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Spin dynamics in ordered phases of the anisotropic triangular-lattice antiferromagnet Cs2CoBr4
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We study spin dynamics of ordered phases of Cs2CoBr4 in a magnetic field using electron-spin resonance
(ESR) technique and theoretical analysis. This material hosts weakly interacting distorted-triangular-lattice
planes of spin- 3

2 Co2+ ions which can be viewed as spin chains coupled by frustrating interactions. Strong
single-ion anisotropy allows us to describe the low-energy spin dynamics of this system by an effective strongly
anisotropic pseudospin- 1

2 model. Our ESR data show up to seven branches of magnetic resonance in four mag-
netic phases arising due to subtle interplay of frustration, low dimensionality, and strong anisotropy. In particular,
in the low-field collinear stripe phase, the field evolution of modes lying below 200 GHz is described reasonably
well by spectra of spin-1 and spin-0 quasiparticles which we obtain using the bond-operator technique. These
well-defined excitations can be treated as conventional magnons and bound states of two magnons, respectively.
In contrast, numerous excitations lying above 200 GHz are not captured by our theory due to pronounced
one-dimensional correlations inside spin chains which govern the spin dynamics at high enough energies. As
was shown before, these modes can be most naturally interpreted as bound states of domain walls in individual
chains and their sequence resembles the so-called “Zeeman ladder” in anisotropic Ising-like spin chains. Thus,
Cs2CoBr4 is a system showing spin-dynamics in an ordered state characteristic of both two-dimensional and
one-dimensional magnets.

DOI: 10.1103/PhysRevB.108.184426

I. INTRODUCTION

In two-dimensional (2D) magnets, interplay of quantum
fluctuations, frustration, and anisotropy leads to a variety of
fascinating phenomena some of which are more characteris-
tic of one-dimensional (1D) systems [1,2]. Perhaps the most
famous recent example of this kind is the exactly solvable
Kitaev model in which three sorts of bond-dependent Ising
spin couplings result in spin-liquid phases with fractional spin
excitations [3].

Frustrated anisotropic quasi-2D systems can show char-
acteristic features of 1D magnets even in phases with
long-range magnetic order [2,4,5]. The prominent example
is Cs2CuCl4, demonstrating peculiar coexistence of two-
spinon continuum of spin- 1

2 antiferromagnetic chain and
quasi-2D magnons [5–7]. The latter live near the lower
edge of the spinon continuum and are captured quantita-
tively only in an appropriate 1D theory (in which they are
treated as bound states of two spinons) [5,8]. Cs2CuCl4 is
described by layered spin- 1

2 Heisenberg model with small
Dzyaloshinskii-Moriya and interplane interactions and with
spatially anisotropic exchange couplings within triangular
planes shown in Fig. 1(b). Due to the difference between
J and J ′ ≈ 0.3J , Cs2CuCl4 can be viewed as an array of
spin- 1

2 Heisenberg chains which are effectively decoupled
owing to frustrating character of J ′. Noteworthy, the 1D fea-
tures survive in the dynamics of this model up to quite large
J ′ ≈ 0.6J [9].

In the present paper, we address Cs2CoBr4 which is
isostructural to Cs2CuCl4 but which is much more anisotropic
due to large spin-orbit coupling in spin- 3

2 Co2+ ions. We show

that Cs2CoBr4 also combines both quasi-2D and quasi-1D
motives in its dynamics which, in contrast to Cs2CuCl4, are
characteristic of an anisotropic system.

Previous works on Cs2CoBr4 [10–12] revealed a long-
range three-dimensional (3D) stripe antiferromagnetic order
at zero field below the Néel temperature TN = 1.3 K with
two collinear magnetic sublattices parallel to b axis. There
are also several phase transitions upon increasing of the field
H directed along b axis: the stripe phase changes for the
spin-density wave (SDW) state, then a collinear three sublat-
tice up-up-down (UUD) phase occurs with 1/3-magnetization
plateau, then a paramagnet phase with unknown spin structure
was detected, and finally the fully saturated phase arises. Neu-
tron inelastic-scattering experiments [11] indicated at zero
field a magnon mode and a dispersive continuum above it
similar to that observed in Cs2CuCl4 [6]. However, more
precise neutron studies and terahertz spectroscopy [12] show
that instead of this continuum there is a sequence of at least
nine dispersive excitations reminiscent of Zeeman ladder (ZL)
in anisotropic weakly interacting Ising-like chains [13]. These
modes were interpreted as bound states of domain walls (kinks
or spinons) in individual chains confined by interplane cou-
pling [12]. It is well known that negative roots of the Airy
function describe energies of excitations at Brillouin zone
(BZ) center in ZLs [14,15]. It was confirmed experimen-
tally in CoNb2O6 [16], BaCo2V2O8 [17,18], and SrCo2V2O8

[19,20]. All modes energies observed in Cs2CoBr4 are also
quantitatively captured by roots of the Airy function except
for three lower excitations lying below 0.8 meV (200 GHz)
[12].
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FIG. 1. (a) Simplified schematic representation of the Cs2CoBr4

structure projected along the chain direction b. Dashed lines along a
and c axes highlight the unit cell. Black and gray dots indicate Co
atoms with crystallographic positions y = 1

4 b and y = 3
4 b, respec-

tively. Anisotropy axes and easy planes of Co2+ ions are shown;
β ≈ π/4. (b) Schematic picture of exchange paths in the bc plane
of Cs2CoBr4.

Thus, Cs2CoBr4 is an interesting system which combines
characteristic features of triangular-lattice antiferromagnets
(the UUD phase with the 1/3-magnetization plateau [21]) and
anisotropic quasi-1D magnets (SDW state and the ZL).

Notice that two-spinon bound states forming a ZL are
linear combinations of states created from the Néel state by
reversing several adjacent spins [13]. They carry spin 1 and 0
if the number of flipped spins is odd and even, respectively.
Spin-1 and spin-0 excitations appear in transverse and longi-
tudinal spin correlators, respectively. Compared with spin-1
ZLs, spectral weight of spin-0 ZLs is generally suppressed.
Then, spin-0 ZLs become apparent in neutron cross sec-
tion only in systems which are not very close to the Ising
limit [17]. For instance, both spin-1 and spin-0 ZLs shifted
relative to each other by energy were observed by unpolarized
neutrons in BaCo2V2O8 [17]. All states in a spin-1 ZL are
doubly degenerate by spin projection Sz = ±1 so that they are
split by magnetic field [18,19]. In contrast, weak H does not
approximately change spin-0 ZLs. Thus the magnetic field be-
havior of modes in the stripe phase of Cs2CoBr4 is important
for understanding of their nature.

