.
Light yellow shows the bulk bands and the green and purple lines
show the edge modes on the two different edges.

show that even for the complicated model used here it works
reasonably well.

Here we have solved an interesting topological supercon-
ductor model which demonstrates a very rich phase diagram
with large Chern numbers. Additionally these results open the
way for a widespread theoretical investigation of the thermal
Hall effect in many topological superconductors which could
be used as the basis for experimental investigations. Further-
more the technique we use is based entirely in real space and
therefore easily allows for calculations which consider the
role of disorder and edge deformations, which would make
interesting extensions to this work.

FIG. 9. Topological phase diagram for the Chern number ν as a
function of Zeeman field B and chemical potential μ with � = 0.4t ,
α = 0.3t , and t ′ = t . Also shown is the parity of the Chern number
δ = (−1)ν . Solid black lines show the gap closings at the TRI mo-
menta, which can lead to changes in parity, and the red lines show
gap closings at the Dirac points.

FIG. 10. Topological phase diagram for the Chern number as a
function of Zeeman field B and either Rashba spin-orbit coupling α

or interlayer hopping t ′. For both panels � = 0.4t , for the left hand
panel μ = 0 and t ′ = 0.5t , while for the right hand panel μ = 1.1t
and α = 0.3t . Solid black lines show the gap closings at the TRI
momenta, which can lead to changes in parity, and the red lines show
gap closings at the Dirac points.
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APPENDIX A: THERMAL HALL CONDUCTANCE FOR A
CHIRAL EDGE BAND

In this Appendix we show the straightforward calculation
for a single chiral mode in a particle-hole symmetric system.
The heat current of a band with energy εp and velocity vp =
∂εp/∂ p can be written as [2,13]

Jedge = 1

2L

∑
p

vpnp(εp − μ). (A1)

The distribution function np can be taken as the Fermi func-
tion, so for a linearly dispersing mode εp = −vp we find

Jedge ≈ 1

4π h̄

∫
d pv2 p f (−vp), (A2)

where μ = 0. We take the edge with the negatively dispersing
band to make our sign conventions work nicely.

Now if there is a temperature gradient across a sample, with
modes on each edge feeling temperatures T ± δT/2, then

κ = Jedge1(T + δT/2) + Jedge2(T − δT/2)

δT
. (A3)

Now as Jedge2 = −Jedge1 ≡ −Jedge and fT +δT/2(ε) −
fT −δT/2(ε) ≈ δT ∂T fT (ε) the thermal Hall current will
be

κ

T
= 1

T

∂Jedge

∂T
(A4)
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FIG. 11. Top down look on the top edge of the lattice; only a
small region of the whole lattice is shown with the two layers overlaid
on top of each other. The blue line shows the cut across which we take
all local current terms. Shown are all lattice sites connected by 〈Ĵ j	〉
across this line which form the set E and contribute to the calculation
of the current and conductance.

and defining x = βvp/2 we find

κ

T
= k2

B

2π h̄

∫
x2dx

cosh2 x︸ ︷︷ ︸
=π2/6

= π

12

k2
B

h̄
(A5)

as expected.

APPENDIX B: ADDITIONAL BAND
STRUCTURE EXAMPLES

In Fig. 8 additional band structures are shown for all points
at which we calculate either the local heat current, see Fig. 5,
or the thermal Hall conductance plateaus; see Fig. 6. Edge
bands along both the zigzag and armchair edges are shown.

APPENDIX C: ADDITIONAL PHASE DIAGRAMS

In Figs. 9 and 10 we show more examples of the Chern
number and its parity. Figure 9 is the same as Fig. 4 except the
interlayer hopping has been set to be as strong as the intralayer

FIG. 12. Spatial profile from the edge of all current terms cross-
ing the cut 〈Ĵ j	〉; see Fig. 11. To make J (y) we take the average of
the y coordinates for each 〈Ĵ j	〉 which contributes. As can be seen
there is no current in the bulk, in agreement with what can be seen
on Fig. 5. The edge is at y ≈ 260a; these results are for the point in
the topological phase with Chern number −1.

hopping, which results in a similar looking phase diagram. In
Fig. 10 we explore the dependence of the Chern number on
the Rashba spin-orbit coupling and the interlayer hopping. For
changes in α only extremely large values substantially modify
the phase diagram and in general we find it is relatively stable
as a function of α. The interlayer hopping has a more pro-
nounced effect as it must interpolate between a doubled single
layer system [31] and the full bilayer model. Nonetheless it is
clear that for a wide range of t ′ the topological phase diagram
will show many phases.

APPENDIX D: ADDITIONAL DETAILS FOR CURRENT
CALCULATIONS

In Fig. 11 we show the boundary across which we calculate
the current on one edge and all lattice sites coupled across this
line by 〈Ĵ j	〉, i.e., the set E .

In Fig. 12 we give an example showing the spatial profile
of the current terms which cross the boundary as a function
of their distance form the edge. The terms quickly decay and
there is no bulk current flowing. In this calculation both in-gap
and bulk states were summed over.
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