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Both temperature (T ) increase and/or application of an external magnetic field (H ) are able to induce
ferromagnetism in otherwise antiferromagnetic FeRh. We present a theory that allows us to predict H -T phase
diagrams for FeRh, with a special emphasis on the canted antiferromagnetic phase. Both cases of in-plane and
out-of-plane magnetic anisotropy in FeRh films are studied numerically, and the results of the simulations are
compared with the results obtained via magneto-transport studies done in magnetic fields up to 34 T and x-ray
magnetic circular dichroism measured at the Rh L2,3 and Fe K absorption edges in magnetic fields up to 17 T.
The comparisons suggest examples of the simulated H -T phase diagrams that are most suitable to fit the case of
FeRh.
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I. INTRODUCTION

Antiferromagnets [1,2] represent the largest, but the least
explored class of magnetic materials. Recently, it has been
realized that antiferromagnets can facilitate solutions for the
fastest and most energy efficient spintronics, magnonics, and
data storage technologies [3–5]. This potential has further
boosted the fundamental interest in antiferromagnets and
initiated the rapidly growing and booming fields of antifer-
romagnetic spintronics and altermagnetism [6,7].

FeRh was first discovered in 1938 [8] and from that time it
was known as a material with a counterintuitive emergence of
spontaneous magnetization upon heating (see Fig. 1). It is an
outstanding antiferromagnet that can become ferromagnetic
upon a temperature increase, applied strain, or magnetic field.
More particularly, if without any magnetic field or strain the
temperature of the material crosses the critical value of around
370 K, along with the magnetic changes, FeRh experiences
an expansion of its unit cell by ≈1% [9], while its crystal
structure (CsCl) remains the same [10]. The lattice expansion
is accompanied by a sudden change of electric conductiv-
ity [11–15]. Below 370 K, Fe ions with a magnetic moment of
about 3μB are coupled antiferromagnetically, while above this
temperature the alignment becomes ferromagnetic. Moreover,
in the antiferromagnetic phase Rh has no magnetic moment,
whereas upon the phase transition, Rh acquires a net magnetic
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moment of around 1μB [16–18]. Nevertheless, the mechanism
governing the heat-induced phase transition in FeRh has been
a subject of intense debates for many decades.

After the discovery of antiferromagnetism in FeRh, it was
realized that this heat-induced ferromagnetism must be inter-
preted as a first-order phase transition from a low-temperature
antiferromagnetic (AFM) to a high-temperature ferromag-
netic (FM) state. The first theoretical attempt to explain this
phase transition dates back to 1960, when it was proposed
that this is, in fact, a structural phase transition with a volume
change [19]. The latter results in a change of interatomic dis-
tances, naturally leading to a change of sign in the exchange
integrals and hence to a change of the order from an antiferro-
to a ferromagnetic one. However, soon it was argued that
the total change of entropy in this case is much larger than
the change of the entropy of the lattice [20,21]. Hence the
mechanism of the magneto-structural transition remained an
open question.

The recent development of computational physics has re-
vived the interests in this phase transition in FeRh and its
material properties have become a subject of atomistic and
ab initio simulations [22–28]. It is remarkable, however, that
despite the numerous attempts, the H-T phase diagram, which
is practically the cornerstone in understanding any magnetic
phase transition, has not yet been explored theoretically for
FeRh. Moreover, although it is absolutely clear that an exter-
nal magnetic field can induce spin canting, such a state has not
been reported for FeRh.

Here we develop a theory to predict H-T phase diagrams
for FeRh with a special attention to the canted AFM phase.
Using experimental data on electrical resistance in magnetic
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fields up to 34 T and XMCD at the Rh and Fe absorption edges
in magnetic fields up to 17 T, we propose phase diagrams
which fit the experimental data in the best way.

The paper is organized as follows: Section II explains the
ingredients of the proposed mean-field model for FeRh. In
Sec. III we describe the experimental data on electrical re-
sistance of FeRh in high magnetic fields and reveal how the
critical temperature of the first-order phase transition depends
on the applied magnetic field. The data are further used as a
reference to evaluate the validity of the calculated H-T phase
diagrams. Section IV describes the results of the XMCD mea-
surements and discusses which of the calculated H-T phase
diagram fits the experimental data in the best way. Section V
provides conclusions and summarizes the open questions.