In the present paper, we study magnetic-field behavior of
Cs2CoBr4 in all ordered phases by the ESR measurements up
to 250 GHz. Our data are complementary to previous neutron-
scattering and terahertz spectroscopy results of Refs. [10–12]
and they reveal a much richer zoo of excitations. In the stripe
phase, we find numerous weak excitations which cannot be
parts of a ZL according to their field evolution (all modes
are changed considerably by H but none of them is split
by H as a level in a spin-1 ZL). These excitations are de-
scribed in general by our theory based on the bond operator
technique (BOT) [22]. This method is similar in spirit to the

conventional spin-wave theory but it takes into account short-
range spin correlations more accurately. Besides, the BOT
provides an easy way to study “complex” excitations which
could appear in conventional approaches as bound states of
several number of magnons. We show by the BOT that the
brightest modes in the ESR spectra in the stripe phase cor-
respond to two spin-1 modes which behave in the field as
magnons in a quasi-2D antiferromagnet with two axes of
anisotropy. We identify also weaker ESR modes as well-
defined spin-0 excitations which are bound states of two
magnons. The main features of our ESR data and previous
inelastic neutron-scattering data [12] are reproduced quan-
titatively below 150 GHz using the BOT. In particular, we
describe quite accurately dispersion of two lower anomalies
in neutron data of Ref. [12] which correspond to the lower
magnon and to the lower two-magnon bound state (which are
not described by roots of the Airy function at the BZ center
[12]). Above 0.6 meV (≈150 GHz), our theoretical results
deviate from experimental data. We argue that this is due to
pronounced 1D correlations in the system at large energies
which cannot be captured by the BOT. Bearing in mind also
the successful attempt in Ref. [12] to identify the series of
anomalies at energy greater than 0.8 meV as a ZL, we state
that Cs2CoBr4 is a system whose spin dynamics combines
characteristic features of both quasi-2D (at low enough en-
ergy) and quasi-1D (at higher energy) strongly anisotropic
magnets.

The rest of the present paper is organized as follows:
Section II describes crystal structure and basic magnetic prop-
erties of Cs2CoBr4. We provide details of experimental setup
in Sec. III. Our experimental findings are discussed in Sec. IV.
We consider the theoretical model in Sec. V. Low-energy data
on neutron-scattering cross section observed at zero field in
Ref. [12] are described within our theory in Sec. VI. Sec-
tion VII contains our theoretical interpretation of ESR spectra
observed in the stripe, the UUD, and the saturated phases.
A detailed overview of all our results and conclusion can
be found in Sec. VIII. Details of the theory are described in
Appendixes A and B.

II. CRYSTAL STRUCTURE
AND MAGNETIC INTERACTIONS

The orthorhombic structure of Cs2CoBr4 corresponds to
the space group Pnma with lattice parameters a = 10.19 Å,
b = 7.73 Å, c = 13.51 Å obtained at room temperature [10].
The main building blocks in the crystal are CoBr4 distorted
tetrahedra containing spin- 3

2 Co2+ ions arranged in a layered
lattice with triangular bc planes (which can also be viewed as
an array of chains passing along b axis as in Cs2CuCl4). There
are four tetrahedra in a crystallographic unit cell, and they are
related to each other by mirror reflections in the ab and bc
planes (two tetrahedra in each layer within a unit cell). An
effective scheme of the exchange network is shown in Fig. 1
(a detailed sketch of the crystal structure is presented, e.g., in
Fig. 1 of Ref. [10]). The spin-orbit interaction in Co2+ ions
results in a strong easy-plane single-ion anisotropy with the
energy parameter D ≈ 12 K which exceeds much the intra-
and interchain exchange couplings J and J ′ ≈ 0.45J [see
Fig. 1(b)] [10–12]. The easy planes are almost perpendicular
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to each other in two couples of Co2+ ions in a unit cell and
they intersect along a line parallel to b [see Fig. 1(a)]. These
two anisotropies on neighboring chains effectively merge into
a resultant anisotropy with easy b axis so that Cs2CoBr4

largely behaves as an axial magnet [10]. The orthorhom-
bic symmetry does not exclude also the second axis of the
anisotropy. Due to the large single-ion anisotropy D, one-ion
doublets | ± 1

2 〉 and | ± 3
2 〉 are separated by the energy 2D

so that the consideration of the low-energy dynamics can be
performed in terms of a pseudospin- 1

2 model [10–12].

III. EXPERIMENT

The magnetic resonance signals were recorded at the
fixed frequency as field dependencies of the transmitted mi-
crowave power in the frequency range 25–250 GHz using
a multimode microwave cylindrical resonators of home-
made transmission-type ESR spectrometers. The latter are
equipped with cryomagnets and 3He pump cryostat provid-
ing temperatures down to 0.45 K and autonomous dilution
microrefrigerator providing a temperature of 0.1 K [23]. The
sample was fixed by the Apiezon grease inside the copper res-
onator and placed at the maximum of the microwave magnetic
field of the TE012 mode with the frequency 35 GHz. A small
amount of 2,2-diphenyl-1-picrylhydrazyl (known as DPPH)
was used as a g = 2.00 marker and placed near the crystal
sample. The Cs2CoBr4 samples studied here were from the
same batch as in Refs. [10–12]. We used samples of different
size with the mass varied from 3 to 15 mg. The sample size
was chosen to be small enough to avoid parasitic size-effects
resulting in electrodynamic resonances of samples at a given
frequency. The accuracy of the orientation of a crystal with
respect to the magnetic field was checked by the x-ray diffrac-
tometer with the accuracy of about 2◦.

IV. EXPERIMENTAL RESULTS

In the low-temperature range T < 1 K our observations
reveal in Cs2CoBr4 a multimode ESR spectrum of ordered
ground states at H‖b. In the low-field collinear antiferromag-
netic phase we see up to seven resonance modes at a constant
field. Figure 2 illustrates the general view of spin-resonances
observed at low temperature and their temperature evolution.
Records of 26.11 GHz ESR lines are presented in Fig. 2
taken at H‖b and various temperatures. At low temperature
T = 0.5 K, one can see several intensive ESR absorption lines
as well as many lines of much lower intensity. Besides, a
wide range of absorption is also observable between fields
4.2 and 5.2 T. Above the Néel temperature, a system of
wide resonances appears instead of sharp resonances, which is
described separately in Ref. [24]. Exploring a dense set of fre-
quencies we follow the field dependencies of all these modes
and find the limiting fields of their existence (see examples
of ESR records on different frequencies in Fig. 3). In Fig. 3,
the intensive modes are indicated by letters l (already shown
in Fig. 2), d , g, o, and s. Modes d , g belong to the collinear
antiferromagnetic phase, modes l , o exist in the UUD phase,
mode s is observed in the paramagnet and saturated phases.
ESR lines of much lower intensity are indicated in Figs. 2 and
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FIG. 2. Temperature evolution of 26.11 GHz ESR lines in
Cs2CoBr4 at H‖b. Letters indicate modes whose frequencies are
displayed on the frequency-field diagram in Fig. 5. Vertical dashed
blue lines denote phase boundaries (see the text)

3 as a, b, c, j, k, m, n, u, v, and w. Taking the records on differ-
ent frequencies, we follow the frequency-field dependencies
of all these resonance lines. An example of observation of
weak modes a, b, and c is shown in Fig. 4. The total number
of frequencies for which the records were done is about 60
in the range 26–245 GHz. The frequency-field dependencies
are shown in Fig. 5. The data corresponding to more intensive
lines are presented by closed symbols while weak resonances
are denoted by open symbols or crosses. The intensive and
weak modes were distinguished by a rough criterion: integral
intensities of “intensive” and “weak” modes differ by more
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FIG. 3. ESR lines of Cs2CoBr4 at H‖b at various frequencies
and at T = 0.5 K. Letters indicate modes whose frequencies are
displayed in the frequency-field diagram in Fig. 5. Vertical dashed
blue lines denote phase boundaries (see the text).

