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Topological spin textures and topological Hall effect in centrosymmetric magnetic nanoparticles
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Although topological spin textures are not commonly found in centrosymmetric magnetic systems, noncopla-
nar monodomain magnetic states such as flower and curling states do emerge due to the contribution of surfaces
and edges in nanoparticles. In this work, we studied the topological nature of these intriguing noncoplanar
spin textures and their manifestation in electric transport phenomena due to the Berry phase accumulation.
Specifically, we calculated the topological charges Q associated with these spin textures and the corresponding
topological Hall effect. We assessed these spin textures across various particle sizes and along magnetic
hysteresis loops and mapped the spin structures in confined geometries using magnetic force microscopy. We
show that Q, as a fractional number, increases with particle size and saturates as the system transits from the
flower state to the curling state. Along magnetic hysteresis loops, smaller particles that show flower states in zero
field, exhibit a peak in Q near the coercive field, a signature of the topological Hall effect demonstrated in other
systems. In contrast, larger particles that show curling states during the magnetization reversal, exhibit transitions
between the homogeneous state, flower state, and curling state, which generates jumps in Q and the topological
Hall effects. These results reveal the rich topological nature of centrosymmetric magnetic nanoparticles, offer
control using magnetic field and probe using electric transport, suggesting promising potential applications.
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I. INTRODUCTION

The behavior of topological spin textures in continuous
parameter space has fascinated researchers due to their in-
triguing properties and potential applications [1–3]. These
distinctive spin configurations are most notably observed as
skyrmions [4–6] in noncentrosymmetric bulk materials [7–9],
thin films [10], multilayer films [2,11,12], and even as meron
[13–15], among others. Nanostructured thin films, including
nanogranular (polycrystalline) materials and ensembles of
nanoparticles, also exhibit magnetic and transport properties
very different from homogeneous thin films, representing the
presence of topological spin textures [16–19].

The presence of topological spin textures in magnetic
nanoparticles recently attracted significant attention due to
their unique size-dependent properties and potential applica-
tions in data storage, biomedicine, and spintronics [20,21]. It
has been reported that isolated nanoparticles of B-20 crys-
tal structures can exhibit geometrically stabilized skyrmionic
spin textures [22,23], due to the Dzyashinski-Moriya in-
teraction (DMI) which is enabled by the broken inversion
symmetry and favors perpendicular neighboring spin align-
ments [24–26].

On the other hand, topological spin textures are not ex-
pected in noninteracting centrosymmetric magnetic nanopar-
ticles due to the lack of DMI. That said, noncoplanar
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single-domain states such as flower and curling states have
been identified in these systems [20,27–37]. These complex
spin textures result from the competition between the ex-
change interaction, anisotropy, and demagnetization which
are sensitive to the shape and size of the nanoparticles. Despite
the intriguing physics and significant technological potentials,
the topological nature of these spin textures, and their mani-
festation in electronic transport, has not been systematically
studied.

Topological spin textures can manifest in electric transport
because the exchange interaction between the local and itin-
erant spins causes rapid rotations of the latter and modifies
the electronic trajectory [38]. Quantum mechanically, under
the adiabatic conditions [39,40], itinerant electrons remain
in the local eigenstates defined by the local spins. For non-
coplanar spin texture, the wave function of itinerant electrons
accumulates a phase factor γ , known as the Berry phase [41],
which can be found through integration over Berry curvature
�Bc [42] that the itinerant electrons sense. Berry curvature �Bc is
proportional to solid angle � created by noncoplanar spins as
showin in Fig. 1(a) and in continuum space is determined by
the spin textures as

�Bc = −εi jk
1

2
S · (∂iS × ∂ jS), (1)

where S(r) is the unit vector describing the spin direction at
position r, and εi jk is the antisymmetric tensor. The surface
integral γ = ∫ �Bc · d �A, or the Berry phase accumulated by an
itinerant electron going around the spin texture, is nonzero
for topological spin textures. Correspondingly, one can
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FIG. 1. (a) Three noncoplanar spins S1, S2, and S3 creates a solid angle � = S1. (S2 × S3) leads to nonzero Berry phase and topological
charge Q. Topological spin textures in a two-dimensional space which can be mapped onto a spherical surface: (b) and (c) are Bloch and Néel
skyrmions, respectively, where the topological charge is Q = 1 [6,12,13]. (d) Spin vortex where Q = 1/2 [6,13,15]. (e) and (f) are curling and
flower states, respectively, where Q < 1/2.

define topological charge Q = 1
2π

∫ �Bc · d �A. Q equals ±1 for
skyrmions, hence it is also known as the skyrmion number. Q
is fractional for the flower and the curling states (see Fig. 1).