II. MEAN-FIELD MODEL OF TEMPERATURE INDUCED
FERROMAGNETISM IN ANTIFERROMAGNETIC FeRh

A. Thermodynamic potential

We describe the magnetic structure of FeRh in terms of
three macrospin parameters: M1 and M2 are the magnetiza-
tions of the two antiferromagnetically coupled Fe sublattices,
and MRh is the magnetization of the Rh ions. The Rh-Rh
exchange interaction is essentially zero and can be neglected,
and the Rh ions are thus modeled as a paramagnet in the
effective magnetic field generated by the net magnetization
of the Fe ions M = M1 + M2 and the strength of external
magnetic field H.

Hence, the free energy F of FeRh contains terms that
represent (a) the exchange interaction between the Fe sub-
lattices (WFe-Fe); (b) the energy corresponding to interaction
between the spins of Rh and the effective magnetic field acting
on them (WRh); (c) the interaction of the Fe spins with the
external magnetic field and (d) the magnetic anisotropy ex-
perienced by the spins of Fe (Wani). The magnetic anisotropy
for the Rh spins is neglected. Finally, in order to reflect the
magnetostructural changes in FeRh we also include a magne-
tostrictive term WMS , resulting in

F = WFe-Fe + WRh − μ0(M1 + M2) · H + Wani + WMS. (1)

For the Fe-Fe term we use simple isotropic exchange
Jex(M1 · M2), but for consistency we assume that Jex ∝
1/χFe [29], and in order to account for the energy per one
ion we include a factor of two in the denominator:

WFe-Fe = μ0

2χFe
(M1 · M2). (2)

To get the Rh term, we assume that the total energy
is proportional to −μ0

∫ Heff

0 MRh · dH = −μ0χRh
∫ Heff

0 H ·
dH = −1/2μ0χRhH2

eff :

WRh = −μ0

2
χRh

(
λ

μ0
(M1 + M2) + H

)2

, (3)

where χRh is the paramagnetic susceptibility of Rh and λ is
the coupling constant between Fe and Rh spins.

The paramagnetic susceptibility χRh of Rh, the energy of
magnetic anisotropy Wani and the magnetostrictive term WMS

deserve special attention.

B. Magnetostrictive term

To model the mutual correlations between the change in
the magnetic structure and the volume changes of FeRh, we
introduced in the thermodynamic potential a magnetostrictive
term WMS . Following Ref. [19], in the simplest approximation
the energy of the Fe-Fe exchange interaction is a linear func-
tion of an applied strain u: J (u) = J + ∂J

∂u u = J + βu. Hence,
the part of the thermodynamic potential which depends on the
strain u is

WMS = −β(M1 · M2)u + Eu2

2
, (4)

where β is the partial derivative of the Fe-Fe exchange with
respect to the strain u, and E is Young’s modulus.

Minimization of the free energy with respect to the strain
gives that, in thermodynamic equilibrium,

u = β

E
M1 · M2. (5)

Substituting Eq. (5) into Eq. (4) gives

WMS = − β2

2E
(M1 · M2)2. (6)

