PHYSICAL REVIEW B 108, 184501 (2023)

Editors’ Suggestion

Comparative study of the superconductivity in the Holstein and optical Su-Schrieffer-Heeger models

Andy Tanjaroon Ly ®, Benjamin Cohen-Stead ©®, Sohan Malkaruge Costa®, and Steven Johnston
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA
and Institute of Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, Tennessee 37996, USA

® (Received 20 July 2023; revised 22 September 2023; accepted 17 October 2023; published 1 November 2023)

Theoretical studies suggest that Su-Schrieffer-Heeger-like electron-phonon (e-ph) interactions can mediate
high-temperature bipolaronic superconductivity that is robust against repulsive electron-electron interactions.
Here we present a comparative analysis of the pairing and competing charge/bond correlations in the two-
dimensional Holstein and optical Su-Schrieffer-Heeger (SSH) models using numerically exact determinant
quantum Monte Carlo. We find that the SSH interactions support light bipolarons and strong superconducting
correlations out to relatively large values of the e-ph coupling A and densities near half-filling, while the Holstein
interaction does not due to the formation of heavy bipolarons and competing charge-density-wave order. We
further find that the Holstein and SSH models have comparable pairing correlations in the weak coupling limit for
carrier concentrations (n) < 1, where competing orders and polaronic effects are absent. These results support
the proposal that SSH (bi)polarons can support superconductivity to larger values of A in comparison to the
Holstein polaron, but that the resulting 7. gains are small in the weak coupling limit. We also find that the SSH
model’s pairing correlations are suppressed after including a weak on-site Hubbard repulsion. These results have

important implications for identifying and engineering bipolaronic superconductivity.
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I. INTRODUCTION

Identifying the highest superconducting transition temper-
ature T; that can be realized for a given pairing interaction
persists as a significant unsolved problem [1-11]. In partic-
ular, there is a long-standing discussion over whether the
T. arising from the electron-phonon (e-ph) interaction is
bounded [1-4,10]. While Eliashberg theory predicts that T
increases indefinitely with the dimensionless e-ph coupling
A [3], lattice instabilities or competing phases like charge-
density-wave (CDW) order are expected to ultimately cut off
this growth [2,6]. For example, even if one could avoid a
lattice instability, the formation of heavy (bi)polarons should
suppress superconductivity in the strong coupling limit [12].
These expectations have been recently confirmed by numeri-
cal calculations for the Holstein model [9,10,13], suggesting
polaron formation sets an intrinsic limit on phonon-mediated
superconductivity.

In this context, Su-Schrieffer-Heeger (SSH)-like (e-ph) in-
teractions, where the atomic motion modulates the electronic
hopping integrals [14,15], have attracted substantial interest
[16-27]. Recent theoretical studies in the dilute limit suggest
that this interaction can produce strongly bound yet light
bipolarons less prone to localization [16], in contrast to the
Holstein model. It has also been proposed [23] that a dilute
gas of such bipolarons will have an instability toward a super-
conducting state with 7;’s much larger than those estimated
for the Holstein model [10]. Importantly, pairing mediated by
the SSH interaction is also believed to be robust against the
inclusion of repulsive e-e interactions [22,23], thus providing
a means to bypass the proposed limits of conventional super-
conductivity.

The T, estimates obtained in Ref. [23] are based on simu-
lations of the two-dimensional (2D) bond-SSH model, where
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the properties of an isolated bipolaron on a lattice are com-
puted with numerically exact quantum Monte Carlo (QMC)
methods [28]. The authors then argue that the system in the
dilute limit can be regarded as a gas of bipolarons and mapped
onto the problem of a gas of hard-core bosons, where T
was identified with the superfluid transition temperature [29].
This approach should be accurate in the dilute limit, where
the bipolarons do not overlap significantly [23]. While these
results suggest that SSH interactions may be able to mediate
high-T. superconductivity, many materials hosting these types
of interactions are far from the dilute limit. As the carrier
concentration increases, one naturally expects other ordering
tendencies to appear that will compete with superconductivity,
e.g., a CDW phase for the Holstein model [30-36]. For the
2D bond SSH model, studies have identified insulating CDW
order [17,24], a bond-order wave (BOW) [19] phase, and even
weak antiferromagnetism [21,37] near half-filling. It is thus
desirable to assess the strength of the relevant pairing correla-
tions in the SSH model and any competing instabilities across
a wide range of carrier concentrations and model parameters.