The way the itinerant spin follows the local spin can be
described using an emergent magnetic field �Be = h̄

e
�Bc [4]

which deflects the electrons and leads to an additional Hall
effect known as the topological Hall effect (THE) [7,43]. The
resistivity due to THE can be expressed as

ρTHE = PR0 〈Be〉 = PR0
hQ

eA
, (2)

where P is the spin polarization, R0 is the Hall coefficient, and
A is the area of the spin texture. This signature in electrical
transport provides a means to probe the topological spin tex-
ture, in addition to direct observation using magnetic imaging.
The latter can be challenging for nanoparticles due to the need
for high resolution. Hence investigating topological charges
and THE due to noncoplanar states in nanoparticles with finite
Q is an interesting avenue for exploration, considering their
application potential in spintronics at high temperatures.

In this work, through micromagnetic modeling and simu-
lations, and magnetic force microscopy (MFM), we studied
the noninteracting centrosymmetric nanoparticles in terms of
their spin texture and topological charge Q, which is pro-
portional to the Berry curvature and emergent magnetic field
that leads to THE. The focus is on the particle size near the
coherence radius Rcoh (in the range of 10–30 nm) where the
transition from flower state to curling state occurs [27–29,34].
We show that in zero field, the topological charge increases
with particle size when the radius is less than Rcoh and satu-
rates in the curling state. Along the magnetic hysteresis loop,
a maximum Q occurs near the coercive field, as observed in
other systems [7–10,16–19]. More intriguingly, for particles
that are stable in the curling states in zero fields, magnetic

hysteresis contains the transitions between homogeneous,
flower, and curling states, causing jumps in the topological
Hall signal.

II. METHODS

Throughout the paper, we express the local magnetization
as M(r) = MsS(r), where S(r) is a unit vector. We employ an
analytical approach, utilizing an approximate Hamiltonian to
describe the flower state. For the curling mode, we used exact
solutions expressed in terms of Bessel functions. The local
configuration M(r) = MsS(r) is determined using the energy
function given by [34,44]

E = ∫
{

Ae

[
∇

(
M
Ms

)]2

− K1
(n · M)2

M2
s

− μ0M · H

− μ0

2
M · Hd(M)

}
dV. (3)

The exchange stiffness Ae parametrizes the interatomic
exchange energy ηA = Ae(∇S)2, and K1 is the uniaxial
anisotropy assumed to be along the c axis in the z di-
rection, which includes both magnetocrystalline (K1) and
shape-anisotropy contributions. There are three magnetostatic
terms in Eq. (3), namely, the Zeeman interactions with the ex-
ternal magnetic field H, and the magnetostatic self-interaction
energy described by the demagnetizing field Hd (M). Phys-
ically M(r) corresponds to local and global minima of the
integrated energy in Eq. (3). To explore the topological spin
textures and THE numerically, the topological charge (Q) was
extracted from the spin structure.

Micromagnetic simulations were performed using UBER-
MAG supported by OOMMF [45,46]. Different nanoparticle
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TABLE I. The micromagnetic parameters, carrier density, spin polarization, and ordinary Hall coefficient used to calculate the topological
charge and topological Hall effect [34,36,47].

Substance Ae μ0Ms K1 Tc Rcoh P n R0 = 1/ne
(pJ/m) (T) (MJ/m3) (K) (nm) (1/cm3) (m3/C)

Toy model 11 2.3 0.2 12
Co 10.3 1.76 0.53 1388 10 0.45 9 × 1022 5 × 1022

Fe 21 2.15 0.048 1043 11.7 0.4 8.45 × 1022 7.38 × 10−11

Ni 7.69 0.61 −0.0048 631 24.7 0.4 9.1 × 1022 −6.8 × 1022

sizes were considered in our simulations to study the flower
state and curling mode, and the effect of the magnetic field
on these spin textures. The computational cell size was set to
be less than 1.9 nm, significantly smaller than the exchange
length lex [34]. For reference, the values of the micromagnetic
parameters and other constants are provided in Table I. For
evaluating the THE in the nanoparticles, we employed Eq. (2),
which allowed us to determine THE as a function of Q(H) and
the nanoparticle’s area. To probe topological spin textures us-
ing MFM the Co ferromagnetic dots were fabricated through
electron-beam lithography and evaporation in an ultrahigh
vacuum using an electron-beam gun. The circular nanodot
patterns were defined on thermally oxidized Si substrates with
positive photoresists.

The bilayer-positive photoresists PMMA950/MMA EL6
were exposed to an electron beam and the lift-off method
was used to create the circular pattern. The fabricated circular
arrays were arranged in a trilayer structure of Ti/Co/SiO2,
with respective thicknesses of ∼ 20 nm for Ti, ∼ 40 nm for
Co, and ∼ 20 nm for the SiO2 layer to prevent oxidation.
The layer thicknesses were monitored during growth using a
quartz balance. The circular layered structure was grown by
e-beam evaporation in a UHV system. The base pressure was
in the range of 1 × 10−8 torr. The evaporation pressure was
less than 5 × 10−7 torr. By a lift-off process, the photoresist
was removed and dots with designed sizes remained on top of
the Si surface.