C. Paramagnetic susceptibility of Rh

In our model, the temperature dependence of the paramag-
netic susceptibility of Rh plays a decisive role for the phase
transition between the AFM and FM states of FeRh. Interest-
ingly, upon the phase transition from the AFM to FM state,
Rh acquires a magnetic moment [16–18], and the electronic
conductivity of FeRh increases by 25%–40% [11–15]. From
research of electronic structure of FeRh we can outline several
features: there is a charge transfer occurring between Rh and
Fe in both FM and AFM phases [16], there is drastic change in
the electronic structure of the valence band mostly associated
with the d orbitals [30,31], while the core-level bands do not
change drastically [30]. On top of that the electronic structure
of iron seems to be corresponding to that in the Fe3+ state [30].
All these findings, in principle, suggest that the electronic
structure of Rh changes upon the phase transition in FeRh
as follows: Below the temperature of the phase transition,
the Rh ion has an electronic configuration which does not
imply a magnetic moment—4d105s2—and the total angular-
momentum quantum number is J = 0. At the phase transition
Rh acquires a magnetic moment and the best candidate for
the corresponding electronic structure is the 4d95s25p1 con-
figuration with J = 1. Hence, while in the low-temperature
AFM phase Rh contributes to the electric conductivity with
its two 5s electrons, in the high temperature FM phase the
conductivity is facilitated by an additional 5p electron and
the expected increase in the conductivity thus amounts to
about 50%. We should note, however, that the difference in
10%–25% with the theoretical prediction can be caused by the
fact that the real system is distinct from the simple theoretical
model, which does not account for magnetic and structural
inhomogeneities and neglects that FM and AFM phases can
coexist. In particular, mechanisms of spin-selective scattering
can play a significant role in the inhomogeneous samples.

To model the changes in the electronic structure of Rh,
we describe the latter in terms of a two-level system, as
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FIG. 1. First-order spin-reorientation transition in FeRh; the left
picture corresponds to the antiferromagnetic phase and the right
one corresponds to ferromagnetic phase. The black and green dots
indicate the Fe and Rh ions respectively; red and blue (yellow) arrows
schematically show the direction of the magnetic moments of the Fe
(Rh) ions.

illustrated in Fig. 2. At lower temperatures all electrons oc-
cupy the nonmagnetic ground state with J = 0. Upon crossing
the transition temperature, an electron goes to the excited state
with J = 1. The energy difference between the ground and
the excited state is denoted by �. We apply the Gibbs statis-
tics to compute the magnetic susceptibility, χRh(T ), modeling
Rh-atom as a two-level system with the ground nonmag-
netic state (J = 0) and excited magnetic state (J = 1). For
a two-level system with energies ε1 and ε2, and an energy
gap � = ε2 − ε1, the Gibbs distribution gives the occupation
probabilities n1(T ) and n2(T ) as

ni(T ) = e−εi/kBT

e−εi/kBT + e−ε j/kBT
. (7)

The total susceptibility χRh(T ) can be formulated as a
weighted average of the susceptibilities χvv and χp for the two
levels:

χRh(T ) = n1(T )χvv + n2(T )χp

= χvv

1 + e−�/kBT
+ e−�/kBT χp

1 + e−�/kBT
. (8)

Here we assume that the ground level has χvv which arises
due to the intermixing of the ground and excited states.
And the first-excited level, being magnetic, has paramag-
netic susceptibility χp. By employing the Gibbs statistics, we
obtain a simple yet insightful expression for the temperature-
dependent magnetic susceptibility of a two-level electronic
system. The behavior of Rh in FeRh is very similar to the
behavior of rare-earth ions, such as Eu3+ in Refs. [32,33],
where intermixing of states gives rise to the Van Vleck sus-
ceptibility [34]. The argument for the assumed structure of
the susceptibility of Rh is that Rh has a significant spin-
orbit coupling due to its heavier atomic mass and higher

FIG. 2. Schematically represented Rh ion energy levels.

FIG. 3. Schematic coordinate system together with the vectors
and corresponding angles used in the model.

atomic number. Spin-orbit coupling can, in principle, mix the
states and thus facilitate a strong Van Vleck paramagnetism.
Additionally, in a first approximation, the paramagnetic sus-
ceptibility is assumed to be constant, since χp ∼ ch(T )/kBT ,
where ch(T ) ∼ kbT is the concentration of the 4d holes.

D. Magnetic anisotropy

We introduce magnetic anisotropy in our model as a simple
uniaxial anisotropy:

Wani = − 1
2 K

(
α2

M1
+ α2

M2

)
, (9)

where αM1 and αM2 are direction cosines between the
anisotropy axis and M1, M2; K is the anisotropy constant.
In the following, we distinguish two cases with external
magnetic field along and perpendicular to the equilibrium
orientation of the antiferromagnetic vector L = M1 − M2,
respectively (see Fig. 3). For the first case the direction
cosines are expressed as αM1 = cos(π/2 + ξ − θ ) and αM2 =
cos(π/2 − ξ − θ ), and for the second case the direction
cosines are αM1 = cos(ξ + θ ) and αM2 = cos(ξ − θ ).