Here we present a comparative study of the 2D
Holstein [38], bond [39], and optical [40] SSH models using
numerically exact and sign-problem free determinant quan-
tum Monte Carlo (DQMC) simulations. Focusing on the
weak coupling limit, where the linear approximation for the
SSH interaction is valid [25,41], we find that the models
have strong CDW (Holstein) or BOW (bond-/optical-SSH)
correlations near half-filling. These phases are suppressed
upon doping and give way to strong superconducting corre-
lations in the antiadiabatic limit, where the phonon energy is
much larger than the electronic hopping (2/t > 1, h = 1).
In this case, we further find that the Holstein and optical-
SSH models produce comparable pairing correlations over
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a wide range of carrier concentrations. In contrast, correla-
tions in the bond-SSH model are notably weaker. For smaller
phonon energies (2/t = 0.5), we find that the SSH models
can support robust pairing in proximity to their competing
bond order at half-filling, while the Holstein model is prone
to the formation of heavy bipolarons in the same window.
Further doping into the dilute limit shows that all three
models have weak but comparable superconducting corre-
lations. Finally, we find that including a modest Hubbard
U = t/2 suppresses the pairing correlations of the doped SSH
models.

These results provide new insight into the search for bipo-
laronic superconductors and suggest that one should look
toward weakly correlated materials with carrier concentra-
tions close to their relevant competing order.

II. MODEL & METHODS

We study the single-band Holstein and bond-/optical-SSH
models defined on a 2D square lattice. The Hamiltonian for
each of these models is partitioned as H=H,+ th + I-L_ph,
where H, describes the electronic subsystem, Hy, describes
the lattice subsystem, and Hg_ph describes the coupling be-
tween the two. For all three models, we take
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operator for site i, and H.c. denotes the Hermitian conjugate.

The sum over v runs over the X and § spatial dimensions, with

= (a,0) and a, = (0, a). Lastly, ¢ is the nearest neighbor
hoppmg integral, and p is the chemical potential.

The Holstein model describes the phonons using local har-

monic oscillators
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where M, is the ion mass, €2}, is the phonon energy, and X (135)
is the position (momentum) operator for the atom at site i. For
the bond- and optical-SSH models, we introduce harmonic
oscillators describing motion along each of the v directions
of the lattice such that

. P? 1
Hy = Mp.0)Q2X2, ), 3
bh Z(ZM(bO)+2 (b.0) ) 3

where M0y is the (effective) ion mass in the bond- and
optical-SSH models, respectively. In the optical-SSH model,
these oscillators describe the displacement of the atoms them-
selves [40]. In the bond model, they describe the change in the
relative distance between the atoms at sites i and i + a, [42].
The coupling between the two subsystems for the Hol-
stein model is given by the usual local interaction I{Q_ph =
oy Zi,o Xi(ﬁi,g — %), where oy, parametrizes the strength of

the e-ph coupling. Conversely, for the SSH models, the inter-
action modulates the nearest neighbor hopping integrals with
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for the bond- and optical-SSH models, respectively. In the
Holstein model, the electrons couple to a single dispersionless
optical phonon branch via a momentum independent e-ph
coupling constant. In contrast, they couple to two dispersion-
less optical phonon branches via momentum-dependent e-ph
coupling constants in the optical- and bond-SSH models. This
difference has important implications for properly equating
each model’s dimensionless e-ph coupling constant A, as dis-
cussed in Ref. [43] and Appendix A.

We solve all three models on N = L x L site square lat-
tices with periodic boundary conditions using DQMC [44].
We perform a combination of hybrid Monte Carlo (HMC),
swap, and reflection updates similar to those described in
Ref. [45]. (The swap and reflection updates help ensure that
the HMC sampling can cross nodal surfaces in configuration
space where the fermion determinants go to zero.) However,
we do not replace the fermion determinants by a multidimen-
sional Gaussian integral, instead retaining the standard Monte
Carlo weights used in DQMC. We then evaluate the exact
derivative of the corresponding action when performing HMC
updates, effectively performing DQMC simulations with a
computational cost that scales as O(BN 3) [46).