then three times. The resonance fields are deduced as the
field of local maximum absorption for intensive modes. For
weak modes, the resonance fields are deduced as a field of
the maximum deviation from the smooth interpolation of the

FIG. 4. Fragments of two ESR records in Cs2CoBr4 at H‖b and
T = 0.5 K demonstrating weak modes a, b, and c. Letters indicate
modes whose frequencies are displayed on the frequency-field dia-
gram in Fig. 5.

record. Because the resonance lines are quite narrow, the error
in resonance field value does not exceed the size of symbols
in Fig. 5. The most intensive ESR line d has zero-field fre-
quency of 95 ± 1 GHz and demonstrates a tendency to fall
to zero frequency with the field increasing, which, however
is broken by a phase transition to spin-density wave phase at
H = 1.4 T. This line has a weak lower frequency satellites
a, b, c with a similar falling frequency-field dependencies.
The field ranges of observed resonance modes correlate well
with the phase boundaries, determined using specific heat and
torque measurements in Ref. [10]. Indeed, we observe breaks
and discontinuities of frequency-field dependencies of modes
at the phase boundaries at H = 1.38 ± 0.02 T between the
stripe collinear and the spin-density wave phases, at H =
2.74 ± 0.03 T between the spin-density wave and the UUD
phases, and at H = 3.6 ± 0.02 T between the UUD-phase and
the paramagnet phases observed in Ref. [10] (see Fig. 5).

We have been looking also for the low-temperature phase
which is reported in Ref. [11] below 0.25 K in magnetic
field between 4 and 6.25 T. We probed it with 34.04 GHz
microwaves at T = 0.1 K. The record of this signal together
with the record taken at T = 0.6 K is presented in Fig. 6. We
see that the low-temperature curve demonstrates a wide band
of additional absorption between fields of 4 and 5.5 T, which
correspond to phases “D” and “E” found in Ref. [10].

Similar to the H–T phase diagram, the ESR spectrum of
Cs2CoBr4 in ordered states appears to be strongly anisotropic.
ESR lines and frequency-field diagram for H‖c are shown in
Figs. 7 and 8, respectively. We see that the most intensive
branch has the same zero-field frequency 95 GHz as for H‖b.
A variety of resonance modes is observed in a field range
below 5 T, while near the saturation (i.e., in the phase F′′) there
is only resonance mode B to which mode C is added in the sat-
urated phase. Kinks in the transmission records at 73.82 GHz
and 50.46 GHz indicate a phase transition at 5.05 ± 0.03 T
from distorted collinear phase to state F′′ (notation of phase is
from Ref. [10]).
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FIG. 5. ESR frequency-field diagram at H‖b and T = 0.5 K. Letters denote those modes which are indicated in Figs. 2–4. Vertical
dashed lines mark fields of phase transitions determined by steps on transmission records in Fig. 3. Gray vertical line denotes the field of
the crossover to a pseudospin-saturated phase according to Ref. [10]. Solid and dashed curves show theoretically found spectra of spin-1
and spin-0 quasiparticles, respectively. Curves widths are proportional to spectral weights of corresponding poles in the transverse and in the
longitudinal dynamical structure factors Imχ⊥(0, ω) and Imχ‖(0, ω) [see Eqs. (5) and (6)].

V. MODEL AND THEORETICAL TECHNIQUE

It is believed that Cs2CoBr4 is described at H‖b by the
following spin-3/2 Hamiltonian [10,11]:

H =
∑
i, j

{
D

[(
Sx

2i, j

)2 + (
Sy

2i+1, j

)2] + J (Si, jSi, j+1)

+ A1Sz
i, jS

z
i, j+1 + J ′(Si, jSi+1, j + Si, jSi+1, j−1

)
− A2

(
Sz

i, jS
z
i+1, j + Sz

i, jS
z
i+1, j−1

)} − gzμBH
∑
i, j

Sz
i, j,

(1)
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FIG. 6. ESR lines of Cs2CoBr4 at 34.04 GHz, at H‖b and at two
temperatures T = 0.6 K and 0.1 K. Boundaries of phases D and E
are taken from Ref. [10] (see the text).

where Si, j is the jth spin in the ith chain passing along b axis
[see Fig. 1(b)], J > 0 and J ′ > 0 are intra- and interchain ex-
change coupling constants, respectively, A1 � J and A2 � J ′
are small anisotropies, D 	 J, J ′ is the easy-plane anisotropy,
a small interaction between triangular planes is omitted, z and
b axes are parallel to each other, x and y axes are mutually
orthogonal and they are parallel to hard axes in neighboring
chains shown in Fig. 1(a). Notice that the easy plane alternates
from chain to chain between xz and yz planes. It was pro-
posed in Refs. [10,11] based on the linear spin-wave theory
and a mean-field analysis that D ≈ 1.2 meV, J ≈ 0.2 meV,
J ′ ≈ 0.4J , and A1 ≈ 0.1J

In the local coordinate frame in which the quantized axis
is directed perpendicular to the easy plane, the lower doublet
|±1/2〉 of each spin is separated considerably from the upper
doublet |±3/2〉 due to large D. This allows us to discuss
the low-energy dynamics on a simpler model by introducing
pseudospin- 1

2 si, j at each lattice site which describes the lower
doublet |±1/2〉. The transition from spins to pseudospins can
be made according to the rule which readily follows from
comparison of matrix elements of spin operators 1/2 and 3/2:

Sx
2i, j 
→ sx

2i, j, Sy
2i, j 
→ 2sy

2i, j, Sz
2i, j 
→ 2sz

2i, j,

Sx
2i+1, j 
→ 2sx

2i+1, j, Sy
2i+1, j 
→ sy

2i+1, j, Sz
2i+1, j 
→ 2sz

2i+1, j .

(2)

As a result, one comes from Eq. (1) to the following
pseudospin-1/2 Hamiltonian:

Hps =
∑
i, j

[
4J (s2i, js2i, j+1) − 3Jsx

2i, j s
x
2i, j+1

+ 4J (s2i+1, js2i+1, j+1) − 3Jsy
2i+1, j s

y
2i+1, j+1

FIG. 7. ESR lines of Cs2CoBr4 at H‖c, at various frequencies,
and at T = 0.5 K. Letters indicate modes whose frequencies are
displayed on the frequency-field diagram in Fig. 8. Thick dashed
vertical lines show boundaries of phase “F” according to Ref. [10].

+ 4A1sz
i, j s

z
i, j+1 + 2J ′(si, jsi+1, j )

+ 2J ′(si, jsi+1, j−1) + (2J ′ − 4A2)sz
i, j s

z
i+1, j

+ (2J ′ − 4A2)sz
i, j s

z
i+1, j−1

] − 2gzμBH
∑
i, j

sz
i, j . (3)
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FIG. 8. Frequency-field diagram of Cs2CoBr4 at H‖c and at
T = 0.5 K. Intensive and weak lines are marked by closed and open
symbols, respectively. Vertical dashed lines are phase boundaries
between the distorted collinear state and a phase with unknown prop-
erties denoted as “F” in Ref. [10]. Lines connecting experimental
points are guides to the eye.

