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Spin Seebeck effect in the classical easy-axis antiferromagnetic chain
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By molecular dynamics simulations, we study the spin Seebeck effect as a function of magnetic field in the
prototype classical easy-axis antiferromagnetic chain, far out of equilibrium as well as linear response regime.
We find distinct behavior in the low-field antiferromagnetic, middle-field canted, and high-field ferromagnetic
phase. In particular, in the open boundary system at low temperatures, we observe a divergence of the spin current
in the spin-flop transition between the antiferromagnetic and canted phase, accompanied by a change of sign in
the generated spin current by the temperature gradient. These results are corroborated by a simple spin-wave
phenomenological analysis and simulations in the linear response regime. They shed light on the spin current
sign change observed in experiments in bulk antiferromagnetic materials.
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I. INTRODUCTION

The generation and control of spin currents is a central
topic in the field of spintronics [1]. In particular, the spin
Seebeck effect [2], the generation of a spin current by a
temperature gradient in a magnetic field, has been extensively
studied experimentally and theoretically in a great variety
of bulk magnetic systems, for instance, the ferrimagnetic
YIG/Pt heterostructures, antiferromagnetic materials (e.g.,
Cr2O3, Fe2O3), and van der Waals two-dimensional (2D) ma-
terials such as the quasi-2D layered ferromagnets, Cr2Si2Te6

and Cr2Ge2Te6 (for an extensive review, see Ref. [1]). In
particular, concerning easy-axis bulk antiferromagnetic ma-
terials, there is experimental [3–6] and theoretical [7–10]
interest and debate concerning the sign of the generated spin
current [2,11].

In a different research domain, the physics of (quasi-)one-
dimensional magnetic systems, both classical and quantum,
has been studied for years, starting with the Bethe ansatz
solution of the antiferromagnetic spin-1/2 chain. In partic-
ular, the exotic physics of easy-axis antiferromagnetic spin
chains [12] and quantum spin-liquid materials with topolog-
ical spinon excitations has attracted great interest. The spin
Seebeck effect in the spin-1/2 chains Sr2CuO3 with spinon
and CuGeO3 with triplon excitations has been studied experi-
mentally [13,14] and rigorously evaluated theoretically [15] in
the easy-plane regime. Furthermore, the thermal transport of
classical spin chains has been studied by numerical dynamics
simulations [16], and lately the character of spin trans-
port, i.e., ballistic, diffusive, or anomalous, in classical and
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quantum (anti-)ferromagnetic chains has attracted a great deal
of attention (for a recent tour de force and references therein,
see [17]).

Here we study the spin Seebeck effect for the easy-axis
classical antiferromagnetic spin chain; it makes sense to try
to understand the physics of the effect in this prototype, but
realistic model. It allows us to clarify the relation of the sign
of the induced spin current by a temperature gradient across
the spin-flop transition occurring at a critical field and serves
as a bridge between spintronics studies in bulk materials
and model magnetic systems. Besides the academic interest,
quasi-one-dimensional compounds exist that can offer a plat-
form for obtaining spin currents besides the bulk materials that
are usually studied.

In the following, we first employ standard molecular dy-
namics (MD) simulations [18] to study the out-of-equilibrium
spin current generation by a thermal current in a magnetic
field. We find a sign reversal of the spin current at the critical
field between the antiferromagnetic and canted ferromagnetic
phase that we analyze by a simple spin-wave theory. The
divergence of the induced current at the spin-flop transition
could be observed in large spin quasi-one-dimensional spin
chain compounds. The picture of the far-out-of-equilibrium
spin Seebeck effect is corroborated by a simple spin-wave
phenomenological model and simulations in the linear re-
sponse regime.