Throughout, we set t =M =M, =My, =a=1, and
choose the e-ph coupling constants o« such that the
momentum-averaged dimensionless coupling A is the same
for all three models (see Appendix A). Finally, we note that
the sign of the effective hopping integrals can change in the
SSH models when the lattice displacements are large enough
[20,25]; our implementation does not reject moves producing
such configurations, as described in Appendix B.

We assess the models’ ordering tendencies by measuring
the relevant susceptibilities

H@ =7 / Z Ta®RERO (D)0] [(O)dT,  (5)

where Oy,i is a local operator. For the superconduct-
ing correlations, we set Op,i = (i,4+6,, to measure local
s-wave pairings and OA;; = % Y o (Gi4Cita, | + Girica, ) tO
measure extended s-wave pairings. For the charge and
bond- order correlations, we take OAc,i = Za i, and Obfi =
> @ i.0Cisa, o T H.c.), respectively.

To assess the polaronic tendencies in each model, we also
measured the carrier’s effective mass at the Fermi level

m*(Kk) . X' (k, w)
m ow

, (6)
=0
where X(k, w) = £'(k, w) +iX"(k, w) is the complex-
valued self-energy on the real frequency axis and m(k) is the
bare electron mass. We obtain the derivative of the self-energy
on the real axis using the Matsubara self-energy using the
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FIG. 1. DQMC results for pairing and dominant charge/bond
correlations obtained on 14 x 14 lattices at = 16/f and A = 0.3.
Panels (a) and (c) show results for the CDW [x.(r, )] and BOW
[xo(m, )] susceptibilities. Panels (b) and (d) show singlet s-wave
pair-field [x,(q = 0)] susceptibilities for the Holstein (red O), bond-
(blue ), and optical-SSH (black A) models. Results for Q2 = 4¢
(t/2) are shown in the left (right) column. The dashed black line
in panel (d) is the pair-field susceptibility for the noninteracting
model. Note that the charge and bond susceptibilities are plotted on
a logarithmic scale, while the pair-field susceptibility is plotted on a
linear scale.

expression [47]

XK, wy) X' (k, w)
lim =

w,—0 wy Ba)

(N
w=0
Equation (7) can be easily proven using the Kramers-Kronig
relations and is exact in the B — oo limit. Here we approxi-
mate the left-hand side of Eq. (7) with its value at the lowest
Matsubara frequency such that m*(k)/m ~ 1 — 2"(k, w, =
m/B)/m. Finally, to obtain the effective mass value on the
Fermi surface, we interpolate the Green’s function data as
described in Appendix C.

III. RESULTS

Figure 1 compares the s-wave pair-field x,(q), charge
xc(q), and bond-order x,(q) susceptibilities for the three
models as a function of filling (n). Results are shown for
2 = 4t [panels (a) and (b)] and #/2 [panels (c) and (d)] and
were obtained on an N = 14 x 14 cluster with fixed g =
16/t, and A = 0.3. We have found that the uniform s-wave
pairing correlations q = 0 are the dominant pairing signal for
all parameters examined here. In contrast, the dominant CDW
and BOW correlations appear at the q = (i, 7 ) ordering vec-
tor near half-filling. Therefore, we focus on these ordering
vectors throughout this work.

Focusing first on the charge and bond correlations, we find
that the Holstein and optical-SSH models are dominated by
CDW and BOW correlations for 0.75 < (n) < 1, consistent
with prior work [34,48]. These orders compete directly with
superconductivity in each case and become stronger as the

phonon energy decreases. Conversely, the bond-SSH model
is characterized by nearly degenerate antiferromagnetic (not
shown), superconducting, and CDW correlations near half-
filling in the 2 = 4¢ case, consistent with prior results for our
chosen parameters [19,21,37,46].