To examine the topography and magnetic images of the
samples, we used a Bruker Dimension Icon atomic force
microscope (AFM) at room temperature, performing MFM in
constant height mode (single pass). In the MFM experiment,
we employed the AC mode of the instrument to detect the
magnetic forces between the cantilever tip and the surface
of circular dots under ambient conditions. To mitigate the
impact of stray fields, we utilized a low-moment CoCr tip.
The tip-to-surface distance was maintained within the range
of 20–30 nm.

III. CALCULATIONS AND RESULTS

The topological spin textures can develop in nanoparti-
cles of various shapes, as depicted in Fig. 2. All structures
in Fig. 2 exhibit axial symmetry, that is, the magnetic easy
axis is the c axis along the z direction, and C3, C4, or C∞
rotations reproduce the original spin structure, respectively.
Equation (1) means that the Berry curvature and topological
charge are unique functions of the spin structure S(r), which is
determined by the magnetic interactions and sample geome-

try. We represent the S(r) with the following expression [28]:

S(r) = sin	(r)cos
(r)ex + sin	(r)cos
(r)ey + cos	(r)ez.

(4)

Here, ex, ey, and ez are unit vectors along the x, y, and

z directions, respectively, and r = (x2 + y2)1/2. The angles
	(r) and 
(r) represent the polar and azimuthal angles, re-
spectively. The flower state and the curling state both exhibit
slight deviations from the homogeneous magnetization along
the easy axis (z axis). The xy component of S can be written
as

Sxy(r) = sin	(r)cos
(r)ex + sin	(r)cos
(r)ey, (5)

Which corresponds to the radial direction for the flower
state and the azimuthal direction for the curling state.
Utilizing cylindrical coordinates [r = (ρ, ϕ, z)], we can ex-
press the flower state and the curling state using 
(r) = ϕ

FIG. 2. Examples of spin structures in small nanoparticles: (a)
stray field distribution in the middle and at the edges of a cylindrical
nanoparticle; (b),(c) uniform magnetization; (d) flower state in a
cylindrical particle; (e),(f) flower states in prismatic nanoparticles;
(g),(h) vortex states of opposite chirality; and (j) mixed state. The
spins S(r) are shown as blue arrows.
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and 
(r) = ϕ ± π/2, respectively. To better visualize these
states, we present the vector three-dimensional plot for
the flower state without any helicity (� = 0) 
(r)= ϕ

and for the curling state with finite helicity (� = ±π/2)

(r)= ϕ ± π/2 in Figs. 1(e) and 1(f) and Supplemen-
tal Material Fig. S1. In cylindrical coordinates, we can
write S = Sxy(r)eR + Szez = sin 	(r)eρ + Szez, where eR =
cos 
(r)ex + sin 
(r)ey and Sxy(r) = sin 	(r). The energy
functional for magnetic nanoparticles, considering a small
deviation from the easy axis, can be expressed as (for further
details, refer to the Supplemental Material [48])

E = ∫[Ae[∇Sxy(r)]2 + K[Sxy(r)]2 + 1
2μ0(H − Hd )MsSxy(r)

2

− 1
2μ0MsHFsin	]dV. (6)

In Eq. (6), the demagnetization field Hd(M) = –DMz

along the z axis results in a flux closure state resembling a
curling. On the other hand, the demagnetization field HF at the
edges or corners leads to a slight tilt of the spin representing
nonuniform magnetization inside the nanoparticles. Notably,
in nanoparticles with a flower state, the curling state does not
exist (Hd ≈ 0), and in the presence of a curling state, there
will not be any flower state (HF = 0) [29].

The physics of spin texture in nanoparticles involves
competition between different energy terms in Eq. (3). In
very small nanoparticles (R << Rcoh), the exchange energy
Ae(∇S)2 ∼ Ae/R2 dominates and 	(r) approaches zero as
shown in Figs. 2(b) and 2(c), where R is the radius of the par-
ticle. The gradient term effectively suppresses magnetization
inhomogeneities, scaling as 1/R2. However, as the particle
size increases, nonuniform spin configurations emerge, exem-
plified by the top views in Figs. 2(e) and 2(f). This nonuniform
state is referred to as the “flower state,” in which the spins
S(r) near the particle’s edges form an angle 	(r) with the
symmetry axis [27,29,34]. As the radius further increases to a
coherent radius Rcoh, the flower state [29,31] competes against
other spin states, such as curling states due to magnetostatic
flux closure and decrease in energy density Ae(∇S)2 which
tends to keep spin parallel [27,29–31,33,34,49]. For R > Rcoh

the nucleation is dominated by flux closure and realized by
magnetization curling; in general flux closure is favorable as
it decreases the energy of the system but competes against
the exchange interaction. Rcoh depends on magnetic material
parameters and for the sphere and cylinder it is defined as
(Rcoh )sphere = (5.09) × lex and (Rcoh )cylinder = (3.36) × lex, re-

spectively, where lex = (Ae/μ0M2
s )1/2 is the exchange length

[37,50]. It is unrelated to the single-domain size RSD, which
can be much larger than Rcoh [34]. As shown in Figs. 1(e)
and 1(f), the flower state and curling state can be viewed as
the small part of Néel and Bloch skyrimions near the center,
respectively, so their topological charge Q is less than 1/2.
In the subsequent sections, we will investigate Q and the
topological Hall effect associated with the flower state and
curling state, respectively.

