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Competing interaction induced phase diagram and phase transition in artificial triangular spin ice
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Competing interactions are the simultaneous presence of conflicting coupling forces in a system, which
can lead to the emergence of rich physical properties and phenomena. We have studied artificial spin ices
composed of single-domain nanomagnets on triangular arrays using magnetic force microscopy and Monte Carlo
simulations. A phase diagram with three distinct phases is obtained analytically through tuning the interaction
between local neighboring spins continuously. These phases and phase boundaries are precisely reproduced
by experimental data, providing strong evidence for the success of our theoretical model. Further to this, a
subsequent study reveals that incorporating long-range interactions results in different phase boundaries. This
conclusion is further confirmed by another experiment where a phase transition behavior is observed when the
spin correlation within the system exceeds the neighbors within a triangular vertex. These findings indicate
that further neighbor interactions in artificial triangular array can significantly affect the magnetic phases of the
system, showing significant differences from other geometry-based artificial spin ices.
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I. INTRODUCTION

Artificial spin ice has been studied for decades as an ideal
platform for investigating the geometry frustration-induced
phenomena in spin systems [1–21]. These artificially designed
systems offer advantages such as tunability and flexibility, al-
lowing for the exploration of geometry frustration in a highly
controlled manner. In frustrated magnetism systems, frustra-
tion arises from the competition between different interactions
among neighboring spins. To explore the phase diagram of
such systems, a conventional approach involves adjusting the
coupling strength ratio between neighbors at different dis-
tances [22–29]. The application of lithographic techniques
in artificial spin ice systems makes such explorations pos-
sible. Additionally, nanoimaging tools like magnetic force
microscopy (MFM) and x-ray magnetic circular dichroism
enable straightforward examination of macro spin states in
real space [1–3,9–12,16,18,19,27–33]. The combination of
these advantages renders artificial spin ice an ideal platform
for testing theoretical models on diverse geometries [1,3,34–
38]. For instance, in the case of dipolar square ice, collective
magnetic phenomena such as spin liquid states and Coulomb
phases have been experimentally observed by varying the ver-
tical shift between the two sublattices of the pattern [39,40].

We investigate an array consisting of nanomagnet islands
on a triangular lattice through experimental and simulation
methods. We examine the phase variation as the coupling
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strength of different spin pairs is continuously tuned. Three
distinct magnetic phases arise within the system when consid-
ering the coupled interactions J1 (nearest neighbor), J2 (sec-
ond nearest neighbor), and J3 (third nearest neighbor) only.
These predicted phases and phase boundaries are precisely
reproduced by experimental data, which evidence the success
of the J1-J2-J3 model. Furthermore, we extend our study by
incorporating interactions among neighbors beyond J1, J2, and
J3. Both simulation and analytical results show significant
changes in the phase boundaries when these additional inter-
actions are taken into account. To validate these predictions,
we design and conduct another experiment in which a series of
triangular arrays with varying spin correlations are examined.
A phase transition signature is observed near the shifted phase
boundary. This phenomenon aligns with the results obtained
from Monte Carlo simulations, providing strong evidence for
the dependence of phase boundaries on spin correlations in a
triangular array. All these finding demonstrate the rich physics
exhibited by artificial triangular ice.

II. THE MODEL AND PHASE DIAGRAM

The nanomagnets in the triangular array are elongated
along the vertical direction and interact with each other
through dipolar interactions. Therefore, they can be effec-
tively treated as Ising spins. For dipolar interactions, when
two magnetic moments �μ1 and �μ2 are Ising like and separated
by a distance r, as shown in Fig. 1(a), the interaction energy
between the two moments can be expressed as a function of θ

and r,

E↑↑ = D

r3
(1 − 3cos2θ ) (1)
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FIG. 1. (a) The diagram shows that the dipolar interaction favors ferromagnetic coupling or antiferromagnetic coupling between two
magnetic moments based on the angle θ . (b) A SEM image of a section of one triangular spin ice array with constant space L (J1) and θ

(L = 280 nm, θ = 20◦). (c) Variation in J1, J2, and J3 as a function of θ . The shaded area denotes possible magnetic order in this region.
Inset: The definition of J1, J2, J3, and θ in a triangular spin array are schematically shown. (d)–(f) Different possible magnetic orders that are
predicted depending on the relative coupling strength among J1, J2, and J3. The red line indicates the moments are staying in an energetically
unfavorable alignment, while the black lines indicate the moments are staying in an energetically favorable alignment. (g)–(i) The possible
magnetic phases that are predicted based on the local spin configurations given by (d), (e) and (f), respectively.