The CDW/BOW correlations in all three models are
suppressed upon doping away from (n) = 1 and eventually
overtaken by the superconducting correlations. The strongest
pairing correlations for the Holstein and optical-SSH models
in the antiadiabatic limit [2 = 4¢, Fig. 1(b)] occur around
(n) =~ 0.7 — 0.75, and have broad domelike dependence on
the carrier concentration. In this case, the suppression of
pairing near half-filling is due to competition with the
BOW/CDW correlations, while the suppression for small (r)
is due to the decreased density of carriers. This domelike
behavior is reminiscent of the bismuthates [49] and other
quantum materials, where superconductivity is found near
a competing order. Notably, the pairing correlations for the
optical-SSH model are comparable to the Holstein model at
intermediate doping but decay slower as the band is depleted.

The pairing correlations in the bond-SSH model are no-
tably smaller and exhibit slightly different dependence on the
filling. The largest pairing correlations for this model occur
at (n) = 1. There is also a second narrow peak in x,(q = 0)
centered at (n) ~ 0.7, where the pairing correlations are larger
than the BOW correlations. (The exact position of this peak
depends on the cluster size, see Appendix E.)

The superconducting correlations decrease dramatically
when the phonon energy is lowered to Q =¢/2 [Fig. 1(d)],
which is naturally expected for a phonon-mediated pairing
mechanism where T, o 2. At this temperature (8 = 16/¢),
the pairing correlations of the bond-SSH model are nearly
identical to the noninteracting pair-field susceptibility (in-
dicated by the dashed black line) for all (n). Conversely,
the correlations in the Holstein and optical-SSH models are
slightly enhanced over the noninteracting values at lower
carrier concentrations (n) < 0.5; however, x,(q = 0) in both
models is similar, suggesting that these models will have com-
parable T¢’s at these carrier concentrations. Moving toward
half-filling, x, is suppressed below the noninteracting values
for both the Holstein and optical-SSH models, but the optical
model’s pairing correlations persist to comparatively higher
carrier concentrations.

Figure 2(a) explores how the superconducting correlations
depend on A. Here we fix B =16/t, Q =4¢t, and (n) =
0.7, where we observed strong pairing tendencies across all
three models without a corresponding competing order. The
growth of the pairing correlations in the Holstein model is
nonmonotonic, with a maximum value occurring at A = 0.4
before being rapidly suppressed at large A by the formation
of heavy bipolarons [34,48]. This interpretation is supported
by the behavior of the effective mass shown in Fig. 2(b).
Here, we plot the effective mass at the Fermi momentum
along the (0, 0)-(0, ) cut through the first Brillouin zone,
where we observe the strongest band renormalizations (see
also Appendix C). In this case, the sharp drop in the pairing
correlations coincides with a rapid increase in m*(Kg)/m.

Turning to the SSH models, we find that the pairing cor-
relations exhibit a milder dependence on A in the strong
coupling limit; in both the bond and optical models, x,(q = 0)
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FIG. 2. DQMC results for the Holstein (red (), bond-, (blue [J),
and optical- (black A) SSH models. The top row plots the s-wave
pair-field susceptibility x,(q = 0) as a function of A for (a) 2 = 4¢
and (c) Q =t/2. Panels (b) and (d) plot estimates of the effective
mass m*(k)/m measured on the Fermi surface at k = (kg, 0). All
results were obtained from N = 14 x 14 lattices with 8 = 16/t and
(n) =0.7.

initially grows rapidly at A < 0.2-0.3 before leveling off to
a constant value at larger couplings. At the same time, the
effective mass for both models increases at a much slower
rate in comparison to the Holstein model. This behavior
demonstrates that the SSH (bi)polarons remain much lighter
to stronger values of A [16], even for the finite carrier concen-
tration considered here.

Figures 2(c) and 2(d) show analogous results for Q =
t/2. In this case, the pairing correlations at weak A for all
three models are comparable to the noninteracting values. As
A increases, xp(q = 0) for the Holstein and optical-SSH mod-
els increase slightly before being rapidly suppressed with a
concomitant rise in the effective mass, as in the antiadiabatic
case. In contrast, the pairing correlations in the bond-SSH
model are not suppressed at larger values of the e-ph coupling
but are only slightly enhanced around A =~ 0.5. The effective
mass of the bond model remains small at all coupling values.