As we find theoretically and as it was observed before
experimentally [10–12], due to anisotropic spin interactions,
model (3) shows the stripe and the UUD collinear phases
at small fields with sublattices magnetizations directed along
the z axis and with gapped spectra. If Hamiltonian (3) was
invariant with respect to rotation around the z axis, all system
states would be characterized by projection of the total spin
Sz. In particular, there would be magnetization plateaus in the
stripe and in the UUD phases, all excitations could be charac-
terized by their Sz values (e.g., spin-0, spin-1 excitations), and
poles of transverse and longitudinal (with respect to the z axis)
dynamical spin susceptibilities would be determined only by
spin-1 and spin-0 quasiparticles, respectively. But, formally,
Hamiltonian (3) is not invariant with respect to rotation around
z axis due to the sxsx and sysy terms (i.e., due to two types
of chains). However, it was observed experimentally [10] and
theoretically (see Sec. VII) that magnetization plateaus in the
stripe and in the UUD phases do exist and our calculations
do demonstrate the decoupling of the longitudinal and the
transverse channels. This interesting situation arises in this
model due to an effective merging of sxsx and sysy terms on
neighboring chains into a single “mean” anisotropy with the z
easy axis.

We calculate below dynamical spin susceptibilities

χαβ (k, ω) = i
∫ ∞

0
dteiωt

〈[
Sα

k (t ), Sβ

−k(0)
]〉
, (4)

χ‖(k, ω) = χzz(k, ω), (5)

χ⊥(k, ω) = χxx(k, ω) + χyy(k, ω) (6)

in model (3) using relation (2) and describe our ESR and
previous inelastic neutron-scattering data [12]. We use in our
calculations the bond-operator technique (BOT) proposed in
Ref. [22], which is discussed in some detail in Appendix A.
The main idea of the BOT is to take into account all spin
degrees of freedom in the (extended) magnetic unit cell
containing several spin 1/2 by building a bosonic spin repre-
sentation reproducing the spin commutation algebra. Because
BOT operates with excited states of the whole unit cell, it
provides an easy way to study not only ordinary quasiparticles
(magnons) but also “complex” excitations which could appear
in conventional approaches as bound states of several number
of magnons. In particular, in collinear stripe and UUD phases,
low-energy poles of χ⊥(k, ω) and χ‖(k, ω) determine spectra
of spin-1 (magnons) and spin-0 (bound states of two magnons)
quasiparticles, respectively, which we find below.

We have achieved the best fit of previously obtained neu-
tron data [12] at H = 0 (see Sec. VI) and our ESR spectra
(see Sec. VII) with the following parameters in pseudospin
model (3):

J = 0.165 meV, A1 = 0.34J,

J ′ = 0.45J, A2 = 0.1J ′. (7)

We assume also that the g-tensor is diagonal and has compo-
nents gx = 2.37(1), gy = 2.42(1), and gz = 2.47(2) [10]. As
compared with previous considerations of Cs2CoBr4 using the
linear spin-wave theory (SWT) and the mean-field approach
[10–12], we have increased A1 by 3.4 times, slightly reduced
J , and introduced small A2.

VI. THEORETICAL DESCRIPTION OF PREVIOUS
NEUTRON DATA AT H = 0

We calculate first the neutron-scattering cross section at
zero field to describe neutron data obtained in Ref. [12].
Some technical details of this consideration can be found in
Appendix B.

It is argued in Ref. [12] that chains are effectively de-
coupled in the mean-field-RPA approximation at momenta
with kb = 0, π due to frustration inherent to triangular-lattice
antiferromagnets. As a result, a sequence of at least nine peaks
appears in the neutron cross section at k = (0, 1/2, 1/2)
whose intensity decrease upon the energy increasing (see
Fig. 9). These peaks are interpreted in Ref. [12] as a signature
of bound states of domain walls inside the effectively isolated
chains having strong easy-axis anisotropy (reminiscent of ZLs
in quasi-1D Ising-like systems [13]). The attraction between
domain walls stabilizing the bound states is attributed to small
interplane interaction which is neglected in our theoretical
consideration. It should be noted that three lower peaks are
not described accurately enough within this line of arguments
[see Fig. 1(d) in Ref. [12]].

We demonstrate now that the BOT describes well two
lower peaks. Besides, the BOT shows that these peaks cor-
respond to spin-1 and spin-0 excitations which cannot be
a part of the same ZL. Notice that both spin-1 and spin-0
quasiparticles are probed in Ref. [12] by unpolarized neutrons
whose cross section is a mixture of longitudinal and transverse
dynamical structure factors (DSFs) [25] [see also Eq. (B3)].
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FIG. 9. Inelastic neutron-scattering data at k = (0, 0.5, 0.5) in
zero field taken from Fig. 1(a) of Ref. [12] and dynamical structure
factor (DSF) (B3) calculated within the BOT in the first order in 1/n
(see Appendix A) with (a) plaquette-like and (b) chain-like unit cells
shown in insets (where lattice sites belonging to two collinear sub-
lattices are distinguished by color). Theoretical results are integrated
in the interval (−5, 5) of the momentum component perpendicular to
triangular planes while experimental data are “fully integrated” along
that direction [12]. Theoretical results are convoluted with the experi-
mental energy resolution of 0.02 meV. Dashed and solid vertical lines
mark positions of peaks obtained theoretically in the longitudinal and
transverse DSFs, respectively (i.e., energies of well-defined spin-0
and spin-1 excitations). Spin-1 and spin-0 excitations marked as T1,
T2 and L1, L2 are discussed in detail in the text.

The THz spectroscopy used in Ref. [12] also probed both the
longitudinal and the transverse channels because the unpolar-
ized radiation propagated along the crystallographic c axis in
that experiment.

Results of our calculations within the BOT are also pre-
sented in Figs. 9(a) and 9(b) for two types of unit cells: the
plaquette-like unit cell containing two couples of spins from
neighboring chains and the chain-like unit cell with four spins

from the same chain (see insets in Fig. 9). Dashed and solid
vertical lines mark positions of peaks obtained theoretically
in the longitudinal and transverse DSFs, respectively. Due to
the large anisotropy producing large gaps in all spectra of
excitations, all the observed quasiparticles are well defined.
It is easy to ascertain within the BOT what kind of excitation
of the unit cell describes each boson (at least in the harmonic
approximation) [22,26,27]. Spin-1 and spin-0 quasiparticles
marked as T1 and L1 in both Figs. 9(a) and 9(b) correspond to a
single spin flip and to flips of two neighboring spins inside the
same chain, respectively. Notice that anomalies corresponding
to these quasiparticles describe well experimental data in both
versions of the BOT. Then, it can be said that T1 is a conven-
tional magnon (which was also obtained within the SWT in
Ref. [11]) and L1 is a two-magnon bound state.

Elementary excitation marked as T2 in Fig. 9 is also built
on single spin flips but the inclusion is also significant of spin
flips of three neighboring spins inside the same chain which
are taken into account more accurately in the chain-like ge-
ometry of the BOT. That is why the position and the height of
the anomaly corresponding to T2 differ noticeably in Figs. 9(a)
and 9(b). Then, one concludes that in-chain spin correlations
have a considerable impact on T2 excitation.