and

E↑↓ = D

r3
(−1 + 3cos2θ ), (2)

where θ is the angle between the vertical direction and the
vector �r. The dipolar energy, denoted as E↑↑ or E↑↓, cor-
responds to the energy when the two moments are parallel
or antiparallel, respectively. The constant D = μ0μ

2/4π . It
is noteworthy that when E↑↑ = E↑↓, the angle θ is 54.7◦.
When we place the spins in a polar coordinate system, as
illustrated in Fig. 1(a), the entire area can be divided into two
regions. The dipolar interaction favors parallel or antiparallel
alignment depending on the relative position of the other spin
with respect to a reference spin located at the origin. Based
on this property, when considering macro spins in a triangular
array, the neighboring couplings can be defined as J1, J2, and
J3 based on their relative positions, as shown in Fig. 1(b). By
maintaining a fixed spacing between the elements along the
horizontal direction, i.e., keeping J1 constant, and varying the
distance between elements along the vertical direction, we can
continuously adjust the couplings J2 and J3 as a function of θ .
These variations are depicted in Fig. 1(c). Assuming J1 = −1,
the competition among J1, J2, and J3 gives rise to diverse
magnetic phases that are θ dependent.

A. When θ < 26.8◦, |J1| > |J2|
When J1 is dominant, the neighboring spins oriented along

the horizontal axis prefer to be antiparallel, resulting in frus-
tration for the spins situated at the diagonal positions, which
prefer parallel alignment. This dominance of J1 gives rise to
a preferred local spin configuration, as illustrated in Fig. 1(d).
This constraint leads to the ordering of spins along the hor-
izontal direction, forming antiparallel aligned spin chains.
Based on this alignment, when J3 is introduced, the coupling
between spin chains along the vertical direction is enhanced.
This coupling enhancement offers an anisotropy along the ver-
tical direction and reduces the degeneracy of the spin chains.
As a consequence, the ground state of the system manifests as
an antiferromagnetic dimer phase, as illustrated in Fig. 1(g).

B. When 26.8◦ < θ < 49.1◦, |J2| > |J1|
When J2 is dominant, the local spin configuration prefers

to align in the same direction, as illustrated in Fig. 1(e). This
alignment results in the entire system favoring a ferromagnetic
state, as illustrated in Fig. 1(h). In this case, the influence of
J3 is disregarded as it does not introduce any frustration into
the system.

C. When 49.1◦ < θ < 58.9◦, |J1| > |J2|
In this region, J1 wins the competition against J2 and does

not frustrate with J3. As a result, the system prefers to be in an
antiferromagnetic dimer phase again.

D. When 58.9◦ < θ, |J2| > |J1|, J2 > 0

In this case, with J2 > 0 and dominant, the spin pairs along
the diagonal orientations prefer to be antiparallel. Conversely,
the spin pairs along the horizontal directions are compelled
to be parallel aligned. As a result, the preferred local spin
configuration is illustrated in Fig. 1(f). The overall preferred
magnetic phase of the system is an antiferromagnetic state,
as illustrated in Fig. 1(i). It is worth noting that in all the
cases just discussed, the frustration and resulting magnetic
phases primarily arise from the competition between J1 and J2.
The presence of J3 does not introduce frustration, but instead
provides an anisotropy along the vertical direction, leading
to stripelike phases. As a result, the three magnetic phases
discussed earlier exhibit a twofold degeneracy.

III. EXPERIMENT AND ANALYSIS RESULTS

To validate the J1-J2-J3 model experimentally, we fabri-
cated a series of triangular patterns consisting of permalloy
nanomagnets on a silicon substrate. These patterns were de-
signed with different angles θ , including 20◦, 22.5◦, 26◦, 30◦,
40◦, 50◦, and 56◦. The spacing between islands in each row
is kept at 280 nm and each nanomagnet has dimensions of
150 × 50 × 20 nm. To investigate the antiferromagnetic phase
in the J1-J2-J3 model, the pattern with angle θ > 58.9◦ needs
to be examined. Nevertheless, the elements in such a pattern
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FIG. 2. Phase diagram identified from the experimental data. (a) Magnetic phases identified from the MFM images based on the order
parameter analysis of three spin pairs αβ, αγ , and αδ. Inset: Sketch of the spin pairs. The data point at θ = 62◦ is not connected due to the use
of different lattice spacing. The colored areas denote the magnetic phase boundaries, where red, blue, and white denote the antiferromagnetic
dimer phase, ferromagnetic phase, and antiferromagnetic phase, respectively. (b)–(d) Typical MFM images of patterns with different angles
θ : 20◦, 40◦, and 62◦, respectively. (e)–(g) Color-mapped MFM images corresponding to (b), (c), and (d), respectively. Blue and red represent
spins pointing in different directions. Insets: Magnified spin configuration maps from a specific area within the MFM images.

