
PHYSICAL REVIEW B 108, 184418 (2023)

Large-amplitude and widely tunable self-oscillations enabled by the inertial effect in uniaxial
antiferromagnets driven by spin-orbit torques

Peng-Bin He *

School of Physics and Electronics, Hunan University, Changsha 410082, China

(Received 24 July 2023; accepted 6 November 2023; published 20 November 2023)

Recently, the inertia has been demonstrated for magnetization dynamics, such as the nutational resonance and
spin wave, as well as the inertial switching. Here, we focus on the inertial effect of self-oscillations induced by
the spin-orbit torques in easy-axis antiferromagnets. Utilizing the stability analysis of equilibria and the exact
solution of precession, we analytically construct the phase diagram controlled by the current and the inertial
relaxation time. We then show that the magnetic inertia expands the tunable range of oscillation, the frequency
of which is in the terahertz regime. Meanwhile, the frequency is proportional to the current and can enter an
ultrahigh regime. Particularly, a lager-amplitude oscillation always persists when increasing the current. These
features stand in sharp contrast to the case without an inertia, for which the amplitude of oscillation decreases
with an increasing current and the oscillation fades away beyond a critical current. Our results not only enrich the
nonlinear magnetic dynamics involving the inertial effect but also provide guidelines for the terahertz application
of antiferromagnetic spintronics.
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I. INTRODUCTION

Terahertz (THz) oscillations have raised a great interest
for multifarious applications, such as biomedical imaging,
industrial product inspection, security check, and wireless
communication [1]. Magnetization oscillations in antiferro-
magnets (AFMs) have the potential to realize the emitting
and receiving of THz signals. Due to the exchange en-
hancement, the frequencies, of both the linear and nonlinear
AFM oscillations, fall into the THz range. Furthermore, they
can be manipulated by spin-orbit torques (SOTs) [2], which
are generally produced in a simple bilayer structure con-
sisting of a current-driven heavy-metal layer and an AFM
one. Mathematically, SOTs can be decomposed into two per-
pendicular components: the fieldlike SOT (FLSOT) and the
dampinglike SOT (DLSOT). The former acts as an effec-
tive field proportional to the current. The latter can pump
energy into or dissipate energy from the system, depending
on the current polarity. So, increasing attentions have been
attracted on the THz oscillations, especially driven by the
SOTs, in the synthetic [3–8], collinear [9–23], canted [24],
and noncollinear trisublattice AFMs [25–29], as well as the
ferrimagnets [30–32].

Although these investigations may contribute to the un-
derstanding of the AFM oscillator from viewpoints of both
fundamental and applied physics, we note that there exists a
question bringing about a disadvantage for application. Gener-
ally, the oscillating frequency, which is almost proportional to
the strength of SOTs in most previous studies, can be adjusted
by the current. However, when increasing the current, the pre-
cessional angle decreases in order to keep the balance between
the DLSOT and the damping. Correspondingly, the amplitude
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of oscillation is getting smaller and smaller, so that the oscil-
lation disappears with the current beyond a critical value. This
leads to a finite tunable range of the oscillating frequency and
a weak power output. There are several attempts to remove
this shortcoming. For instance, Khymyn et al. [11] introduced
a sufficiently strong easy-plane anisotropy, compelling the
magnetic moments to precess in plane, and then maintaining a
large-amplitude oscillation. Zhao et al. [23] confirmed that the
tunable range can be optimized by changing the anisotropy or
the damping.

Here, inspired by recent studies on magnetic inertial effects
[33], we want to explore how the magnetic inertia influences
the THz nonlinear oscillation, and overcomes the shortcom-
ing mentioned above. Phenomenologically, magnetic inertia
emerges as a term including a second time derivative of the
magnetization in the Landau-Lifshitz-Gilbert (LLG) equation.
It was argued that the magnetic inertia arises from an in-
stantaneous noncollinearity between the magnetization and
the angular momentum. Inspired by a hint of inertial effect
mentioned by Gilbert in deriving the damping term [34], the
inertial term in the LLG equation has been derived in the
framework of mesoscopic nonequilibrium thermodynamics
theory [35], obtained by a mechanical analogy of the magnetic
moment with the spinning top [36], and derived from the
classical mechanics of a circular current loop [37]. In addition,
it can also be derived by series expansions of some integrod-
ifferential equations on the basis of the extended breathing
Fermi surface model [38,39], the Dirac theory [40,41], the
retardation effect [42], the s-d interaction [43], and the inter-
action between a magnetic moment and a vector bath [44].
The typical inertial effect is the nutation, which has been
observed indirectly [45]. Subsequently, direct evidence was
presented [46,47] as technologies, e.g., the high-frequency
magnetic field, developed. Besides, there were a boom of the-
oretical studies on the inertial effects, including the nutation
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resonances in ferromagnets [48–55] and AFMs [56–58], the
nutation spin waves [59–63], and the nutational switching
[64–67].