III. MODELLING H-T PHASE DIAGRAMS

A. Fixed and free parameters in the model

To minimize the number of free parameters in the model,
we have made the following assumptions: In accordance with
ab initio simulations from Ref. [22] we assume that the
magnetic susceptibility of Fe in FeRh is χFe ≈ 1.9 × 10−3

and the partial derivative of the Fe-Fe exchange interaction
with respect to the strain u is β ≈ 0.16 T m/A. Although
the Van Vleck susceptibility of the Rh ion is not known,
here we rely on the similarities between the roles of Rh and
Eu3+ for magnetic changes in FeRh and Eu2O3, respectively.
Hence, similarly to Eu3+ in Ref. [32], here we assume that
χvv ≈ 1.3 × 10−3. Young’s modulus is taken from Ref. [35] as
E ≈ 1.5 × 1011 Pa. The coupling constant λ, the energy gap
� and the paramagnetic susceptibility χp are fit parameters in
our model Table I.

B. Estimating free parameters using fit to experimental data

To estimate the free parameters for our model, a 42-
nm-thick FeRh film was grown on a MgO (001) substrate
and capped with 2-nm-thick Pt layer to avoid oxidation.

184420-3



A. G. BUZDAKOV et al. PHYSICAL REVIEW B 108, 184420 (2023)

TABLE I. Fixed and free parameters used in the model.

Parameter Symbol Value Ref.

Magnetic susceptibility of Fe χFe ≈1.9 × 10−3 [22]
Partial derivatives of the Fe-Fe β ≈0.16 T m/A [22]

exchange
Van Vleck susceptibility of Rh ion χvv ≈1.3 × 10−3 [32]
Young’s modulus E ≈1.5 × 1011 Pa [35]
Coupling constant λ Free
Energy gap � Free
Paramagnetic susceptibility χp Free

Afterwards we patterned the as-grown sample into 50-μm-
wide stripes along the [110] crystallographic direction on the
MgO substrate to facilitate magnetoresistance measurements.
More information on the fabrication procedure and structural
characterization can be found in Refs. [36,37]. Applying an
external magnetic field up to 34 T along the direction of
the stripes we measured their resistance in a four-terminal
configuration with a constant source-drain current of 275 nA.
This detection scheme is sensitive to changes in net magneti-
zation of the probed sample region and is seen as a change in
electrical conductivity due to the magnetic phase transition.
At the same time, contributions from the Hall effect and
anisotropic magnetoresistance to the measured conductivity
can be neglected in this geometry. The measurements were
performed in the sample temperature range from 4.6 to 300 K
and a few selected external magnetic field dependencies are
shown in Fig. 4. In agreement with earlier reports [36,38],
the resistance displays a pronounced hysteresis step as a
function of the magnetic field. This can be assigned to the
first-order phase transition from the (low temperature) AFM
to the (high temperature) FM phase. Clearly, it is seen that the
hysteresis shifts to higher magnetic fields as the temperature
decreases. From these hysteresis curves we determined the
critical fields of the phase transition upon an increase and
decrease of the field, respectively. The corresponding values
of the phase transition from AFM to FM and from FM to AFM
were afterwards averaged and plotted in Fig. 5. Note that the
size of the electric resistance depends on the electron-electron
and electron-impurities scattering at low temperatures and
electron-phonon scattering at high temperatures. As the

FIG. 4. Electrical resistance of a 50-μm-wide wire patterned
from a 42-nm-thick FeRh film as a function of magnetic field mea-
sured at different temperatures.