II. MODEL

The model we study is the classical antiferromagnetic
Heisenberg chain with easy-axis anisotropy given by the
Hamiltonian

H =
L∑

l=1

J⊥
(
Sx

l Sx
l+1 + Sy

l Sy
l+1

) + �Sz
l Sz

l+1 − hSz
l , (1)
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where Sl is a unit vector with components Sx,y,z
l , J⊥ > 0

is the in-plane and � > 0 the easy-axis exchange inter-
actions with � > J⊥ and h the magnetic field. We will
use the common parametrization Sx

l = sin θl cos φl , Sy
l =

sin θl sin φl , Sz
l = cos θl .

The spin dynamics is given by Landau-Lifshitz equa-
tions of motion,

d

dt
Sl = Sl ×

(
−∂H

∂Sl

)
. (2)

To study far-out-of-equilibrium transport, we use a
straightforward numerical method, simulating the micro-
scopic heat transfer by embedding the spin system between
two Langevin thermostats at temperatures TL, TR, realized by
two Heisenberg chains of length NL, NR. We apply the Heun
method [18] to numerically integrate the stochastic version of
the Landau-Lifshitz-Gilbert equation for magnetic systems,

(1 + α2)
d

dt
Sl =Sl ×

(
ξl − ∂H

∂Sl

)
− αSl

[
Sl ×

(
ξl − ∂H

∂Sl

)]
,

(3)

where α is a damping coefficient and ξl a white Gaussian noise
representing the thermostat at temperature T ,

〈ξl (t )〉 = 0, 〈ξl (t1)ξk (t2)〉 = 2αT δlkδ(t1 − t2).

The spin JS and energy JE currents are given by the corre-
sponding spin and energy continuity equations [19,20],

JS =
∑

l

J⊥
(
Sx

l Sy
l+1 − Sy

l Sx
l+1

)
, (4)

JE = −
∑

l

J2
⊥
(
Sx

l−1Sz
l Sy

l+1 − Sy
l−1Sz

l Sx
l+1

)
− J⊥�Sz

l−1

(
Sx

l Sy
l+1 − Sy

l Sx
l+1

)
− J⊥�

(
Sx

l−1Sy
l − Sy

l−1Sx
l

)
Sz

l+1. (5)

We first establish the phase diagram, in the zero-
temperature limit, by considering the high-field region where
θl = θ, φl+1 − φl = π , obtaining, by minimization of the
energy,

Eferro = −J⊥ sin2 θ + � cos2 θ − h cos θ,

z ≡ cos θ = h

2(J⊥ + �)
. (6)

The critical field h f = 2(J⊥ + �) above which we have
the ferromagnetic phase is obtained setting z = 1. The critical
magnetic field hc, above which we have a canted ferromag-
netic phase and below an antiferromagnetic one with θl+1 −
θl = π , is obtained by equating the energies of the two states,

Eferro = Eafo = −�, hc = 2
√

�2 − J2
⊥.

III. MD RESULTS

In Fig. 1, we show the ratio of the mean spin current 〈JS〉
to the mean thermal current 〈JQ〉 = 〈JE 〉 − h〈JS〉. The mean
values, 〈O〉 = 1

L 〈∑l Ol〉, Ol a local quantity, are obtained
by averaging over about 108 samples by sweeping over all
lattice sites (we take NL = NR = L/2). The thermal current
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FIG. 1. Ratio of spin to thermal current as a function
of magnetic field for J⊥ = 0.8. The mean (TL + TR )/2
temperature is T = 0.02 and the system sizes L = 160
(blue), 320 (green), 640 (red), 1280 (black). Also shown below are
the mean magnetization (black line) and nearest-neighbor spin-spin
correlation (black triangles).

is induced by setting the left (right) baths at different tem-
peratures TL (TR), creating a constant temperature gradient
along the chain. In the middle of the chain (l = 1, L), the
damping coefficient α and the white Gaussian noise ξl are set
equal to zero. The mean temperature is T = 0.02, with up to
TL = 0.03, TR = 0.01. Here, J⊥ = 0.8 and we take � = 1 as
the unit of energies and temperature, implying critical fields
hc = 1.2, h f = 3.6.