A. Flower state

The flower state is predominantly observed in nonspherical
particles, ideally cubes because the magnetization on these
edges rotates away from the parallel orientation [31,37]. In

our study, we investigated the function 	(r) as a function of
particle size and external magnetic field. The spin structure
S(r) was determined by minimizing the micromagnetic (free)
energy represented by Eq. (6):

E = ∫ η dV. (7)

Here, the energy density η includes contributions from the
exchange, anisotropy, Zeeman, and, for the flower-state con-
tribution as described in Eq. (6). In general, the solution of the
nonlinear differential equation can be done only numerically.
The numerically calculated 	(r) within the nanoparticle in
Supplemental Material Fig. S2(a) shows that the spins exhibit
a “radial” symmetry, tilting away from the z axis. The tilt
angle increases with the distance from the center, illustrated
by the spins at the particle edges or corners.

To gain insight into the physical aspects in a semiquanti-
tative manner, we performed analytical calculations based on
a set of simplifications to find the tilt angle 	(R) at the edge
in a magnetic nanoparticle of radius R. Firstly, we employed
an approximate volume-averaging technique to simplify the
energy integral as

∫
ηdV = 〈η〉V, where 〈η〉 represents the

average energy density. Next, we minimized 〈η〉 with respect
to 	(R), which denotes the polar angle of the magnetization
at the particle edges or corners; the length of the blue arrows
in Fig. 2(d) is given by sin	(R). Determining the precise
value of the average 〈η〉 is highly challenging as it requires
knowledge of S(r). However, S(r) is subject to certain con-
straints (normalization and symmetry) and is approximately
known for several cases. By assuming small 	(R), we find
[see Supplemental Material Eqs. (S11)–(S13) [48]]

〈η〉 =
[

Ae

R2
+

(
K + μ0

2
MsH

)]
[sin2	(R)]

− μ0

2
MsHFsin	(R). (8)

The interatomic exchange ηA = Ae(∇S)2 scales as
Ae/R2[Sxy(r)2] = Ae/R2[sin2 	(R)]; the second and third
terms are anisotropy and Zeeman interaction contributions.
The last term is the flower-state energy correction (HF) due
to nonuniform magnetization in Fig. 2(a). The flower state
causes an xy component of the magnetostatic self-interaction.
Essentially, the xy component of the stray field [green lines
in Fig. 2(a)] contributes a Zeeman-type demagnetization
energy, μ0HFMs|Sxy| ∝ μ0MsHF sin 	(R). The parameter
HF depends on the shape of the particles, especially on
the cross section, but is generally comparable to, though
somewhat smaller than, the saturation magnetization Ms.
While this field is zero for homogeneously magnetized
ellipsoids, it is nonzero for magnetized particles of arbitrary
shape (see Fig. 2). Overall, the flower state reduces the
self-interaction energy compared with the homogeneous
state. The self-interaction is Ed = −μ0M(r) · Hd[M(r)]/2.
For the homogeneous state, Ed = μ0DM2/2, whereas for the
flower state, Ed < μ0DM2/2 due to tilted magnetization.

To identify the stable state, we minimize 〈η〉 using Eq. (8)
with respect to 	(R) for specific nanoparticles of radius R.
As Eq. (8) is quadratic in sin	(R), the minimization process
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becomes straightforward. Explicitly, one has

sin	(R)= μ0MsHF
4Ae
R2 + 4K + 2μ0MsH

. (9)

In Eq. (9), HF is positive, meaning that the magnetization
has a component pointing away from the symmetry axis.
Equation (9) also shows that for small particles 	(R) → 0 as
R → 0 and 	(R) saturates when R → ∞. Essentially, a larger
	(R) requires smaller exchange energy, anisotropy energy,
and Zeeman energy, but larger self-interaction energy. It is
also clear that when the external field H is large enough,
sin	(R) diverges. 	(R) for nanoparticles of different radius
is plotted in Supplemental Material Fig. S2(b).