FIG. 5. Examples of H -T phase diagram along with the exper-
imental data (black dots). Panel (a) shows the phase diagram for
β2M4/2E = 107 J/m3, λ = 3.1 × 10−4 T m/A, χp = 5.4 × 10−3,
� = 600kb J. The transition from the AFM to the FM state is always
of the first order. Panel (b) shows the phase diagram for β2M4/2E =
105 J/m3, λ = 3.58 × 10−4 T m/A, χp = 3.6 × 10−3, � = 600kb J.
The model predicts that the phase transition is of the first order only
at zero magnetic field.

number of phonons increases with temperature the resis-
tance increases accordingly in correspondence with the Drude
theory.

Using the model and various combinations of the free
parameters, we calculated the spin arrangement correspond-
ing to thermodynamic equilibrium at given temperatures and
magnetic fields. The field in the first set of simulations is ap-
plied perpendicularly to the easy axis of magnetic anisotropy,
i.e., perpendicular to the antiferromagnetic vector L. It ap-
pears that the ratio β2M4/2E , which determines the height
of the barrier separating the AFM and the FM phases, is
decisive for the order of the transition. In the article below,
we differentiate between first- and second-order phase tran-
sitions, primarily numerically, by examining whether there
is a discontinuity in magnetic order parameter (i.e., magne-
tization). For the cases when β2M4/2E � 5 × 106 J/m3 the
transition is of first order for every value of external field
and temperature if the critical field does not exceed 30 T.
For smaller values of β2M4/2E we can get second-order
phase transitions. In the first simulations we fixed the ratio
β2M4/2E = 107 J/m3, corresponding to a first-order phase
transition, and fit λ, χp, and � such that the calculated
critical fields agree with those observed experimentally. The
resulting phase diagram shown in Fig. 5(a) was obtained
for λ = 3.1 × 10−4 T m/A, χp = 5.4 × 10−3, � = 600kb J.
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FIG. 6. Examples of H -T phase diagram (free parameters:
λ = 3.58 × 10−4 T m/A, χp = 3.6 × 10−3, � = 600kb J) for
different values of potential barrier between FM and AFM
states: (a) β2M4/2E = 105 J/m3, (b) β2M4/2E = 3 × 106 J/m3,
(c) β2M4/2E = 6 × 106 J/m3. Gray solid line indicates region in
which exists two minima of the thermodynamic potential, green solid
line indicates a first-order phase transition, green dotted line indicates
a second-order phase transition.

Furthermore, we fixed β2M4/2E = 105 J/m3, which corre-
sponds to a second-order phase transition, repeated the fit,
and the resulting phase diagram for λ = 3.58 × 10−4 T m/A,
χp = 3.6 × 10−3, � = 600kb J is shown in Fig. 5(b).

To reproduce the hysteresis behavior observed experimen-
tally, one has to focus on the phase diagrams where the
transition is of the first order and calculate lines of stability
loss for FM and AFM phases. Figure 6 shows the simulated
phase diagrams for various values of β2M4/2E . Figure 6(a)
corresponds to the case of β2M4/2E = 105 J/m3, Fig. 6(b)
to β2M4/2E = 3 × 106 J/m3, Fig. 6(c) to β2M4/2E = 6 ×
106 J/m3. Everywhere on the phase diagram shown in
Fig. 6(a) the transition between the AFM and FM phases is

of second order. Figure 6(c) shows the phase diagram for
the highest β2M4/2E and the transition is everywhere of first
order. The intermediate value of β2M4/2E results in the most
complicated phase diagram with a critical point, where the
transition changes the order from first to second [Fig. 6(b)].
The gray lines on the phase diagram correspond to the lines
at which one of the phases, coexisting in the vicinity of the
first-order phase transition, loses its stability.

From Fig. 6 we see that, for specific parameters of the
model, the H-T phase diagram acquires a critical point. It
is possible to analytically derive equations for lines of sta-
bility loss and, as a result, it is possible to get coordinates
of the critical point. As we have no information on the Van
Vleck susceptibility of Rh, here for simplicity we assume that
it does not depend on the applied magnetic field. First, we
find the minima of the thermodynamic potential by solving
∂F/∂θ = 0. As a result, we get two minima corresponding to
the collinear FM phase: cos θ = 0 and canted AFM phase:

−4χFeβ
2M2

μ0E
sin3 θ +

(
1 + 2χFeβ

2M2

μ0E
− 2χFeχRhλ

2

μ2
0

)

× sin θ + H

(
−χFe

M
− χFeχRhλ

μ0M

)
≡ ζ (θ ) = 0.