Spin-0 quasiparticle L2 denoted in Figs. 9(a) corresponds
to flipping of two nearest spins in neighboring chains. Its
spectral weight is very small (that is why it is invisible in the
neutron data) and it appears only in the version of the BOT
with the plaquette-like unit cell. In the “chain” geometry, it
could appear only as a bound state of other bosons introduced
in this version of the BOT (which we do not consider here).
Then, the existence of this excitation which is not a free-
chain-like quasiparticle enriches the dynamical properties of
the considered system. The tiny spectral weight of this spin-0
quasiparticle can be increased in Cs2CoBr4 by a small spin in-
teraction not taken into account in the considered model which
mixes longitudinal and the transverse channels (e.g., small
Dzyaloshinsky-Moria interaction, some other anisotropy, or
an accidental small magnetic field component transverse to
b axis).

It is seen from Fig. 9 that the BOT is unable to describe
quantitatively other small anomalies seen in neutron data at
ω > 0.6 meV. This is an additional indication that profound
one-dimensional correlations are responsible for their proper-
ties as it is proposed in Ref. [12].

It is demonstrated in Appendix B that our calculations
reproduce also anomalies in neutron intensities produced by
two lower quasiparticles (marked T1 and L1 in Fig. 9) in other
parts of the BZ (see Fig. 10).

We demonstrate below that all quasiparticles just discussed
(i.e., T1, T2 and L1, L2) are observed also in our ESR experi-
ment in the stripe phase at finite field. Besides, we obtain also
low-intensive excitations looking as close satellites of T1, T2,
and L1 which are indistinguishable in Fig. 9 and which are not
mentioned in this section.

VII. THEORETICAL DESCRIPTION OF ESR RESULTS
AT H‖b AND DISCUSSION

We find using the BOT that the ground state of model
(3) with parameters (7) obeys the stripe and the UUD spin
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FIG. 10. (a)–(f) Dynamical structure factor (DSF) Stot (k, ω) given by Eq. (B3) and calculated within the BOT to first order in 1/n with
the plaquette-like unit cell at selected momenta. Contributions to Stot (k, ω) of transverse S⊥(k, ω) and longitudinal S‖(k, ω) DSFs are also
shown. The neutron cross section is integrated in the interval (−5, 5) of the momentum component perpendicular to triangular planes. Dashed
and solid vertical lines mark positions of peaks obtained theoretically in the longitudinal and transverse DSFs, respectively (i.e., energies of
well-defined spin-0 and spin-1 excitations denoted as L1 and T1 in Fig. 9). Theoretical results are convoluted with the energy resolution of
0.02 meV [inherent to the experimental data presented in Fig. 3(a) of Ref. [12] ]. The maxima of Stot (k, ω), the shape of its ω dependence
and the integral intensity correspond well to the experimental data in Fig. 3(a) of Ref. [12], where a false color plot is presented of the
neutron-scattering intensity.

orderings within experimentally found boundaries of these
phases. The longitudinal magnetization is obtained to be equal
to zero and Ms/3 in these two states, respectively, where
Ms is the saturation magnetization [28]. It is difficult to dis-
cuss within the BOT transitions to the SDW phase from
the stripe and from the UUD states because the SDW has
an incommensurate ordering and because these transitions
are of the first-order type, as our ESR measurements indi-
cate. We find that the transition from the UUD state to the
paramagnet phase takes place near 4 T (in agreement with
experiment) as a result of a “condensation” of the lower
magnon mode at an incommensurate momentum. The tran-
sition from the saturated state (in which all pseudospins are
oriented along the field) to the paramagnet one occurs upon
“condensation” of spin-2 excitations. However, the spectrum
of spin-2 excitations acquires great renormalization to first
order in 1/n (see Appendix A) within the BOT that makes
our technique unsuitable for discussion of this phase tran-
sition (one has to go beyond first order in 1/n, which is
a difficult task). Then, we do not consider theoretically in
detail phase transitions (and do not determine boundaries of
phases) and focus on spectra inside the stripe, the UUD, and
the saturated phases within their experimentally determined
boundaries.

A. Stripe phase

Both transverse and longitudinal polarizations of mi-
crowave field with respect to the external field are present in
our ESR experiment because the sample size is comparable to
the length of the electromagnetic wave. That is why both spin-
0 and spin-1 excitations can appear in our ESR measurements.
In addition, spin-0 excitations from the longitudinal channel
can arise in our experiment also due to a small anisotropic in-
teraction and/or a small transverse magnetic field component.

We plot in Fig. 5 the theoretical spectra at k = 0 of spin-1
and spin-0 quasiparticles by solid and dashed lines, respec-
tively, which we obtain within the four-spin BOT with the
plaquette-like unit cell. Spin-1 modes are denoted T1, T2, T1s,
T2s and spin-0 excitations are denoted L1, L2, L1s. Linewidths
in Fig. 5 are proportional to the spectral weights of the cor-
responding poles in the transverse and in the longitudinal
dynamical structure factors Imχ⊥(0, ω) and Imχ‖(0, ω) [see
Eqs. (5) and (6)].

It is seen from Fig. 5 that lines T1, T2, and L1 obtained
within the BOT have much less intense satellites T1s, T2s,
and L1s. The origin of satellites of two spin-1 excitations can
be explained as follows: Notice first that T1 and T2 excita-
tions correspond to magnons which appear also within the
linear SWT [as in Ref. [11] considering model (3)], where
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they are both doubly degenerate due to four spins in the
magnetic unit cell. These spin-1 lines are split by quantum
fluctuations within the BOT resulting in T1s and T2s satellites.
Such modes splitting was observed by the BOT also in other
models [26,29] (the splitting of magnon spectrum obtained
in Ref. [26] at point M of the BZ in the triangular-lattice
Heisenberg model is in agreement with experiment).

Notice that the crystallographic momentum (0, 1/2, 1/2)
discussed above in the neutron experiment corresponds to
(0,1,1) momentum (which, in turn, is equivalent to k = 0) in
the considered BOT with the plaquette-like unit cell. That is
why modes T1, T2 and L1, L2 are the same in Figs. 5 and 9.
Weak satellites T1s and T2s predicted by the BOT are too close
to the intense T1, T2 to be resolved in the neutron experiment
at H = 0.

It is seen from Figs. 9 and 10 that T1 and L1 excitations
observed in the BOT describe quite accurately two lower neu-
tron anomalies and modes d and e in the ESR data in Fig. 5.
However, the lower strong signal d obtained experimentally
has three less intense satellites a, b, and c instead of one
T1s predicted by the theory. We have no explanation for this
discrepancy at the moment. Extra satellites may be a result of
small spin interactions not included in our model. It is also
seen from Fig. 5 that weak satellite mode L1s is not detected
experimentally.

The upper intense spin-1 mode shown in Fig. 5 corresponds
to the T2 quasiparticle in Fig. 9. As discussed above, the
spectrum of this mode is renormalized downward consider-
ably by strong in-chain spin fluctuations which are not taken
into account properly to first order in 1/n in the version of
the BOT with plaquette-like unit cell. At H = 0, the down-
ward renormalization arises from 0.84 meV ≈ 203 GHz to
0.72 meV ≈ 174 GHz (see Fig. 9). A simple shift down of
the T2 curve by the same 30 GHz brings it quite close to the g
mode observed in the ESR experiment (see Fig. 5). Then, we
relate mode g to T2.