For dc-current-driven spin-valve or spin Hall heterostruc-
tures, when the dampinglike spin-transfer torque or the
DLSOT compensates the intrinsic magnetic damping, a
magnetic self-oscillation may be triggered, which generates
self-sustained ac signals from dc inputs. For ferromagnetic
systems, this oscillation, with the frequency in the GHz
regime, is propelled by the external magnetic field, the
anisotropy field, or the demagnetization field [68,69]. By
contrast, in antiferromagnetic or ferrimagnetic systems, the
self-oscillation is mainly driven by the strong exchange in-
teractions, leading to THz frequencies [10,11,22,23,28,31]. In
particular, the AFM self-oscillations, which occur in a simple
setup and can be operated in the absence of external magnetic
fields, make it possible to realize compact nanosized electrical
generators and receivers of THz signals. So far, the effect
of magnetic inertia on the self-oscillation of magnetization
is unexplored. Therefore, in this paper, we will study the
influence of magnetic inertia on the self-oscillations in the
uniaxial AFMs driven by the SOTs.

The present work is organized as follows. After intro-
duction Sec. I and model description Sec. II, we present
the attenuation and dispersion of precessional and nutational
linear modes for small currents and derive the instability con-
dition by linear stability analysis, see Sec. III supplemented
with Appendix B. Section IV and Appendix C are devoted
to the magnetic phase diagram and the detailed analysis of
self-oscillations triggered by the SOTs in the presence of
magnetic inertia. We finally discuss and summarize our results
in Secs. V and VI.

II. MODEL

The considered model is a layered structure consisting of
a current-driven heavy-metal (HM) layer and a layer of the
AFM with an easy-axis anisotropy. Including the current-
induced SOTs [2] and the inertial effect, the AFM dynamics
is ruled by two coupled LLG equations,

ṁi = mi × ∂E

∂mi
+ αmi × ṁi + ηmi × m̈i + τi, (1)

where mi stands for a unit vector along the magnetization of
the ith sublattice with i = 1, 2, and the overdot denotes time
derivation. All the terms in Eq. (1) have been rescaled to have
the dimension of frequency.

The first term on the right-hand side of Eq. (1) repre-
sents the precession propelled by the effective internal fields
due to the exchange interaction and the magnetocrystalline
anisotropy. The magnetic energy in this term reads

E = ωE m1 · m2 − ωK

2∑
i=1

(mi · ez )2, (2)

where ωE = γ0HE , and ωK = γ0HK , with HE being the effec-
tive field due to the intersublattice exchange coupling, and HK

the anisotropy field. γ0 = gμ0μB/h̄ is the gyromagnetic ratio

with g being the Landé g factor, μ0 the vacuum susceptibility,
μB the Bohr magneton, and h̄ the reduced Plank constant.

The second term is the damping torque with α being
Gilbert constant. The third term, involving the second time
derivative of the magnetization vectors, is a torque from the
magnetic inertia. η is the inertial relaxation time ranging from
fs to ps, as predicted in the ab initio calculation [70] and the
nutation experiments [45–47].

The fourth term is the SOTs expressed as

τi = −ωT mi × (mi × ez ) − βωT (mi × ez ), (3)

with the spin polarization along the z axis and β denoting the
ratio of the FLSOT to the DLSOT. In the unit of frequency,
the strength of SOTs reads

ωT = μB

eMsd
ξ je, (4)

with d being the thickness of the AFM layer, e the element
charge, Ms the sublattice saturation magnetization, and je the
electric current density. ξ is the SOT efficiency, which equals
to Tintθsh [71,72], with θsh being the spin Hall angle, and Tint

the spin transparency of the interface [73].