The strength of the pairing correlations at fixed tempera-
ture can be a poor proxy for the superconducting 7; that is
ultimately realized in a system [50]. For example, the growth
of an initially subdominant pairing channel can sometimes
overtake a dominant one as the system is cooled. For this
reason, Fig. 3 compares x,(q =0) as a function of T for
the three models, again at a fixed A = 0.3. For Q = 4+ and
(n) = 0.7 [Fig. 3(a)], the optical-SSH model has the largest
pairing correlations while the bond-SSH model has the small-
est. However, the growth of x,(q = 0) for the Holstein model
appears to be outpacing the optical-SSH model. Taken at face
value, this would suggest that the Holstein model has the
highest 7; at this filling. However, finite size effects may slow
the growth of the superconducting correlations in the optical
model if the correlation length has become comparable to the
cluster size. Regardless, the results in Fig. 3(a) indicate that

T
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FIG. 3. A comparison of the temperature dependence of the
s-wave pair-field susceptibilities for the Holstein (red (), bond-
(blue 1), and optical-SSH (black A) models at fixed A = 0.3 and
(n) = 0.7. Results are shown for (a) Q = 4z, (n) =0.7,(b) 2 =1/2,
(n) = 0.7, and (c) Q =1/2, (n) = 0.3. All results were obtained on
an N = 14 x 14 cluster. The solid lines are spline fits to the data and
act as a guide to the eye. The dashed black lines are the pair-field
susceptibility for the noninteracting model.

the optical-SSH and Holstein models have comparable values
of T; for these parameters.

Figure 3(b) shows results for Q2 = /2 and (n) = 0.7. Here,
the pairing correlations for the Holstein model are signifi-
cantly reduced as a function of temperature by the competing
CDW correlations and local bipolaron formation [13,34,48].
Conversely, the pairing correlations in the optical- and bond-
SSH models continue to grow as the temperature is lowered
and ultimately become larger than the noninteracting values.
Both SSH models have comparable y,(T) values as a function
of temperature, implying they will have a similar T¢.

The behavior reported in Fig. 3(b) demonstrates that the
SSH interactions are less prone to forming heavy bipolarons
and can mediate superconductivity more effectively than the
Holstein model in proximity to its competing CDW/BOW
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() (b)

FIG. 4. The temperature dependence of the uniform s-wave
[x,(a= 0), O points] and extended s-wave [ le* (q = 0), ¢ points]
pair-field susceptibilities for the (a) bond- and (b) optical-SSH mod-
els with a Hubbard U = 0 and #/2. All results were obtained on an
N = 8 x 8 cluster due to the Fermion sign problem (see Appendix D)
and fixed (n) = 0.5, Q = 4¢,and A = 0.3.

order. However, it is unclear if the transition temperature
ultimately realized by the SSH models is larger than what
could be achieved in the Holstein model if one could somehow
suppress the competing CDW correlations. To address this
question, Fig. 3(c) now examines x,(q = 0) versus T for
the three models, this time focusing on Q2 =¢/2 and (n) =
0.3, far from any competing CDW correlations. In this case,
the pairing correlations in all three models grow above the
noninteracting value as the temperature is lowered. However,
the strength of the pairing correlations for the Holstein and
optical-SSH models are identical (within error bars), while
the correlations in the bond-SSH model are smaller. We can
thus reasonably conclude that the superconducting 7 for the
optical-SSH and Holstein models are comparable for these
parameters, while T; for the bond-SSH model is smaller.

Finally, we turn to the question of how robust the pairing
correlations are against the inclusion of the e-e interaction.
To this end, Fig. 4 plots the superconducting correlations in
the bond- and optical-Hubbard-SSH models, where we have
added a slight on-site Hubbard repulsion of U =t /2. Since
the nonzero value of U induces a Fermion sign problem (see
Appendix D), here we focus on results obtained on a smaller
N = 8 x 8lattice with Q = 47, A = 0.3, and (n) = 0.5, which
corresponds to the filling with the strongest pairing correla-
tions on this size lattice. For both the bond [Fig. 4(a)] and
optical-SSH [Fig. 4(b)] models, we find that both on-site and
extended s-wave pairing correlations decrease rapidly once a
small Hubbard repulsion is included in the model.