The upper spin-0 mode in Fig. 5 corresponds to the L2

elementary excitation in Fig. 9(a) (i.e., to the bound state of
two magnons in neighboring chains). It is seen from Fig. 5
that its spectrum is very close below 150 GHz to weak f mode
observed experimentally.

It should be noted also that, despite a first-glance chaotic
variety of ESR modes, two bright branches d and g going
down and up upon the field increasing are similar to the spec-
trum of a collinear antiferromagnet in magnetic field directed
along its easy axis. The falling branch of the conventional
antiferromagnet should soften at the spin-flop field. However,
the spin-flop transition does not occur in Cs2CoBr4 because of
the earlier transition to the SDW phase. This results in a finite
frequency of mode d at the right boundary of the stripe phase
in Fig. 5. In the conventional antiferromagnet with two axes of
anisotropy, the rising and falling antiferromagnetic resonance
branches have different frequencies at zero field. We observe
this difference of d and g modes at H = 0 in Cs2CoBr4 which
have frequencies of 95 and 160 GHz, respectively. SWT [11]
and BOT reproduce this splitting which is a result of the
chain-alternating easy-plane anisotropy in the model.

To conclude, the multimode ESR spectra of Cs2CoBr4 are
well described in the stripe phase by model (1) using the
BOT. Of the eight observed modes, two bright and three weak

modes are captured by the theory. Only very weak anomalies
a, b, and u remain unexplained. We demonstrate that the
uniform dynamics (at k = 0) of Cs2CoBr4 is not limited to
in-chain excitations. The quantitative agreement between our
theoretical and experimental findings is not satisfactory above
≈150 GHz ≈ 0.6 meV (see Figs. 5 and 9) due to pronounced
in-chain spin correlations which cannot be properly taken into
account within the first order in 1/n of the BOT (see also
Sec. VI).

B. UUD phase

We consider elementary excitations in the UUD phase
within the three-spin variant of the BOT as in Ref. [27],
where triangular-lattice Heisenberg antiferromagnet in mag-
netic field was discussed. The results obtained are depicted in
Fig. 5. It is seen that the theoretically found T3 quasiparticle
carrying spin 1 describes well the brightest lower mode l
while we do not observe theoretically its three low-intensity
satellites (k, m, and n modes). The splitting of l mode and the
appearance of satellites might be again due to small spin inter-
actions not taken into account [for instance, small interplane
interaction is known to produce a mode splitting in triangular-
lattice antiferromagnet RbFe(MoO4)2 [30] ]. The spectrum of
the lower spin-0 excitation L3 obtained in the BOT does not
practically depend on H so that it is very difficult to observe
it using the ESR technique. Such spin-0 quasiparticles lying
below magnon modes were found also in Ref. [27] in the UUD
state of the triangular-lattice Heisenberg antiferromagnet.

The mode o obtained experimentally and shown in Fig. 5
is described well (with 15% accuracy) by the T4 excitation
found theoretically. Similar to the stripe phase, there is no
good quantitative agreement between our theoretical and ex-
perimental findings above ≈150 GHz (see Fig. 5).

Notice that the observed field behavior of the low-lying
spin-1 modes l and o (T3 and T4) reproduces qualitatively
the field evolution of two lower magnons in the triangular-
lattice Heisenberg antiferromagnet in the UUD phase [21]:
one branch falls to zero at the right boundary of the UUD
phase while another branch rises monotonically from the left
limit of the UUD range.

C. Saturated phase

The saturated phase in which all pseudospins are oriented
along the magnetic field has been considered using the four-
spin variant of the BOT with the plaquette-like unit cell. It is
seen from Fig. 5 that spectra of lower spin-1 quasiparticles
(denoted T6 and T7) describe reasonably well the w and p
modes observed experimentally. We obtain also a high-energy
bright spin-1 excitation (corresponding to the experimentally
found mode s in Fig. 5) and much weaker spin-2 quasiparti-
cles around it which correspond presumably to experimentally
found modes t and q in Fig. 5. However, our theory overesti-
mates the energies of the s, t , and q modes by more than 40%
(so that we do not show the corresponding theoretical lines in
Fig. 5). We attribute this discrepancy, in particular, to the need
to take into account the omitted |±3/2〉 one-ion states which
come into play at energies �250 GHz.
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Interestingly, there is also another low-lying spin-2 excita-
tion (which can appear in common methods as a two-magnon
bound state) whose energy, however, is renormalized down-
ward considerably by the first 1/n corrections. This is an
indication that one needs to go beyond the first order in 1/n
to obtain this spectrum accurately (that is out of the scope of
the present work). We do not show the spectrum of this spin-2
quasiparticle in Fig. 5.

D. Spin-density wave and paramagnet phase

The theoretical interpretation of ESR data in the SDW and
in the paramagnet phases is out of the scope of the present
paper.

VIII. SUMMARY AND CONCLUSION

To summarize, we discuss the ground-state spin dynamics
of strongly anisotropic distorted-triangular-lattice antiferro-
magnet Cs2CoBr4 by ESR measurements up to 250 GHz
and present a theoretical analysis. In this compound, the
interplay of frustration, quantum fluctuations, low dimen-
sionality, and strong anisotropy gives rise to at least six
phases in different orientations of magnetic field H [10,11].
Among them are states which are characteristic to 3D
antiferromagnets (collinear stripe state), quasi-1D magnets
[collinear incommensurate spin-density-wave (SDW) phase],
and triangular-lattice antiferromagnets [up-up-down (UUD)
state with 1/3-magnetization plateau]. We observe by the
ESR a rich zoo of excitations in phases arising in H directed
along and perpendicular to the magnetic easy axis b which are
collected in Figs. 5 and 8.

Due to strong single-ion anisotropy in spin- 3
2 Co2+ ions,

the low-energy spin dynamics of Cs2CoBr4 which is mod-
eled by Hamiltonian (1) can be described by a strongly
anisotropic pseudospin- 1

2 Hamiltonian (3) [10,11]. Owing to
spatial anisotropy of exchange couplings, models (1) and (3)
can be also viewed as spin chains passing along the b axis.
There are two types of chains in which easy-plane anisotropies
are almost perpendicular to each other and they intersect along
the b axis (see Fig. 1). This makes the b axis the easy direction
of the whole system. We consider model (3) theoretically
using the bond operator technique (BOT) described in some
detail in Appendix A and which is similar in spirit to the
well-known spin-wave theory (SWT). However the BOT is
more convenient in discussion of “complex” excitations which
appear in other approaches as bound states of ordinary quasi-
particles (magnons or triplons) [22,26,27,29,31].