The Berry curvature can be determined through the appli-
cation of Eq. (1) with respect to the S(r). Upon integrating the
Berry curvature across the magnetic particle, the topological
charge for the flower state can be found as

Q = 1

π
	(R)= 1

π
sin−1

(
μ0MsHF

4Ae
R2 + 4K + 2μ0MsH

)
. (10)

We conducted a comprehensive study on the topological
charge, investigating its variation with particle radius at zero
magnetic fields and with magnetic fields. Our findings are
plotted in Figs. 3(a) and 3(b) for Q. Figure 3(a) exhibits a
significant observation: for particles with radii much smaller
than the characteristic coherence radius (R << Rcoh), the
topological charge remains nearly zero due to the dominant
exchange term (Ae/R2). However, as the particle size reaches
a certain threshold, the topological charge undergoes a rapid
increase and then gradually saturates near R = Rcoh. At this
point, the flower state ceases to exist, and instead, curling due
to self-interaction becomes prominent. Although the specific
transition size is influenced by micromagnetic parameters, we
can qualitatively comprehend the overall trend using Eqs. (9)
and (10).

In Fig. 3(b), we present the topological charge as a function
of the magnetic field. Even in the high-field state, the system
exhibits flower states akin to those depicted in Figs. 2(d)–2(f),
but with a small 	 they closely resemble uniform magneti-
zation as shown in Figs. 2(b) and 2(c). Notably, just before
the magnetization reversal, the topological charge Q reaches
its maximum value due to an increase in 	(R). Furthermore,
we calculated the emergent magnetic field due to the flower
state in cylindrical nanoparticles at different positions in the
xy plane, as shown in Fig. 4(a).

B. Magnetization curling

Magnetostatic interactions tend to favor a flux closure state
(∇ · M �= 0) over magnetic poles (∇ · M = 0) [33,35]. Dur-
ing magnetization reversal, the “curling mode” emerges at
the nucleation field when the particle radius exceeds Rcoh.
The curling state has finite helicity, and it represents the three-
dimensional topological object [51]. Due to the flux closure
property, the curling state does not require a correction to the
self-interaction energy, as seen in the flower state (i.e., HF =
0). Instead, the demagnetization field Hd [M(r)] provides the
magnetostatic self-interaction necessary for flux closure. As

FIG. 3. Topological charge Q of magnetic nanoparticle particles
with R < Rcoh. (a) Particle-size dependence in the absence of an
external magnetic field, where Q increases with particle size before
it saturates at R = Rcoh when flower state is replaced by curling state.
(b) Field dependence along half of the hysteresis loop, in which Q
changes sign at the coercive field (Hc) with radius R = 10 nm, i.e.,
0.83Rcoh.

the size of nanoparticles increases, |Sxy(r)| increases, eventu-
ally leading to the transition into the curling state. Sxy(r) of the
curling state can be obtained by minimizing the total energy,
Eq. (6), with respect to Sxy(r) [29] [see Supplemental Material
Eqs. (S14)–(S17) [48]]:(

2Ae∇2 − 2K1 − μ0MsH + μ0DM2
s

)
Sxy(r) = 0. (11)

In Eq. (11), Hd = −DM, where D represents the demag-
netization factor contributing to flux closure. In the curling
state, one has 
(r) = ϕ ± π/2. Consequently, Eq. (4) can be
rewritten as

M(r) = Ms[−Sxy(ρ)sin(ϕ)ex + Sxy(ρ)cos(ϕ)ey + Szez],

(12)

where Sxy(ρ) = sin 	(ρ) and Sz = cos 	(ρ). Substituting the
curling mode from Eq. (12) into Eq. (11) results in

(
ρ2 ∂2

∂ρ2
+ ρ

∂

∂ρ
+ [(kρ )2 − 1]

)
Sxy(ρ) = 0, (13)
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FIG. 4. Emergent magnetic field sensed by itinerant electrons in
a nanoparticle at different positions in zero external magnetic field.
(a) Particle of R = 0.83Rcoh radius in a flower state. (b) Particle of
R = 1.6Rcoh radius in a curling state. Note the significant increase in
field due to curling state as compared to flower state because of the
topology associated with curling state helicity.

where k is defined as

k2 = −
(

2K1 + μ0MsH − μ0M2
s D

2Ae

)
. (14)

Equation (13) is a Bessel equation, and as a result, the curl-
ing mode in a cylinder can be expressed as Sxy(ρ) = J1(kρ )
or approximately sin 	 ≈ 	(ρ) = J1(kρ) . Figures 1(e) and
S1 illustrate the curling mode vector three-dimensional plot
within a cylinder, using sin 	 ≈ 	(ρ) = J1(kρ ), 
(r) =
ϕ ± π/2. Notice that we applied the boundary condition
∂J1(kρ )

∂ρ
|ρ=R = 0, which leads to kR = 1.841 [29]. Moreover,

when considering spherical particles with D = 1/3, the curl-
ing mode can be described using a spherical Bessel function
Sxy(ρ) = j1(kρ ), where the smallest root is kR = 2.0816. The
Berry curvature resulting from the curling in both the cylinder
and the sphere are calculated using Eq. (1) as follows:

[Bc(ρ)]cylinder = J1(kρ )

ρ

∂J1(kρ )

∂ρ
, (15)

[Bc(r)]sphere = j1(kr)

r

∂ j1(kr)

∂r
. (16)

In Fig. 4(b), we present the emergent magnetic field
Eq. (15) at the different points of the xy plane resulting from
the curling mode of a cylinder. The Berry phase is obtained by
integrating the Berry curvature:

γcylinder = 2J1(kR), (17)

γsphere = 2 j1(kR). (18)

TABLE II. Calculated topological charge Q at the nucleation field.