would touch, or even overlap, if a lattice constant of 280-nm
is used. To avoid this situation, the element size needs to be
reduced, which poses challenges for electron beam lithogra-
phy and MFM. In this work, we fabricated the pattern with
an angle of θ = 62◦, but with a slightly larger spacing (360
nm) between islands in each row to address these challenges.
Each pattern is designed with a size of 10 × 10μm. The fabri-
cation process involves the use of electron-beam lithography,
followed by a liftoff process to create the desired patterns on
the substrate. The patterns are not capped with any coating
layer. In order to find the low-energy state of the system,
a field demagnetization protocol is employed. An in-plane
magnetic field is applied, gradually ramping down from 1000
Gs to 0 G in 72 hours, while the sample is rotated in-plane
at 2000 rpm. The spin configurations of each pattern are
then imaged using MFM. All the experimental information,
including scanning electron microscopy (SEM) images and
MFM images of arrays with different angles can be found in
Supplemental Material Figs. S3–S6 [41].

Due to shape anisotropy, the magnetization of each nano-
magnet points along its long axis. Therefore, the MFM
scanning result of each nanomagnet would consist of two
points with different colors. To visualize the results, a two-
color mapping technique is utilized, where blue and red
represent the different spin orientations. Figure 2(b)–2(d)
presents three typical MFM images obtained from patterns
with θ angles of 20◦, 40◦, and 62◦, respectively. The corre-
sponding mapping results of these MFM images are displayed
in Fig. 2(e)–2(g), respectively. The feature of these mapping
results effectively illustrates the variation in the coupling
strength. For example, in the low θ region, where J2 and
J3 are weak compared to J1, the system exhibits weak or-
dering along the vertical direction but strong ordering along
the horizontal direction. This tendency favors the formation
of antiferromagnetic spin chains, which is reflected in the
mapping result of the pattern with θ = 20◦. On the other hand,
the color mapping result of the pattern with θ = 40◦ reveals
the presence of large ferromagnetic domains. This behavior is
consistent with the variation of J2, as the domain formation in
a triangular array is influenced by the competition between

J1 and J2. Hence, the domain width reaches its maximum
at θ = 40◦. Furthermore, in the high θ region, where J3 is
strong, providing an anisotropy along the vertical direction,
the spin configurations exhibit a stripelike feature. This is
clearly visible in the color mapping result of the pattern with
θ = 62◦. Detailed domain length estimation results are dis-
played in Supplemental Material Fig. S2 [41], indicating that
the domain length increases with the angle θ . To identify the
magnetic phases from the MFM images more accurately, we
calculate the spin-spin correlation of three spin pairs along
the horizontal, diagonal, and vertical directions, denoted by
Cαβ , Cαγ , and Cαδ , respectively. The correlation coefficient
Ci j = 〈σi · σ j〉, where 〈 〉 denotes the average over the entire
system for all i j pairs; σi · σ j = 1 if spin i is parallel to spin
j, and −1 otherwise. According to the phase definitions, the
criteria for determining the magnetic phases are as follows:

(1) Antiferromagnetic dimer phase if Cαβ < 0.
(2) Ferromagnetic phase if Cαβ > 0 and Cαγ > 0.
(3) Antiferromagnetic phase if Cαβ > 0 and Cαγ < 0.
The Greek letters α, β, γ , and δ denote spin pairs along

different directions, as illustrated in the inset of Fig. 2(a).
The value of the correlation coefficients Cαβ , Cαγ , and Cαδ

extracted from the MFM images are shown in Fig. 2(a). Ac-
cording to the criteria just listed, four different regions can
be identified, corresponding to three distinct magnetic phases.
When comparing the phase boundaries obtained from the ex-
perimental data with those depicted in Fig. 1(c), we observe a
significant agreement between the two. This suggests that the
J1-J2-J3 model captures the essential physics of the system.
To confirm this conclusion further, we also performed micro-
magnetic simulation [42] on nanomagnets in a triangular array
with the same angles that have been used in the experiments.
For each array, we calculated the total energy of every possible
spin configuration and listed the preferred energy state (see
Supplemental Material Fig. S1 [41]). The micromagnetic sim-
ulation results coincide with the predicted one in the J1-J2-J3