In the low-field collinear two-sublattice stripe state at H‖b,
the number of modes which we observe using the ESR ex-
ceeds essentially the set of magnetic resonance modes of a
conventional antiferromagnet (see Fig. 5). However, many of
these excitations are described using the BOT with model
parameters (7). Spectra of spin-1 (magnons) and spin-0 (two-
magnon bound states) quasiparticles obtained theoretically are
also shown in Fig. 5. We demonstrate that the d and g ESR
signals are described by spin-1 quasiparticles denoted in Fig. 5
as T1 and T2, which are the conventional magnons expected in
a two-axis quasi-2D magnet strongly renormalized by quan-
tum fluctuations. In the semiclassical SWT, each of T1 and

T2 are doubly degenerate due to four different spins in the
magnetic unit cell (see Fig. 1). However quantum fluctuations
taken into account more accurately within the BOT lift this
degeneracy and produce bright lines T1 and T2 with weak
satellites T1s and T2s. The latter is not detected in experiment
presumably due to its weakness while the brightest mode
d has three satellites a, b, and c instead of one T1s. The
increasing number of satellites may be related to small spin
interactions which are not included in the model and which
frequently lead to modes splitting in other systems (interplane
interaction, dipolar forces, etc.). Spin-0 excitations L1 and
L2 in Fig. 5 are bound states of two magnons propagating
inside the same and in neighboring spin chains, respectively.
It is seen from Fig. 5 that their spectra follow ESR modes e
and f . The weak satellite L1s predicted by the theory is not
detected experimentally. Thus, the modes T1, T2, T1s, L1, L2

carrying the most of the spectral weight are attributed to the
observed modes. Only very weak satellites are not captured
by the theory, they may arise, e.g., due to the weak interaction
between magnetic layers.

It is seen from Fig. 5 that the agreement between the theory
and experiment becomes worse above 150 GHz. Using two
unit cells in the BOT differing in their geometry, we argue
that this discrepancy is due to profound 1D spin fluctuations
inside spin chains which cannot be taken into account properly
to first order in 1/n of the BOT. The confirmation of this
comes also from previous neutron-scattering and terahertz
spectroscopy experiments [12] in which up to nine sharp
anomalies were observed at the BZ zone center which re-
semble a Zeeman ladder (ZL) in Ising-like spin chains. These
anomalies were related to bound states of two domain walls
inside individual chain confined by interplane interaction [12].
Energies of all these anomalies were described by negative
roots of the Airy function (as it is done in conventional ZLs
[14–20]) except for three lower ones [12]. We show in Figs. 9
and 10 that two low-energy peaks are reproduced quantita-
tively within the BOT in model (3) in which the interplane
interaction is ignored. Besides, these anomalies correspond to
spin-1 and spin-0 quasiparticles T1 and L1 which cannot be
parts of the same ZL. Last but not least, the field evolution of
modes d , e, f , and g shown in Fig. 5 has nothing to do with
field behavior of levels in spin-0 and/or spin-1 ZLs (see, e.g.,
Refs. [18,19] and Sec. I).

Taking into account, however, the successful description in
Ref. [12] of levels lying above 200 GHz (0.8 meV) within the
ZL formalism and bearing in mind our own results described
above, we can state that Cs2CoBr4 combines features in its
spin dynamics characteristic of both 2D and 1D anisotropic
systems at energies smaller and larger than 0.8 meV, respec-
tively.

In the UUD state of Cs2CoBr4, similar to the UUD phase in
the Heisenberg triangular-lattice antiferromagnet [27], we ob-
serve theoretically two magnon branches denoted in Fig. 5 as
T4 and T5 which go up upon the field increasing and magnon T3

whose energy falls down. Besides, two spin-0 quasiparticles
L3 and L4 are detected one of which lies below magnons that
is also in a qualitative agreement with the Heisenberg model
[27]. It is seen from Fig. 5 that the brightest ESR modes l
and o follow spectra of T3 and T4 magnons. As in the stripe
phase, we notice that the most intensive mode l has three weak
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satellites k, m, and n whose origin is not clear now and that the
agreement between the theory and experiment becomes worse
upon increasing the energy. The low-intensive spin-0 modes
are not detected experimentally (in the case of L3, this may be
related also to its weak-field dependence).

In the saturated state, three high-energy ESR modes can
be described only qualitatively using the BOT. We identify
the most intensive mode s as a spin-1 excitation which is
surrounded by two spin-2 quasiparticles t and q (correspond-
ing theoretical curves are not shown in Fig. 5). Lower ESR
signals p and w are described reasonably good by two spin-1
excitations marked in Fig. 5 as T6 and T7.

We leave for the future the theoretical description of two
lines of ESR signals in the SDW (Fig. 5), numerous modes
observed in the paramagnet phases (Fig. 5), and spin dynamics
at H‖c (Fig. 8).
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APPENDIX A: BOND OPERATOR TECHNIQUE
FOR SPIN- 1

2 MODELS

The main idea of the bond operator technique (BOT) is to
take into account all spin degrees of freedom in the magnetic
unit cell containing several spins 1/2 by building a bosonic
spin representation reproducing the spin commutation alge-
bra. A general scheme of construction of such a representation
for arbitrary numbers of spins in the unit cell is described in
detail in Ref. [22]. We consider now briefly the main steps of
this procedure by the example of four spins in the unit cell,
which is relevant for the stripe phase in model (3). First, we
introduce 15 Bose operators in each unit cell which act on
16 basis functions of four spins |0〉 and |ei〉 (i = 1, . . . , 15)
according to the rule

a†
i |0〉 = |ei〉, i = 1, . . . , 15, (A1)

where |0〉 is a selected state playing the role of the vac-
uum. Then, we build the bosonic spin transformation in the
unit cell as it is described in Ref. [22] which turns out to
be quite bulky and which is presented in Ref. [22]. The
code in the Mathematica software which generates this rep-
resentation is also available in Ref. [32]. There is a formal
artificial parameter n in this spin transformation that appears
in operator (n − ∑15

i=1 a†
i ai )1/2 by which linear in Bose op-

erators terms are multiplied [cf. the term (2S − a†a)1/2 in
the Holstein-Primakoff representation]. It prevents mixing of
states containing more than n bosons and states with no more
than n bosons (then, the physical results of the BOT cor-
respond to n = 1). Besides, all constant terms in our spin
transformation are proportional to n whereas bilinear in Bose
operators terms do not depend on n and have the form a†

i a j .

(a) (b) (c)

FIG. 11. Diagrams giving corrections to first-order in 1/n to (a)
the ground-state energy and the staggered magnetization, and (b), (c)
to the self-energy parts.

We introduce also separate representations via operators (A1)
for terms sis j , sx

i sx
j , sy

i sy
j , and sz

i s
z
j in the Hamiltonian in which

i and j belong to the same unit cell. Constant terms in these
representations are proportional to n2 and terms of the form
a†

i a j are proportional to n [22]. Thus, we obtain a close analog
of the conventional Holstein-Primakoff spin transformation
which reproduces the commutation algebra of all spin op-
erators in the unit cell for all n > 0 and in which n is the
counterpart of the spin value S. In analogy with the spin-wave
theory (SWT), expressions for observables are found in the
BOT using the conventional diagrammatic technique as series
in 1/n. This is because terms in the Bose-analog of the spin
Hamiltonian containing products of i Bose operators are pro-
portional to n2−i/2 (in the SWT, such terms are proportional
to S2−i/2). For instance, to find the ground-state energy, the
staggered magnetization and self-energy parts to first order in
1/n, one has to calculate diagrams shown in Fig. 11 (as in the
SWT to first order in 1/S).