These two phases can coexist. To find where each of the found
phases looses its stability, we need to calculate the second
derivative of the thermodynamic potential and find where it
changes sign.

From ∂2F/∂θ2 = 0, or in an other notation (cos θ ) ∂ζ

∂θ
−

(sin θ )ζ = 0, we first get an equation for the ABT2 line [see
Fig. 6(b)] by substituting cos θ = 0 into the expression for the
second derivative:(

1 − 2χFeβ
2M2

μ0E
− 2χFeχRh(T )λ2

μ2
0

)

+ H

(
−χFe

M
− χFeχRh(T )λ

μ0M

)
= 0. (10)

ABT2 corresponds to the stability loss of the collinear FM
phase. Second, we can get the θ dependence for the ABT1 line
[see Fig. 6(b)] by substituting ζ (θ ) = 0 into the expression for
the second derivative:

sin2 θ = 1

6

[
1 − χRh(T )Eλ2

μ0β2M2
+ μ0E

2χFeβ2M2

]
. (11)

ABT1 corresponds to the stability loss of the canted AFM
phase. Knowing that for the temperature of the critical point
T = TB we have sin θ = 1, one gets

χRh(TB) = μ2
0

2χFeλ2
− 5μ0β

2M2

Eλ2
. (12)

Using Eqs. (10) and (12), one can deduce an expression for
the field of the critical point HB.

According to the experimental data shown in Fig. 4, the
phase transition is characterized by a hysteresis down to 4.6 K.
It suggests that the phase transition is of first order in the
whole temperature range studied. Hence, the phase diagram
shown in Fig. 5(a) and the corresponding set of parameters
are the most suitable to fit the experimental data.
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FIG. 7. Examples of H -T phase diagram (free parameters:
β2M4/2E = 107 J/m3, λ = 3.1 × 10−4 T m/A, χp = 5.4 × 10−3,
� = 600kb J) with spin-flop transition: (a) K = 105 J/m3, (b) K =
106 J/m3, (c) K = 107 J/m3. Green solid line indicates a first-order
phase transition.

Similarly, we can calculate the H-T phase diagram for
the case when the applied magnetic field is along the easy
axis of magnetic anisotropy. The diagrams calculated for
β2M4/2E = 107 J/m3, λ = 3.1 × 10−4 T m/A, χp = 5.4 ×
10−3, � = 600kb J parameters are shown in Fig. 7. In theory,
it is known that, in this geometry, the spins are weakly sensi-
tive to the external magnetic field and remain in the collinear
AFM state, if the field is below the critical value Hsf =√

HexHA, where Hex and HA are the effective fields of the
Fe-Fe exchange interaction and magnetic anisotropy, respec-
tively. At the critical field Hsf, the spin structure experiences
a so-called spin-flop transition, where the spins rotate over
nearly 90◦ and get slightly canted, thus forming a canted AFM
phase. Hence, the strength of the magnetic anisotropy starts to
play a significant role. Here we model how the phase diagram
changes for different values of the anisotropy constant K . It

is seen that, unlike the diagrams shown in Fig. 6, application
of a magnetic field along the antiferromagnetic vector results
in three different phases: collinear AFM, noncollinear AFM,
and FM. From the diagrams shown in Fig. 7 it is seen that
the larger the magnetic anisotropy, the narrower the region
of magnetic fields that correspond to the canted AFM phase.
Eventually, if the magnetic anisotropy is large enough, no
canted AFM phase is observed. We should note, however, that
the effective field for such a strong magnetic anisotropy would
be comparable with the effective field of the exchange inter-
action and thus very exotic, if not unrealistic. Nonetheless,
in the case of FeRh it may be possible in the AFM phase,
where the coupling between Fe and Rh spins significantly
reduces the effective Fe-Fe exchange interaction. We found
that the phase transition from the canted AFM to FM state
on these phase diagrams is always of first order. Hence, all
the diagrams agree well with the hysteresis behavior observed
experimentally in the magnetoresistance measurements (see
Fig. 4). Hence the diagrams shown in Fig. 5(a) and Fig. 7 can
all fit the experimental observations.