model and the experimental results. This agreement shows
the success of the point dipole model approximation and also
indicates that the interactions beyond J1, J2, and J3, do not
play prominent roles in the demagnetized states.
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FIG. 3. Phase diagram identified from the Monte Carlo simulations and theoretical method. (a) Magnetic phases identified from the Monte
Carlo simulation results of the quenching process for patterns with different angles θ . All the neighbor interactions are considered in the
simulations. (b) Monte Carlo simulation for magnetic phase order parameter measurements around θ = 22.5◦ with system size L = 28, 33,
39, and 50. The black symbols denote the order parameter Cαβ and the blue symbols denote the order parameter Cαγ . (c) Variation in the
effective J ′

1, J ′
2, J2, and J3 as a function of θ . The dark blue area represents the ferromagnetic phase predicted based on the J1-J2-J3 model.

(d) Definition of the spin neighbors up to the seventh nearest neighbor.

IV. FURTHER NEIGHBOR INTERACTIONS STUDY

In order to gain a deeper understanding of the system’s
behavior and to explore the influence of additional neighbor
interactions, we proceeded with our study by considering
further interactions among neighboring spins. To test the in-
fluence of further neighbor interactions, we performed Monte
Carlo simulations on a triangular array using the following
Hamiltonian:

H = 1

2
A

N∑
i j(i 	= j)

μ0

4πr3
i j

[
μ̂i · μ̂ j − 3

r2
i j

(μ̂i · r̂i j )(μ̂ j · r̂i j )

]
, (3)

where μ0 represents the permeability of the free space, μ̂i
and μ̂ j denote the magnetic moments of spin i and spin j in
the system, and r̂i j is the distance between spin μ̂i and μ̂ j .
The parameter A represents the coupling strength between the
spins. The simulation is performed on an L × L lattice, where
L = 35 and all spin pair interactions are taken into account. A
single spin flip algorithm and a simulated annealing procedure
is used to explore the low-energy states. The magnetic phase
obtained from simulation are identified based on the spin cor-
relation calculation of Cαβ , Cαγ , and Cαδ , as described earlier.
The results are shown in Fig. 3(a). It worth noting that we
do not perform simulations for angles θ< 10◦ and θ> 65◦, as
in both cases the ordered spins tend to form spin chains in
rows or columns that are weakly coupled to each other. Com-
pared to the phase diagram obtained from the J1-J2-J3 model,
the inclusion of the further neighbor interactions significantly
broadens the ferromagnetic phase regions while suppressing
the other phase regions. The phase boundary between the
antiferromagnetic dimer phase and the ferromagnetic phase
shift to θ = 22.5◦, while the phase boundary between the
ferromagnetic phase and antiferromagnetic dimer phase shift
to θ = 64◦. A fine-angle-range of Monte Carlo simulation
results around θ = 22.5◦ is displayed in Fig. 3(b), where Cαβ

and Cαγ for θ = 22.3◦, 22.5◦, and 22.7◦ are calculated for
the system size L = 28, 33, 39, and 50. For θ = 22.3◦ and
22.7◦, the magnetic phase remains stable as the system size
increases. This result indicates that the phase boundary is
fixed within the range of 0.2◦ around 22.5◦. For θ = 22.5◦,
the magnetic phase varies from the antiferromagnetic dimer

phase to the ferromagnetic phase as the system size increases.
This indicates that the size effect needs to be considered
when the magnetic phase is close to the phase boundary. The
discrepancy of the phase boundary between the theory and the
Monte Carlo simulation indicates that when further neighbor
interactions are considered, the vertex model is not suitable to
describe the triangular system.