Notice that states |0〉 and |ei〉 in Eq. (A1) are linear com-
binations of elementary quantum states which are simple
products of states | ↑〉 and | ↓〉 of each spin in the unit cell.
Coefficients in these combinations contain parameters which
should be found by minimizing the term in the Hamiltonian
not containing Bose operators (linear in Bose operator terms
in the Hamiltonian vanish at this set of parameters) [22]. In
particular, we determine in this way properties of the ground
state (e.g., the spin ordering) to zeroth order in 1/n.

Previous applications of the BOT to two-dimensional spin-
1
2 systems well studied before both theoretically (by other
numerical and analytical methods) and experimentally show
that the first 1/n terms in most cases give the main corrections
to renormalization of observables if the system is not very
close to a quantum critical point [22,26,27,29,31,33]. Simi-
larly, the first 1/S corrections in the SWT frequently make
the main quantum renormalization of observable quantities
even at S = 1/2, see, e.g., Ref. [34]. Importantly, because the
spin commutation algebra is reproduced in our method at any
n > 0, the proper number of Goldstone excitations arises in
ordered phases to any order in 1/n (unlike the vast majority of
other versions of the BOT proposed so far [22]).

As quantum spin correlations inside the unit cell are taken
into account accurately within the BOT, we achieved a quite
precise description of salient features of short-wavelength
quasiparticles in different systems some of which cannot be
described even qualitatively using conventional analytical ap-
proaches [26,27,29,31]. Although the BOT is technically very
similar to the SWT, the main disadvantage of this technique
is that it is very bulky (e.g., the part of the Hamiltonian
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bilinear in Bose operators contains more than 100 terms) and
it requires time-consuming numerical calculation of diagrams.

The three-spin variant of the BOT can be constructed in a
similar way. It was used in Refs. [26,27,29] for consideration
of various ordered phases in triangular-lattice antiferromag-
nets. The code in the Mathematica software which generates
this spin transformation can be found in Ref. [35]. We employ
in this study the three-spin variant of the BOT for discussion
of the UUD state and the four-spin variant is utilized for
consideration of the stripe and the saturated phases.

Notice that the BOT allows us to consider numerous
complex excitations which can arise in standard approaches
as bound states of conventional quasiparticles (magnons or
triplons) [22]. For instance, there are only four bosons in the
four-spin BOT which describe conventional magnons in the
stripe phase. The remaining 11 bosons are responsible for
some other excitations which are built on quantum states of
the whole unit cell [see Eq. (A1)]. In common methods, dis-
cussion of the bound states requires analysis of some infinite
series of diagrams for vertexes. As a result, spectra of bound
states cannot be obtained as series of some parameter within
conventional approaches because it is normally impossible to
take into account all the required diagrams. In contrast, the
existence of separate bosons in BOTs (describing some bound
states in considered models) allows us to find their spectra
as series in 1/n by calculating the same diagrams as for the
common quasiparticles [e.g., diagrams shown in Figs. 11(b)
and 11(c) in the first order in 1/n]. For instance, in the ordered
phase of the isotropic square-lattice antiferromagnet, the ver-
sion of the BOT with a two-site unit cell contains three bosons
describing two spin-1 excitations (conventional magnons) and
one spin-0 quasiparticle (the Higgs mode) [22]. The price to
pay for increasing the quasiparticles zoo is the bulky theory.

In the present study, we discuss the stripe phase at zero
field [model (B2)] using four-spin BOT with two variants
of the unit cell: the plaquette-like unit cell containing two
couples of spins from neighboring chains and the chain-like
unit cell with four spins from the same chain (see insets in
Fig. 9). This allows us to reveal the role of 1D correlations
in the considered model on conventional spin-1 excitations
(magnons) and on spin-0 quasiparticles (which could arise in
the SWT as bound states of two magnons) appearing in the
longitudinal channel.

We take into account diagrams shown in Figs. 11(b) and
11(c) to find all self-energy parts �(ω, k) in the first order
in 1/n. We use (bare) Green’s functions of the harmonic
approximation in these calculations. Spectra of elementary
excitations are obtained by finding zeros of Green’s function
denominators taking into account the ω dependence of self-
energy parts. This scheme of calculations proved to give an
accurate description of elementary excitations some of which
had no counterparts not only in the semiclassical spin-wave
theory but also in the harmonic approximation of the BOT
[26,27,29,31].

APPENDIX B: NEUTRON-SCATTERING
CROSS-SECTION CALCULATION

We provide in this Appendix some technical details of the
neutron-scattering cross-section calculation at H = 0.

At zero field, model (3) can be simplified further by per-
forming the canonical transformation

sx
2i, j = −s̃y

2i, j, sy
2i, j = −s̃x

2i, j, sz
2i, j = −s̃z

2i, j (B1)

which is a result of subsequent rotations by π/2 around z
axis and by π around y axis in chains with even numbers.
After this transformation, all chains become equivalent and
the Hamiltonian acquires the form

HH=0
ps =

∑
i, j

[
4J

(
s̃i, j s̃i, j+1

) − 3Js̃y
i, j s̃

y
i, j+1

+ 4A1s̃z
i, j s̃

z
i, j+1 − 2J ′(s̃x

i, j s̃
y
i+1, j + s̃y

i, j s̃
x
i+1, j

)
− 2J ′(s̃x

i, j s̃
y
i+1, j−1 + s̃y

i, j s̃
x
i+1, j−1

)
− 4(J ′ − A2)

(
s̃z

i, j s̃
z
i+1, j + s̃z

i, j s̃
z
i+1, j−1

)]
. (B2)

Notice that there is no such canonical transformation making
chains equivalent at finite field.

The chains equivalence in Eq. (B2) allows us to apply
two modifications of the four-spin BOT with two kinds of
the unit cell to reveal the character of low-energy excitations
observed recently in neutron experiment [12] and in our ESR
measurements.

To describe available neutron data, we calculate the follow-
ing dynamical structure factor [25]:

S (k, ω) = 1

π
Im

∑
α,β

gαgβ (δαβ − k̂α k̂β )χαβ (k, ω), (B3)

where α, β = x, y, z, k̂ = k/k, χαβ (k, ω) are given by Eq. (4),
and we use that the g tensor is diagonal and has components
gx = 2.37(1), gy = 2.42(1), and gz = 2.47(2) [10]. For the
plaquette-like and the chain-like unit cells shown in insets of
Fig. 9, Sk in Eq. (4) has the form

Sk = 1
2 (S1k + S2ke−ik2/2 + S3ke−i(k1+k2 )/2 + S4ke−ik1/2),

(B4)

and

Sk = 1
2 (S1k + S2ke−ik1/4 + S3ke−ik1/2 + S4ke−i3k1/4), (B5)

where k = k1f1 + k2f2, f1,2 are reciprocal-lattice vectors cor-
responding to translation vectors u1 and u2 in the real space
depicted in the insets of Fig. 9, and Si is the ith spin operator
in the unit cell which is related with pseudospin s̃i via Eqs. (2)
and (B1).

Figure 10 shows two lower anomalies (labeled in Fig. 9 as
T1 and L1) in neutron-scattering intensity Stot (k, ω) given by
Eq. (B3) and calculated within the BOT in the first order in
1/n with the plaquette-like unit cell for six momenta. There
is a good agreement of Fig. 10 with neutron data presented in
Fig. 3(a) of Ref. [12] in energies, shapes, and magnitudes of
two lower maxima.
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