IV. X-RAY ABSORPTION NEAR-EDGE SPECTRA, X-RAY
MAGNETIC CIRCULAR DICHROISM MEASUREMENTS

AND DISCUSSION

The x-ray-absorption near-edge structure (XANES) and
x-ray magnetic circular dichroism (XMCD) spectra of the
42-nm-thick FeRh film, at the Rh L2,3 and Fe K absorption
edges, were measured at the European Synchrotron Radiation
Facility (ESRF) beamline ID12 (see Fig. 8). The first har-
monic of the helical undulator was used to provide circularly
polarized x-rays in the energy range between 3.0 and 3.2 keV
and between 7.1 and 7.2 keV. At these energies, the Bragg
angle of the Si[111] double-crystal monochromator is close
to the Brewster angle of 45◦. This leads to a strong reduction
of the circular polarization rate of the x-ray beam, down to
12% and 5% at the L2 and L3 edges of Rh, respectively. The
XANES spectra were recorded in the total fluorescence yield
detection mode, using Si photodiodes. The XMCD spectra
were obtained as the direct difference of the XANES spectra
recorded with the helicity either antiparallel or parallel to the
magnetic field applied to the sample. To eliminate possible
experimental artifacts, the XMCD spectra were measured for
two opposite directions of the applied magnetic field. The
spectra were corrected for the incomplete circular polariza-
tion rate. The XMCD was measured at magnetic fields up to
17 T produced by a superconducting solenoid. To derive the
spin and orbital moments carried by the Rh 4d electrons, the
magneto-optical sum rules were applied to the experimental
XMCD spectra [39,40]:

ML = (−2/3)(A3 + A2)n4d/σtot,

MS = −(A3 − 2A2)n4d/σtot, (13)

where A2 and A3 are the integrated XMCD signals at the L2

and L3 edges, respectively, n4d is the number of holes in the
Rh 4d bands, σtot is the total absorption cross section cor-
responding to 2p-4d transitions. Following the standard
procedure [41,42], the normalized x-ray absorption cross
section per 4d hole, n4d/σtot = 0.144, was determined by sub-
tracting the Ag-foil L2,3 spectra from the experimental Rh L2,3
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FIG. 8. Example spectra of XANES and XMCD for tempera-
tures of 3 K, 295 K, and external field of 17 T for: (a) Rh L2,3 edges,
(b) Fe K edge.

spectra measured on the FeRh film and taking the theoretical
value for the number of Rh 4d holes (2.34) from Ref. [43].
Using this value, the Rh 4d spin and orbital magnetic mo-
ments were derived (Fig. 9 and inset of Fig. 9). Pure Rh ions
are paramagnetic and also acquire a moment in an external
magnetic field. For 3 K and 17 T, the spin moment due to
Pauli paramagnetism cannot exceed 0.0027μB [44], which is
almost two orders of magnitude lower in comparison with
the obtained 0.19μB. However, it could not be referred to the
ferromagnetism of Rh, observed in clusters (0.067μB) [45].
Thus, we suggest that this moment reflects the canting of the
Fe magnetization in a high magnetic field. Latter in the text
we use XMCD measurements on Rh sites but not on Fe sites
because signal strengths are higher and, on top of that, the
hysteresis behavior on Rh and Fe sites coincides (see Fig. 10).

Figure 11 shows the XMCD curves as a function of the
magnetic field at different temperatures, defined as follows:

�XMCD = 1

2A
[A+(r) − A+(l )] + [A−(r) − A−(l )], (14)

FIG. 9. Magnetic moment of Rh ion as a function of external
field for two different temperatures 3 and 295 K derived directly from
XMCD measurements. XMCD data (originally in arbitrary units)
were normalized to the Mtot = MS + ML values calculated based on
the sum rules at 3 and 295 K and 17 T.