To understand this phenomenon better, we modified the
J1-J2-J3 model by considering interactions up to the sev-
enth nearest neighbor. The neighboring spins are defined as
shown in Fig. 3(d). We renormalize the J1 and J2 interac-
tions, resulting in effective J ′

1 and J ′
2: J ′

1 = J1 + J5 and
J ′

2 = J2 + J4 + J6 + J7. The intersection point of J ′
1 and J ′

2

redefine the ferromagnetic phase region and antiferromagnetic
dimer phase region. As shown in Fig. 3(c), the ferromagnetic
phase expands on both sides compared to the phase obtained
from the J1-J2-J3 model. This is not surprising. Let us ex-
amine the state at the expanded area of the ferromagnetic
phase region. If we place all the spins in the ferromagnetic
state, when the neighbor interactions beyond J1, J2, and J3

are incorporated, the energy gain from neighboring spins in
the ferromagnetic region can compensate for the energy cost
from the neighboring spins in the antiferromagnetic region.
This is due to the fact that, for an individual spin, the den-
sity and the coupling strength of neighboring spins in the
ferromagnetic region are generally higher than in the anti-
ferromagnetic region across most of the θ range in the phase
diagram, as can be inferred from Fig. 1(a). Consequently, the
system tends to favor a ferromagnetic state as a result of this
energy compensation. This implies that the phase boundary is
not solely determined by the extent of the pattern deforma-
tion, but also is related to the spin correlation of the system.
Since dipole interactions are long range, incorporating more
interactions with neighboring spins allows the system to ob-
tain greater energy compensation, leading to a shifting of the
phase boundary. Based on this assumption, if we examine the
state near the phase boundary, an increase in spin correlation
can lead the system to cross the phase boundary, leading to
a phase transition. This phenomenon can be observed during
a cooling process, where the spin correlations increase as the
system gradually cools.
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FIG. 4. Experimental and simulation results of a quenching pro-
cess. (a) Spin correlation coefficient variation as a function of
temperature. The data are obtained from Monte Carlo simulations
of a quenching process and are fitted to the experimental data for
patterns with different lattice constants (ranging from 240 nm to 680
nm) but with a constant angle θ (22.6◦). The vertical red dashed line
represents the experimental data highlighted in Fig. 2. (b) Specific
capacity as a function of temperature obtained from the same Monte
Carlo simulation results in (a).

To validate this assumption, another experiment is con-
ducted using triangular arrays with a fixed angle but various
lattice constants. The lattice constants of the patterns vary
from 240 nm to 680 nm. The field demagnetization protocol
is the same as mentioned earlier, and the spin correlation of
the system with different lattice constants is calculated and
compared with the results from a Monte Carlo simulation of a
quenching process. Here, the angle θ is chosen to be 22.6◦, as
the ground state of the system with this angle is in the vicinity
of the phase boundary between the antiferromagnetic dimer
phase and the ferromagnetic phase. By selecting this partic-
ular angle, the system is in a critical regime, where a slight
change in the lattice constant can significantly affect the spin
correlations and phase behavior. As shown in Fig. 4(a), the
spin correlations extracted from the experiments show good
agreement with the results obtained from the Monte Carlo
simulation at different temperature ranges. Cαβ decreases as
the temperature cools until it reaches a minimum around
T = 0.22, and then ramps up to a positive value. According
to the criteria mentioned earlier, this indicates that the system

undergoes a phase transition from the antiferromagnetic dimer
phase to the ferromagnetic phase. This phase transition is also
identified by the analysis of the heat capacity, as shown in
Fig. 4(b), where a peak arises at the same temperature position
as the turning point in Fig. 4(a), indicating a second-order
phase transition. Although the cooling process is accompanied
by the growth of the spin correlation length, Cαε remains
almost constant before the phase transitions occur. This sug-
gest that the neighboring spins have not built correlations
up to the sixth nearest neighbor before the phase transition
happened. This is why the J1-J2-J3 model can coincide with
the experimental results, as the neighbor interactions are still
limited within this scope. On the other hand, the appearance
of the turning point of Cαβ and Cαε indicates that the coupled
neighbors extend beyond the scope of the J1-J2-J3 model. This
turning point can be deemed a sign of an incipient phase
transition occurring in the system.

For a triangular lattice, the system favoring a mag-
netic phase depends on the lattice aspect ratio. This unique
characteristic enables the tuning of the preferred moment
configuration through deliberate design, a feature that holds
substantial promise for various device applications. Fur-
thermore, the influence of distant neighbors and indirect
interactions can have a profound impact on the magnetic
phases and phase boundaries within a system. When the struc-
ture is intentionally designed to remain close to these phase
boundaries, it becomes susceptible to local magnetic fields,
offering a versatile means of manipulating the moment con-
figuration. Overall, this study highlights the complex nature of
triangular spin arrays and their phase transitions. It opens up
avenues for further research to explore the impact of extended
neighbor interactions and develop a more comprehensive un-
derstanding of the physics underlying these systems.
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