Concerning the numerical simulation, we find that the re-
sults are essentially independent of the temperature gradient
within the accuracy of the simulation. The thermal gradient
induces a thermal current, which in turn induces a spin cur-
rent. Being a second-order effect, the measured spin current
shows rather large fluctuations in the data compared to the
thermal current. Thus we use relatively large temperature gra-
dients to improve the accuracy of the data. In the particular
simulations, we used, as baths, isotropic antiferromagnetic
Heisenberg chains (J⊥ = � = 1) in a zero magnetic field for
which the energy-temperature relation is known. However,
we found that the use of other baths, e.g., a ferromagnetic
chain or a phonon bath, does not qualitatively change the spin
current–thermal current relation.

The most notable feature in the data in Fig. 1 is the sharp
reversal of the spin current at the spin-flop transition (to be
discussed later in the framework of a spin-wave theory) and
the size dependence indicating a diverging spin current in
the zero-temperature limit. In the low-field antiferromagnetic
phase, the spin current is in the same direction as the thermal
current, while in the ferromagnetic one, it is opposite to the
thermal current. Of course, as expected, reversing the direc-
tion of the magnetic field reverses this relation. In the second
part of the figure (below), we show the magnetic field depen-
dence of the average magnetization 〈Sz〉 and nearest-neighbor
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FIG. 2. Ratio of spin to thermal current as a function of magnetic
field for J⊥ = 0.8. The mean (TL + TR )/2 temperature is T = 0.2 and
the system sizes L = 160 (blue), 320 (green), 640 (red). Also shown
below are the mean magnetization (black line) and nearest-neighbor
spin-spin correlation (black triangles).

spin correlation 〈Sz
l+1Sz

l 〉, clearly indicating the development
of the three magnetic phases.

In Fig. 2, we show the same quantities at a higher temper-
ature, where the transitions are smoothed out but the same
features remain. Also, the finite-size effects are reduced as
well as the ratio of the spin to thermal current, in relation to
the temperature increase.

In Fig. 3, we show the field dependence of the spin and
thermal conductivities separately. While the thermal current
shows anomalies at the spin-flop and ferromagnetic transition,
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FIG. 3. Spin and thermal conductivities as a function
of magnetic field for J⊥ = 0.8. The mean (TL + TR )/2
temperature is T = 0.02 and the system sizes L =
160 (blue), 320 (green), 640 (red), 1280 (black).
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FIG. 4. Ratio of spin to thermal current, magnetization, and
nearest-neighbor correlations as a function of temperature for a mag-
netic field h = 0.8 and L = 160.

the spin current is clearly responsible for the sign changes and
overall behavior shown in Fig. 1.

Finally, in Fig. 4, we show the temperature dependence
of the spin Seebeck effect by the ratio 〈JS〉/〈JQ〉 at h = 0.8.
In this field, we are at the antiferromagnetic regime at low
temperatures and the sign of the ratio is positive. Raising
the temperature, the antiferromagnetic phase “melts” with the
appearance of an increasing number of domain walls, until
a critical temperature T ∼ 1 where we observe a change to
a negative sign of the spin current, as in the ferromagnetic
regime. To get an insight into this picture, we show the tem-
perature dependence of the uniform magnetization, which is
rather small at this field, and the decreasing nearest-neighbor
antiferromagnetic spin-spin correlations.

IV. SPIN-WAVE ANALYSIS

We can reach an understanding of the spin current sign
reversal and divergence at the spin-flop transition by consid-
ering a simple linear spin-wave theory. First, in the high-field
|h| > hc canted ferromagnetic phase, linearizing in Sx

l , Sy
l the

equations of motion (2), we obtain

Ṡx
l = −Sy

l (2�z − h) + zJ⊥
(
Sy

l+1 + Sy
l−1

)
,

Ṡy
l = +Sx

l (2�z − h) − zJ⊥
(
Sx

l+1 + Sx
l−1

)]
(the dot indicating the time derivative). With the substitution

Sx
l ± iSy

l = uei(ql−ω±t ), (7)

we obtain the spin-wave spectrum,

ω± = ±h ∓ 2z(� − J⊥ cos q),

with positive eigenfrequencies,

ω = h
(

1 − � − J⊥ cos q

J⊥ + �

)
. (8)