III. LINEAR OSCILLATIONS

Without the SOTs, the system is in two equivalent AFM
states (m0

1 = ±ez and m0
2 = ∓ez). For small currents, linear

modes are excited around an AFM configuration, which can
be represented by an oscillating ansatz,

mi = (−1)i−1ez + Xie
λt ex + Yie

λt ey. (5)

Here Xi and Yi, which are assumed as small quantities, are
the amplitudes of oscillating modes. The oscillating feature is
represented by a complex factor,

λ = −χ + iω, (6)

with χ being the attenuation factor and ω the oscillating fre-
quency. Inserting Eq. (5) into Eq. (1), and truncating the LLG
equations at the linear order of Xi and Yi, we get the linearized
equation in the vicinity of an AFM state,⎛

⎜⎜⎝
λ + ωT f +(λ) 0 ωE

− f +(λ) λ + ωT −ωE 0
0 −ωE λ − ωT − f −(λ)

ωE 0 f −(λ) λ − ωT

⎞
⎟⎟⎠

⎛
⎜⎜⎝

X1

Y1

X2

Y2

⎞
⎟⎟⎠ = 0,

(7)

where f ±(λ) = ηλ2 + αλ + ωE + 2ωK ± βωT . Note that
Eq. (7) is identical for two AFM states. To ensure the solution
of Eq. (7) nontrivial, the determinant of coefficient matrix
must be zero, leading to a secular equation,

8∑
i=0

aiλ
8−i = 0, (8)

where a0 = η4, a1 = 4αη3, a2 = 2[1 + 3α2 + 2η(ωE +
2ωK )]η2, a3 = 4α[1 + α2 + 3η(ωE + 2ωK )]η, a4 = (1 +
α2)2 + 4(ωE + 2ωK )(1 + 3α2)η + 2[2(ω2

E + 6ωEωK + 6ω2
K )

+ (1 − β2)ω2
T ]η2, a5 = 4α(1 + α2)(ωE + 2ωK ) + 4{2α(ω2

E
+ 6ωEωK + 6ω2

K ) + [(α − β ) − (1 + αβ )β]ω2
T }η, a6 = 8ωK
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FIG. 1. (a) The attenuation χ and (b) the frequency ω of the lin-
ear oscillation based on the AFM configuration. The dotted and solid
lines correspond to the case that η = 0 and η �= 0, respectively. The
values of the magnetic parameters are brought from FeF2 [74,75].
The exchange field HE = 540 kOe and the anisotropy field HK = 200
KOe, corresponding to ωE = 9.5 THz and ωK = 3.5 THz. The other
parameters are α = 0.01, β = 1, and η = 10 fs.

(ωE + ωK ) + 4α2(ω2
E + 6ωEωK + 6ω2

K ) − 2[(1 + αβ )2 − (α
− β )2]ω2

T + 4(ωE + 2ωK )[4ωK (ωE + ωK ) + (1 − β2)ω2
T ]

η, a7 = 4(ωE + 2ωK ){4αωK (ωE + ωK ) + [(α − β ) − (1 +
αβ )β]ω2

T }, a8 = [(1 + β2)ω2
T − 4ωK (ωE + ωK )]2 + 4(ωE +

2ωK )2ω2
T . This is an eighth-order algebraic equation with

the high-order terms arising from the magnetic inertia. Note
that a0, a1, a2, and a3, which are of higher order in λ,
are proportional to η. Setting η = 0, Eq. (8) turns into a
fourth-order equation.

In general, for the nth-degree polynomial equations with
real coefficients, the nonreal roots come in complex conjugate
pairs. So, the modes with negative frequencies have the same
attenuation factors as their positive counterparts. We then
solve Eq. (8) numerically and only show the dispersion for
positive frequency in Fig. 1(b), and the dependence of the
attenuation factor on the strength of SOTs in Fig. 1(a).