IV. DISCUSSION

We have used DQMC to study and contrast the ordering
tendencies of the 2D Holstein and bond-/optical-SSH models
over a wide range of carrier concentrations. Our results re-
veal that these models produce different qualitative behaviors
depending on the filling of the underlying band. Close to half-
filling, the Holstein and optical-SSH models are dominated
by CDW and BOW order, respectively. The superconducting
correlations were generally suppressed near these competing
orders; however, the suppression was more severe for the
Holstein model. Conversely, the bond-SSH model supported

superconducting correlations up to half-filling, especially
in the antiadiabatic limit (€2 = 4¢). Variational calculations
in the two-particle limit [16] have shown that the SSH
(bi)polarons are lighter and more mobile than the Holstein
bipolarons for a larger range of couplings. Our results demon-
strate that this property persists to finite carrier concentrations
and allows the SSH models to support superconductivity in
regions of phase space where the polaronic effects prevent
pairing for the Holstein model. This result lends support to the
hypothesis that SSH interactions can circumvent some factors
that limit pairing in the conventional Holstein and Frohlich
models, at least in proximity to the competing BOW order.

At more dilute concentrations, where competition with
CDW or BOW correlations is absent, we find that the pairing
correlations for the optical and bond-SSH models are com-
parable to that of the Holstein model. This result suggests
that the bond- and optical-SSH models will not produce sig-
nificantly larger superconducting transition temperatures than
that of the Holstein model, at least for carrier concentrations
larger than (n) > 0.3.

Another critical issue in studying SSH-like interactions is
the potential role of the sign changes in the effective hop-
ping integrals. The models considered here and elsewhere
treat the nonlinear dependence of the hopping integrals on
the bond distance using the linear approximation. This treat-
ment allows the sign of the effective hopping integral to
change as the atoms vibrate about their equilibrium positions,
which can dramatically affect the ground and excited states
of the model [20,25]. Indeed, we have found that these sign
changes frequently occur in our DQMC simulations when
the dimensionless coupling A or phonon energy 2 is large
(see Appendix B). We have allowed these changes to occur
in the current work since we were interested in studying the
ordering tendencies in the linear SSH models as they are com-
monly formulated. However, future studies should explore
how additional nonlinear e-ph interactions or anharmonic
lattice potentials might alter the BOW and superconducting
correlations observed here. Such terms have already been
shown to substantially alter the physics of the Holstein model
[51-55].
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APPENDIX A: DIMENSIONLESS COUPLING
PARAMETER

The dimensionless coupling for a momentum-dependent
e-ph interaction g, (k, q) is defined [56] as

2
A= 2N(0)Z<<—|g”$’ ) >> , (A1)
- v.q FS
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FIG. 5. Sign switching of the hopping integral as a function of
filling for (a) the bond-SSH model in the x direction (closed [J) and
in the y direction (open [J). Also shown are complementary results
for (b) the optical-SSH model (closed and open A). All results for
A=0.3atBr =16onan N = 14 x 14 cluster.

where v is a mode index, & —=ex—u with ¢ =
=2ty cos(k,a) is the noninteracting electron disper-
sion measured relative to the chemical potential, N (0) =
%Zk 8(&x) is the density of states at the Fermi level
per spin species, and {-))ps denotes a Fermi surface (FS)
average.

In the 2D Holstein model, the electrons couple to a single
dispersionless phonon branch 24 = 2 via a momentum-
independent e-ph coupling g = an/+/2Mp<2. In this case,
the dimensionless coupling reduces to A, = MD’T‘“ZZW, where
we have approximated N'(0) ~ W~!, where W = 8¢ is the
noninteracting bandwidth.