D Smallest root (kR) Bessel function Q(Hn )

Cylinder 0 1.841 J1(1.841) = 0.58 0.19
Sphere 1/3 2.0816 j1(2.081) = 0.44 0.14

Similarly, we can calculate the topological charge for curl-
ing mode at the nucleation field by employing γ = 2πQ, as
follows:

Qcylinder = 1

π
J1(kR), (19)

Qsphere= 1

π
j1(kR). (20)

At a field greater than the nucleation field, the particle with
edges (like a cylinder) will exhibit a flower state with a small
	, corresponding to a low topological charge. As the magnetic
field decreases to the nucleation field, H = Hn, the transi-
tions from the flower state to the curling state represent the
field-dependent topological phase transition [51]. The helicity,
topological charge, and consequently THE at the nucleation
field undergo a significant increase. However, for particles
with R < Rcoh, where only the flower state exists, there is no
curling state at the nucleation field and as a result, no abrupt
change in the topological charge occurs. These observations
are also confirmed in micromagnetic simulations, as discussed
in the next section. The nucleation field at which the curling
appears is given by [44]

Hn = 2K1

μ0Ms
− DMs + 2Aeq2

i

μ0MsR2′ (21)

with qi being the smallest root of Bessel functions. For
cylinder qi = 1.841 and for sphere qi = 2.0816. By applying
boundary conditions for cylinders and spheres and utilizing
Bessel functions, we can calculate the topological charge Q
for both shapes at the nucleation field. The resulting values
are presented in Table II.

The topological charge listed above represents the exact
value at the nucleation field for particles with R = Rcoh. To
determine the corresponding THE at the nucleation field and
for various particles at their respective nucleation fields, we
can use Eq. (2). As a result, in nanoparticles at the nucleation
field Hn, THE is expected to exhibit a sudden increase to
ρTHE(Hn) giving information related to nucleation field in
nanoparticles.

For the R > Rcoh where curling appears, Q has a constant
value. It is because the curling mode is subject to the eigen-
value condition kR = 1.84 so Q = 0.5J1(1.84)2 = 0.19. This
also applies to the following two considerations. The J1(kr)
oscillations describe radial spin waves. The curling mode is
a 1s state in the analogy of an electron in a cylinder, where
the lowest-lying excited radial spin-wave mode is a 2s state
and has kR = 5.33 and Q = 0.06 showing the Berry curvature
of electron scattering from excited states is tricky from the
viewpoint of dynamics [44].

As the R increases, Sxy(r) also increases, eventually lead-
ing to a transition from the curling mode to the vortex
mode. With the growth in size, the long-range magnetostatic
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FIG. 5. Micromagnetic simulations of magnetization M and
topological charge Q for a cubic ferromagnetic particle with a radius
R = 0.9Rcoh less than Rcoh. On the left is the field dependence of
M and Q along half of the hysteresis loop, where Q reaches the
maximum values near the coercive field Hc, which agrees with our
theoretical prediction, Fig. 3(b), where finite HF is responsible for a
spin tilt at the edges. The deviation from the saturation appears just
before the reversal shown in the inset. On the right are spin structures
near Hc.

interaction between M(r) and M(r′) results in in-plane
spin configurations. Consequently, the magnetostatic self-
interaction becomes more important compared with the
short-range exchange interactions.

C. Micromagnetic simulations and topological Hall effect

To investigate the topological spin textures in nanoparti-
cles, we perform micromagnetic simulation, with a specific
emphasis on regions close to Rcoh. The simulations involve
various shapes, including cubes, cylinders, and spheres. To
explore the effect of size on the system, the radii of the cylin-
ders and spheres were altered, and the topological charge and
THE for different radii were simulated. During the process
of magnetization reversal, we conducted calculations to de-
termine the normalized magnetization and topological charge
Q(H). By applying Eq. (2) and the parameters in Table I, we
utilized the obtained Q(H) data to compute the Hall resistiv-
ity ρTHE in cobalt (Co), iron (Fe), and nickel (Ni) spherical
nanoparticles.