where A is the average absorption at the energy of 3.0037
keV, corresponding to the maximum of the XMCD spectra
at the Rh L3 edge. A+ and A− are the absorption at a positive
and a negative external magnetic field, respectively. A(r) and
A(l ) are absorptions of left- and right-circular x-ray polariza-
tion. Thus, �XMCD reflects the maximal magnetic circular
dichroism relative to the total absorption at the considered
Rh edge. Figure 11 shows the experimentally obtained field
dependencies of the �XMCD signal, which mimics the values
of the magnetic moments of Rh per valence hole induced
by an effective field on the Rh sites. The experiments reveal
that at fields below those at which the hysteresis opens up
(<10 T), one can clearly distinguish slopes in the �XMCD
signal as a function of magnetic field. The slope corresponds
to spins canting over angles no more than 10◦. At 325 K,
no slope is observed for fields above the hysteresis, implying
that the spins are completely aligned and further increase
of the field does not result in an increase of the magnetiza-
tion. To compare the experimental results with the simulated
phase diagrams, on the same graph we plot the numerically
calculated field sweeps. Taking the diagram from Fig. 5(a)

FIG. 10. XMCD measurements in a.u. for Fe and Rh ions as a
function of external field at a temperature of 295 K.
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FIG. 11. �XMCD as a function of the magnetic field at dif-
ferent temperatures. Filled black dots are � XMCD from theory
for β2M4/2E = 3 × 107 J/m3, λ = 2.3 × 10−4 T m/A, χp = 9.4 ×
10−3, � = 600kb J; unfilled dots are �XMCD measurements.

as an initial guess, we slightly tuned the parameters in or-
der to fit the experimental data: β2M4/2E = 3 × 107 J/m3,
λ = 2.3 × 10−4 T m/A, χp = 9.4 × 10−3, � = 600kb J. It is
seen that the calculated sweeps fit well to those observed
experimentally. This agreement is not unique, however. If the
field is applied parallel to the easy axis of magnetic anisotropy,
as for the case of the H-T phase diagrams shown in Fig. 7(a),
the calculated sweeps appear to be very similar. For instance,
for the case of K = 105 J/m3 the obtained field dependencies
are very identical to those for the case, when the field is
applied perpendicularly to the easy axis. Again, in the fields
below 10 T the spin canting does not exceed 10◦. Implying
that the comparison of the experimental and calculated de-
pendencies does not allow us to identify the type of magnetic
anisotropy of FeRh-films in the AFM state. Nevertheless, as
the experimentally observed spin canting in the fields below
10 T is not zero, we can conclude that the anisotropy in the
real FeRh films is not high enough to suppress a spin-canted
state. Indeed, the case would correspond to the phase diagram

shown in Fig. 7(c). In this case, the applied magnetic field is
unable to tilt the spins up to the values of the spin-flop field.
Meaning that the phase diagram shown in Fig. 7(c) can be
excluded. Hence, we have managed to limit the number of
the most suitable phase diagrams for FeRh. In particular, the
diagrams shown in Figs. 5(a) and 7(a) do fit the experimental
data in the best way.

V. CONCLUSIONS

Using the approach of mean-field theory, we studied H-T
phase diagrams of the magneto-structural phase transition in
FeRh. Varying parameters in the theory we suggest a number
of H-T phase diagrams. Analyzing the experimental electri-
cal resistance in magnetic field data, we reveal that the field
induced phase transition is of first order in a broad range of
temperatures. This fact, together with the values of the mag-
netic fields at which the transition occurs, allows us to narrow
down the set of the suitable phase diagrams and the range
of corresponding parameters. Measuring XMCD and XANES
at the Rh and Fe edges, we revealed the field dependencies
of the magnetic moment of Rh, which is a signature of the
phase transition and of the noncollinear AFM phase which is
present in an external magnetic field before the AFM-to-FM
phase transition in FeRh. Unfortunately, the comparison of the
experimental data and the calculated phase diagrams did not
allow us to identify the magnetic anisotropy of FeRh in the
AFM phase. Although we can conclude that the anisotropy is
not high enough to suppress a spin-canted phase, the strength
of the magnetic anisotropy and the orientation of its easy axis
remain subjects for future studies.
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