In the 2D optical- and bond-SSH models, the electrons
couple to two dispersionless optical phonon branches v = x, y
with Q, ¢ = 2, ¢ = © via momentum-dependent e-ph cou-
pling constants [57,58]

&k, q) = 4—isin (5% cos((k, + gu/2)a),
[0)

Lk, q) = 2%8%“/2 cos((ky +qv/2)a)  (A2)
b

for the optical- and bond-SSH models, respectively, where
we have taken 7 = 1. The dimensionless coupling is ob-
tained by performing the FS average as defined in Eq. (Al).
However, due to the finite size of our clusters, perform-
ing accurate FS averages is difficult, particularly away from
half-filling. Therefore, we approximate Eq. (Al) by replac-
ing the FS average with a simple average over the first
Brillouin zone. The corresponding dimensionless e-ph cou-
plings are Ap = M:'%‘EW and A, = A%(;W for the bond- and
optical-SSH models, respectively. To ensure that the value
of the dimensionless coupling remains the same among the
three models, we fix the ratios of the microscopic cou-
plings to o2 = ozl%I /8 and ozg = oclz_[ /4. Note that our definition
for X, differs from Ref. [23] by a factor of two. There-
fore, the momentum dependence of gt;(k, q) was neglected
and the ratio o = a,/2 was adopted. For this reason, the
strength of the coupling to the bond model is stronger in their
analysis.

AaA=0.1 4« A=03 »A=05
AA=02 aA=04 4 7A=06

(a)

e Holstein
= ol ® Bond-SSH
~ A Optical-SSH
=
= 1.5
1

0 025 05 075 1
k:(kxao) [%]

FIG. 6. (a) The expectation value of the number operator (ny )
for the optical-SSH model as a function of A, plotted along the k =
(ky, 0) direction of the first Brillouin zone (FBZ). The allowed mo-
mentum points in the cluster are indicated by the triangles. The Fermi
momentum, indicated by the stars, is determined by (ng ,) = 1/2 and
estimated by linearly interpolating the DQMC data. The inset shows
(nk.») in the upper quadrant of the FBZ for A = 0.3, where the solid
black line indicates the location of the noninteracting Fermi surface.
(b) The effective mass m*(k)/m along (k,, 0) for the Holstein (red
), optical- (blue [J), and bond-SSH (black A) models for A = 0.3.
The value of m*(kg)/m (indicated by the stars) is estimated using
linear interpolation. All data were obtained on N = 14 x 14 clusters
with 8 = 16/t and Q = 4t¢.

APPENDIX B: SIGN CHANGES IN THE EFFECTIVE
HOPPING INTEGRAL

Both the optical- and bond-SSH models approximate the
nonlinear dependence of the hopping integrals on the atomic
displacements within the linear approximation. At this level,
both models allow the sign of the effective hopping integral
to change when the lattice displacements become sufficiently
large, which is frequently overlooked in nonperturbative
numerical simulations. In principle, one can suppress the fre-
quency of these sign changes by including nonlinear e-ph
interactions [59] or additional anharmonic terms in the lattice
potential [54], which tend to reduce the size of the lattice dis-
placements found in the linear model. However, these terms
can significantly affect the pairing and charge correlations
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FIG. 7. The average value of the Fermion sign obtained for the
simulations with U = ¢/2 presented in Fig. 4 of the main text.

in the linear model [51] and prevent comparisons to works
that didn’t include these interactions. For this reason, we have
chosen to simulate the optical- and bond-SSH models as they
are formulated in the linear approximation and not artificially
prevented Monte Carlo updates that produce a sign change in
the effective hopping.

To assess the severity of this problem, Fig. 5 plots the
percentage of times the effective hopping changes sign during
our DQMC simulations for both the bond- and optical-SSH
models. Note that we do not average the phonon positions over
imaginary time before calculating this percentage. Results are
shown here for § = 16/t, N = 14 x 14, and as a function
of (n). Sign switching occurs more frequently in the optical
model for fixed A = 0.3, which can be understood once one
recognizes that the displacement of two atoms controls the
bond distance in the optical model. The bifurcation of the
results for the optical-SSH model is due to forming the BOW
phase, where inequivalent bond lengths appear along the x and
y directions.