For the flower state, the topological charge was calculated
for R < Rcoh. The results demonstrated that the flower state
only existed in either the cylinder or the ferromagnetic cube.
In contrast, the sphere did not exhibit the flower state due to a
small edge effect, where HF = 0. Figure 5 depicts the hystere-
sis of the topological charge and normalized magnetization
as a function of the decreasing/reverse field magnetic field
B(T)= μ0H in a cube with a length less than the coherent
radius. At higher magnetic fields, the spins aligned in the
direction of the magnetic field, resulting in a lower value
of the Q and hence 	. Near the coercivity field, Q reached
its maximum value just before the reversal, corresponding to
the point of minimum magnetization and maximum opening
of the flower state. The topological charge Q changed sign
during the reversal, indicating a shift from +Mz to −Mz as
the applied field changed from Bmax to −Bmax. Furthermore,

the total Berry phase (γ ) acquired by the electron is given
by γ = 2πQ. The maximum value of Q at the coercive field
is found to be 0.1 (toy model), and consequently, the value
of γ = 0.2π . Therefore, we can deduce that the tilt angle
at the coercive field in Fig. 5 is 	 = 0.5(γ )= 0.314. From
micromagnetic simulation, the tilt angle can be calculated as
a function field 	(H)=πQ(H).

Upon investigating nanoparticles with larger sizes R >

Rcoh, we observed a fascinating magnetization reversal
phenomenon involving the curling mode. Utilizing micromag-
netic simulations on our toy model of cylinders (Fig. 6) and
spheres (Figs. 7–9) with radii greater than Rcoh, we discov-
ered the emergence of the curling mode during magnetization
reversal at the nucleation field. In the case of cylinders with
R > Rcoh, we identified a field-dependent topological phase
transition. Initially, the spin texture exhibited a flower state,
where spins aligned with the direction of the strong external
field, except for the tilted spins at the edges. However, the
spin texture transitioned to a curling mode at nucleation field
Hn with finite helicity, as indicated by the jump in magnetiza-
tion and Q with core polarity aligned to the +z axis. After
magnetization reversal, the core polarity further realigned,
now pointing in the direction of the −z axis, accompanied
by the curling mode of negative helicity. At high magnetic
fields, the curling mode disappeared, and the system reverted
to the flower state. It is worth noting that, unlike the cylinders,
the spheres showed an absence of Q contributions at high
magnetic fields, indicating the lack of a flower state in the
spheres.

We have conducted a comprehensive study to investigate
the topological Hall resistivity, Eq. (2), in spherical nanopar-
ticles composed of Co, Fe, and Ni. This investigation was
based on utilizing various parameters outlined in Table I
and employing micromagnetic simulations, as displayed in
Figs. 7 –9.

In the case of the spherical Co nanoparticle, intriguing
phenomena were observed. Firstly, a curling state symmetric
about the easy axis was observed at the nucleation field, as
depicted in Fig. 7. As we decreased the reverse magnetic field,
ρTHE increased indicating an increase in planar magnetization.
Additionally, we observe the emergence of an intermediate
vortex state, wherein the magnetization of the core was ori-
ented perpendicular to the easy axis as shown in Fig. 7.
Following the intermediate state, the normal curling mode
appeared with opposite helicity.

Figure 8 illustrates the ρTHE of Fe, wherein intermediate
states are absent. We observe the magnetization curling state
at the nucleation field. As the reverse field is decreased, the
magnitude of Q increases, indicating an increase in the in-
plane component Sxy(r). Once the reversal process begins, we
observe the emergence of the curling mode with an opposite
helicity. Finally, at high magnetic fields, the magnetic particles
eventually reach saturation.

For spherical Ni nanoparticles, its negative anisotropy adds
an intriguing dimension to magnetization reversal and the
study of ρTHE. Figure 9 illustrates that at the nucleation field,
the curling mode emerges with a different helicity compared
to that of Co and Fe. Additionally, ρTHE exhibits an opposite
sign, owing to the negative Hall coefficient. As the reverse
field increases, ρTHE also increases and causes a reversal
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FIG. 6. Micromagnetic simulations of magnetization M and topological charge Q in a ferromagnetic cylinder with a radius R = 1.2Rcoh

greater than Rcoh. On the left is the field dependence of M and Q along half of the hysteresis loop, where a jump in topological charge
at nucleation field Hn represents the transition from flower state to curling state. On the right are spin structures at different stages in the
hysteresis loop.

in the sign of the topological Hall effect during magneti-
zation reversal. Overall, these findings related to ρTHE shed
light on the complex behavior of nanoparticles with radius
R > Rcoh during magnetization reversal, and highlight the
importance of shape and size in determining their magnetic
properties.

D. Magnetic force microscopy and topological Hall effect

According to our calculations, it is clear that the single-
domain state leads to a finite emergent magnetic field and
ρTHE. Moreover, our micromagnetic simulation, as shown in
Fig. 6, indicates that the flower state occurs at higher mag-
netic fields, while the curling state appears at lower fields,

FIG. 7. Micromagnetic simulations of magnetization M and topological Hall resistivity ρTHE in a spherical Co nanoparticle with radius
R = 14 nm (R > Rcoh). On the left is the field dependence of M and ρTHE along half of the hysteresis loop. On the right is the spin structure at
different stages in the hysteresis loop.
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FIG. 8. Micromagnetic simulations of magnetization M and topological Hall resistivity ρTHE in a spherical Fe nanoparticle with radius
R = 11 nm (R > Rcoh). On the left is the field dependence of M and ρTHE along half of the hysteresis loop. On the right is the spin structure at
different stages in the hysteresis loop.