Using Eqs. (4), (5), and (7), and by substituting the values
of Sx,y,z

l for a spin wave of wave vector q, we obtain, for the
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spin and thermal current per unit length,

js
q = J⊥u2 sin q,

jεq = = −2J⊥u2(J⊥ cos q − �)z sin q,

u2 = 1 − z2,

jQ
q = jεq − h js

q,

jQ
q = −

(J⊥(1 + cos q)

� + J⊥

)
h js

q.

Thus we see that in the high-field region, for h > 0 the spin
and thermal current have opposite sign, jQ

q > 0, js
q < 0 and,

of course, for h < 0, jQ
q > 0, js

q > 0.
In the low-field antiferromagnetic region, the equations of

motion are

Ṡx
2l = −Sy

2l

(
2�Sz

odd − h
) + Sz

evenJ⊥
(
Sy

2l+1 + Sy
2l−1

)
,

Ṡy
2l = +Sx

2l

(
2�Sz

odd − h
) − Sz

evenJ⊥
(
Sx

2l+1 + Sx
2l−1

)
,

Ṡx
2l+1 = −Sy

2l+1

(
2�Sz

even − h
) + Sz

oddJ⊥
(
Sy

2l + Sy
2l+2

)
,

Ṡy
2l+1 = +Sx

2l+1

(
2�Sz

even − h
) − Sz

oddJ⊥
(
Sx

2l + Sx
2l+2

)
,

with Sz
odd,even the alternating Sz component at the odd and even

sites. With the substitution

Sx
2l ± iSy

2l = u±eiq2l−ω±t ,

Sx
2l+1 ± iSy

2l+1 = v±eiq(2l+1)−ω±t ,

and taking, e.g., Sz
even = +1, Sz

odd = −1, we obtain the eigen-
value problem(±(2� + h) ±2J⊥ cos q

∓2J⊥ cos q ∓(2� − h)

)(
u±
v±

)
= ω±

(
u±
v±

)
,

for the frequency spectrum,

ω+± = +h ± 2
√

�2 − J2
⊥ cos2 q,

ω−± = −h ± 2
√

�2 − J2
⊥ cos2 q. (9)

The positive frequency dispersions are ω±+ = ±h +
hc

√
�2−J2

⊥ cos2 q
�2−J2

⊥
. The lower frequency dispersion ω−+ vanishes

as q → 0 at the critical field hc, signaling the spin-flop
transition.

Setting u− − = cos φ, v−= sin φ, tan φ=−�−
√

�2−J2
⊥ cos2 q

J⊥ cos q ,
we obtain the currents for the lower frequency dispersion,

js
q = −J⊥u−v− sin q = J⊥

J⊥ cos q

2�
sin q,

jεq = 1

2
J2
⊥(v2

− − u2
−) sin 2q

= 1

2
J2
⊥

√
�2 − J2

⊥ cos2 q

�
sin 2q,

jQ
q = js(hc

√
1 + J2

⊥(1 − cos2 q)

�2 − J2
⊥

− h),

js
q/ jQ

q > 0. (10)
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FIG. 5. Spin current to thermal current ratio and magnetization
as a function of magnetic field for J⊥ = 0.8. Average temperature
T = (TL + TR )/2 = 0.02.

For the higher frequency dispersion ω++, setting u+ =
cos φ, v+ = sin φ, tan φ = −�+

√
�2−J2

⊥ cos2 q
J⊥ cos q , we obtain the

currents

js
q = J⊥u+v+ sin q = −J⊥

J⊥ cos q

2�
sin q,

jεq = 1

2
J2
⊥(u2

+ − v2
+) sin 2q

= 1

2
J2
⊥

√
�2 − J2

⊥ cos2 q

�
sin 2q,

jQ
q = js(−2

√
�2 − J2

⊥ cos2 q − h),

js
q/ jQ

q < 0.