APPENDIX C: EFFECTIVE MASS ESTIMATES

As outlined in Sec. II, the effective mass m*(K) is obtained
from our DQMC data using the relationship

m*(k)wl BE" (K, w,)
m T ’

where m is the electron’s bare mass in the noninteracting
limit and X(k, w,) = ¥'(k, w,) + 12" (K, w,) is the complex-
valued self-energy on the Matsubara frequency axis (m also
depends on k for our tight-binding model, so mT() should
be understood including the k-dependence of both m* and
m). To obtain the self-energy, we measure the unequal imag-
inary time Green’s function G, (k, t) which is then Fourier
transformed to the Matsubara frequency axis G, (K, w,,) using
the discrete Lehmann representation [60]. To accomplish this
task, we use the Lehmann. j1 package of the 1ibd1r library
[61]. The self-energy is then obtained by inverting Dyson’s
equation G~ (K, w,) = iw, — & — Z(k, w,).

10°
30 (a) Holstein (d) Holstein
~4- L=3 02
--{r-- =10
10! ®
100 %
107!
1072
(e) Bond-SSH
10()
®
5
=
101
1072
(f) Optical-SSH
30 103
S 20 ®
= B
~ =)
< 10 A
%

FIG. 8. All panels are DQMC results for Q =47, A = 0.3 at
Bt = 16 on different L x L lattices. Panels (a) and (b) show the
uniform (q = 0) s-wave pair-field x,(q) and q = (;r, w) charge-
density-wave x.(q) susceptibilities for the Holstein model. Panels
(c) and (d) show x, and q = (7, ) bond-ordered-wave x;,(q) sus-
ceptibility for the bond-SSH model. Similarly, panels (e) and (f)
show x,, and y;, for the optical-SSH model.

We extract the value of the effective mass on the Fermi
surface by linearly interpolating our DQMC data, as illus-
trated in Fig. 6. First, we determine the location of the Fermi
surface using the condition (ng.,) =1 — G,(kg, 0) = 0.5,
where G, (k, 0) is the equal-time Green’s function [Fig. 6(a)].
We then interpolate the '”T(lk) data to obtain its value on the
Fermi surface [Fig. 6(b)].

APPENDIX D: THE FERMION SIGN PROBLEM

The Holstein and SSH models considered in this work can
be simulated with DQMC without a sign problem. However,
all three models develop a sign problem once we include
the Hubbard interaction [62] when doped away from half-
filling (only the bond and optical-SSH models at half-filling
remain sign-problem-free). For reference, Fig. 7 plots the
average value of the Fermion sign obtained for the simulations
presented in Fig. 4 with a finite U = ¢ /2. Interestingly, the
bond-SSH model appears to have a less severe sign problem
than the optical-SSH model.

APPENDIX E: FINITE SIZE EFFECTS

Figure 8 assesses the finite size effects for our simula-
tions of the Holstein, bond-, and optical-SSH models. Here
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we fix the simulation parameters to Q2 =47, A = 0.3, and
B =16/t and vary carrier concentrations over 0 < (n) < 1.
(Our model is particle hole symmetric when ;& = 0 as we only
include the nearest-neighbor hopping ¢.) The left column of
Fig. 8 plots the uniform s-wave pair-field susceptibility for the
Holstein [Fig. 8(a)], bond-SSH [Fig. 8(b)], and optical-SSH
[Fig. 8(c)] models, respectively. Similarly, the right column
of Fig. 8 plots each model’s dominant charge/bond order.
Specifically, Fig. 8(d) plots the q = (i, 7 ) charge correlations
for the Holstein model, while Figs. 8(e) and 8(f) plot the q =
(r, ) bond susceptibilities for the bond- and optical-SSH
models, respectively. The results indicate that all three mod-
els exhibit noticeable finite-size effects; however, the overall

qualitative behavior remains the same across all system sizes.
As the cluster size increases, there is an overall increase in
the strength of the pairing correlations, which is accompanied
by a shift of the peak position toward half-filling. At the
same time, the strength of the CDW (BOW) correlations in
the Holstein (optical-SSH) model near (n) = 1 increase with
cluster size, consistent with the presence of long-range order
at this filling. Conversely, the strength of the BOW correla-
tions in the bond-SSH model exhibits a much weaker finite
size dependence, consistent with short-range correlations.
Finally, all three models’ charge and bond susceptibilities
show a weaker dependence on cluster size for fillings less
than (n) < 0.75.
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