FIG. 9. Micromagnetic simulations of magnetization M and topological Hall resistivity ρTHE in a spherical Ni nanoparticle with radius
R = 25 nm (R > Rcoh). On the left is the field dependence of M and ρTHE along half of the hysteresis loop. On the right is the spin structure at
different stages in the hysteresis loop.
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FIG. 10. (a) AFM image for a circular nanodot of Co. (b) MFM
image of the nanodot in (a) showing the magnetic vortex core. (c)
Micromagnetic simulation of the Co nanodisk of 480 nm diameter
and 40 nm height showing the presence of vortex state.

provided that the particle’s radius is in a single domain. To in-
vestigate the topological charge in confined geometries more
thoroughly, we conducted MFM measurements on circular
dots made of cobalt. These measurements provided strong
evidence supporting the existence of a vortex state, which is
characterized by a core magnetization perpendicular to the
plane. The MFM and AFM images are displayed in Figs. 10
and 11. In most of the circular nanodots, the MFM images
exhibit a clear contrast between the center and the surrounding
regions. The spins within the dots are aligned parallel to the
plane, but at the dark spot, the spin aligns perpendicular to the
plane, as shown in Fig. 10(b). Our micromagnetic simulation,
as depicted in Fig. 10(c), also supports the existence of a

FIG. 11. (a) AFM image for an array of circular nanodots of Co.
(b) MFM image of the nanodots in (a) showing the vortex states.

magnetic vortex state in cobalt nanodisks with a thickness
of 40 nm and diameters up to 480 nm. This unique spin
configuration in nanodots emerges when the dot thickness
becomes smaller than the dot diameter, causing all spins
to align in the plane, forming a vortex. It is worth noting
that while the area of the dark region is relatively small for
vortex states in materials like permalloy [49,52], the large
anisotropy of cobalt results in a significantly larger dark spot
area in the middle of the single-domain magnetic state. In
Fig. 10(b), the MFM image and micromagnetic simulations
show the presence of a finite topological charge Q within the
nanodisk. As a result, we conducted calculations to determine
the topological Hall resistivity, which yielded a low value of
ρTHE = 3 × 10−3 n� cm. It is noteworthy that this resistivity
value is particularly small, especially when considering the
relatively large area of the nanodisk.

Since in Fig. 11, the nanoparticles are very close to each
other, this gives rise to a small exchange interaction be-
tween neighboring nanodisks and results in a tilted spin out
of the plane at the edges. We performed a micromagnetic
simulation of nanodisks close to each other. Our results are
shown in Supplemental Material Fig. S5 and compared with
Fig. 11(b).

In Supplemental Material Fig. S3, we observed that par-
ticles with a radius in the range of Rcoh < R < RSD, where
RSD is the radius of a single domain, exhibit two distinct
states at different magnetic fields. At a high magnetic field, the
presence of a finite topological charge is attributed to flower
states, whereas at a low field, the configuration represents
vortexlike spin textures. To further explore the effects of an
external magnetic field, we applied a 0.9 T magnetic field per-
pendicular to the plane using permanent magnets. As shown in
Supplemental Material Fig. S7, the vortexlike state vanishes,
and most of the spins align in the direction of the field, except
at the edges where the spins are slightly tilted, revealing the
edge effects characteristic of the flower-state correction HF for
the spins at the edges.

IV. SUMMARY

We conducted a comprehensive investigation into the
topological spin structures and the manifestation of elec-
tric transport in ferromagnetic nanoparticles, employing a
combination of analytical calculations, micromagnetic simu-
lations, and MFM imaging. Notably, in small nanoparticles
with robust exchange stiffness, the typical flux closure state
is absent and the flower state is present in particles with
well-defined edges. To account for the flower state in nanopar-
ticles, we introduced an energy correction term (HF) into
the micromagnetic free energy to consider the stray fields at
the edges. This energy correction leads to a spin tilt at the
edges and gives a finite topological charge (Q). We made
a distinction between ellipsoidal (spherical) and nonellip-
soidal (cubic and cylindrical) nanoparticles, with the latter
exhibiting significant contributions to the topological charge
from the flower state. We studied finite topological charge
and THE, due to curling states both analytically and through
micromagnetic simulations. The results unveiled a sudden
jump in the Hall resistivity ρTHE, attributed to the topo-
logical Hall effect, occurring at the nucleation field. The
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manifestation of the topological Hall effect in Co, Fe, and
Ni nanoparticles indicates a field-dependent topological phase
transition from a uniform state to a curling state. These stud-
ies and results are in principle applicable to nanoparticles
of all ferromagnetic material systems, suggesting potential
applications. For instance, embedding individual magnetic
particles in a nonmagnetic metallic matrix provides a po-
tential experimental setup to explore these spin textures
further in a wide range of ferromagnetic materials and
for device applications in terms of their effect on electric
transport.
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