Thus, in the antiferromagnetic region, as observed in the
simulations above, for |h| < hc the spin and thermal current
of the dominating lower frequency dispersion spin waves have
the same sign, js

q/ jQ
q > 0. We can also get a hint of the

diverging behavior of 〈Js〉/〈JQ〉 for h → hc from Eq. (10) as
at low energies for q → 0, this ratio diverges.

V. “LANDAUER” APPROACH

The classical Heisenberg chain is a strongly interacting
model with nonlinear equations of motion describing the
spin dynamics. Therefore, we expect normal transport coef-
ficients [16], e.g., finite thermal and spin conductivity, due
to spin-wave–spin-wave scattering, although the anomalous
behavior of spin transport in the isotropic Heisenberg model
is presently the focus of many theoretical studies [17].

Nevertheless, for this open system with baths, we can ob-
tain a heuristic description, shown in Fig. 5, of the spin to
thermal current ratio over the whole phase diagram by consid-
ering a phenomenological “Landauer”-type model. This can
be justified by the low temperature in the simulations, which
implies a low spin-wave density.

Assuming that spin and energy currents are emitted at
the left-right leads at temperatures TL,R, (βL,R = 1/TL,R), we
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FIG. 6. Linear response coefficients as a function of magnetic
field at J⊥ = 0.8 for L = 160 (blue) and L = 320 (red) at temperature
T = 0.05.

obtain, for h < hc (antiferromagnetic region),

〈JS〉 =
∑
±

∫ +π/2

0

dq

2π

(
nL

±q − nR
±q

)
js
±q,

〈JQ〉 =
∑
±

∫ +π/2

0

dq

2π

(
nL

±q − nR
±q

)
jQ
±q,

summing the contributions over the positive frequency disper-
sions (9) with nL,R

±q = 1/(eβL,Rω±q − 1) (here we assume for
simplicity a bosonic thermal distribution function). Similar
expressions are obtained for h > hc summing over the positive
frequency dispersion (8).

VI. LINEAR RESPONSE

Last but not least, in linear response, the spin and thermal
currents are related by transport coefficients Ci j ,(

JQ

JS

)
=

(
CQQ CQS

CSQ CSS

)(−∇T
∇h

)
, (11)

where CQQ = κQQ (Css = σss) is the heat (spin) conductivity.
The coefficients Ci j are given by the thermal average of time-
dependent current-current correlation functions in a closed
system with periodic boundary conditions,

Ci, j = 1

L

∫ ∞

0
dt〈Ji(t )J j (t = 0)〉.

The time dependence is obtained by the same molecular
dynamics procedure (3) after equilibrating the system at a
given temperature and then switching off the thermal noise.
In Fig. 6, we show two situations: (i) a system with no spin
accumulation by setting ∇h = 0, relevant to an open system
and (ii) a system with no spin current, 〈JS〉 = 0, giving the
spin Seebeck coefficient S = ∇h

∇T = CSQ

CSS
. For the open sys-

tem, we find the same behavior of 〈JS〉/〈JQ〉 as in the MD
simulations.

VII. CONCLUSIONS

We have studied the spin Seebeck effect in the simplest
prototype classical easy-axis magnetic chain model by molec-
ular dynamics simulations and basic spin-wave theory. We
have found a sign change at the spin-flop transition and
clarified the role of spin-wave excitations in the low-field anti-
ferromagnetic phase as well as in the high-field ferromagnetic
phase. This classical model could be realized experimen-
tally in quasi-one-dimensional large spin compounds, but also
provides a guide to the spin Seebeck effect studied over
many years in bulk magnetic materials. The observations of
this study should be extended to quantum spin systems, as
the spin-1/2 easy-axis Heisenberg model, where the integra-
bility of the model [15] allows an exact evaluation of the
spin Seebeck coefficient. The scope is to assess the potential
of the large variety of spin chain materials for spintronic
applications.
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