Several conclusions can be made from Eqs. (5)–(8) and
Fig. 1. (i) The presence of inertia leads to a red shift of the
precessional modes, illustrated by comparing the solid lines
and the dotted ones in the bottom panel of Fig. 1(b). (ii) The
nutation modes appear if involving the inertial term, as shown
by solid lines in the top panel of Fig. 1(b). (iii) The SOTs break
the degeneracy of both the precession and nutation modes, and
the frequency gap grows with the current (i.e., ωT ) increasing.
(iv) Along with ωT increasing, the attenuation factor of one
mode becomes zero first, as marked by the circle point in
Fig. 1(a). Beyond this point, the AFM state is unstable. By
the linear stability analysis and the Routh-Hurwitz criterion
[76–78], it can be inferred that the AFM state turns unstable
if |ωT | > ωa

T , which reads (see Appendix A for details of the
derivation),

ωa
T = α√

2η

√
(1 + αβ )2 + 2η(ωE + 2ωK ) −

√[
(1 + αβ )2 + 2η(ωE + 2ωK )

]2 − 16η2ωK (ωE + ωK ). (9)

It can be checked that ωa
T decreases with η increas-

ing. This indicates that the switching from an AFM state
to the self-oscillation is easy for strong magnetic iner-
tia. Especially, expanding to lowest nonvanishing order in
η, we get ωa

T = (2α)/(1 + αβ )
√

ωK (ωE + ωK )[1 − 1/(1 +
αβ )2(ωE + 2ωK )η]. In the limit of η → 0, the value of ωa

T
is consistent with the result without inertia [22].

IV. SELF-OSCILLATIONS

A. Precession solution and phase diagram

After the breakdown of the linear modes based on an AFM
configuration, the system may enter other equilibria or dy-
namic states, especially, the large-amplitude self-oscillation,
which is determined by the nonlinear characteristics of the
system. In view of the rotational symmetry around the z axis,
the system allows m1x = −m2x, m1y = −m2y, and m1z = m2z.
Then, a precessional solution can be derived analytically,
which reads,

m1x = −m2x =
√

1 − m2
1z cos (2π f t + ϕ0), (10)

m1y = −m2y =
√

1 − m2
1z sin (2π f t + ϕ0), (11)

m1z = m2z = α(1 + αβ )ωT

2α2(ωE − ωK ) + ηω2
T

(12)

with ϕ0 being the initial phase. The frequency

f = − 1

2π

ωT

α
. (13)

For this solution, m1 and m2 precess around the z axis and
keep antiphase. The minus in Eq. (13) means that the rotation
around the positive z direction is left handed (right handed)
for positive (negative) ωT . To ensure the existence of this
solution, |m1z| = |m2z| < 1. Namely, (|ωT | − ωc

T +)(|ωT | −
ωc

T −) > 0, where

ωc
T ± = α

2η
(1 + αβ )

(
1 ±

√
1 − η

ηc

)
, (14)

with

ηc = (1 + αβ )2

8(ωE − ωK )
. (15)

In view of the strong exchange interaction, it is reasonable
to assume that ωE > ωK . Then, solving this inequation for
η < ηc, we have |ωT | < ωc

T − or |ωT | > ωc
T +. As derived

in Appendix B, ωc
T ± also defines the instability lines of
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FIG. 2. Phase diagrams in the parameter plane spanned by the
SOT strength ωT and the inertial relaxation time η. (b) and (d) are
closer views of (a) and (c), respectively, in the region with small ωT .
The red lines represent ωa

T [Eq. (9)]. The black curves represent ωc
T ±

[Eq. (14)]. The filled circles are plotted by numerically integrating
Eq. (1). The red and black circle points correspond to ωa

T and ωc
T − at

η = 0. In the colored regions, the self-oscillation (marked by Prec.)
exists. The color scale indicates the precessional angle θ . In (a) and
(b), we use the magnetic parameters of FeF2 [74,75]. The exchange
field HE = 540 kOe and the anisotropy field HK = 200 kOe, cor-
responding to ωE = 9.5 THz and ωK = 3.5 THz. In (c) and (d),
we use those of MnFe2 [74,79]. HE = 526 kOe and HK = 8.2 kOe,
corresponding to ωE = 9.25 THz and ωK = 0.14 THz. The other
parameters are α = 0.01, and β = 1.

the FM states. When ωc
T − � |ωT | � ωc

T +, |m1z| = |m2z| � 1
and the precessional state is unstable. As demonstrated in
Appendix B, the FM state with m0

1 = m0
2 = ez is stable for

ωc
T − � ωT � ωc

T +, and the other FM state with m0
1 = m0

2 =
−ez is stable for −ωc

T + � ωT � −ωc
T −. If η > ηc, ωc

T ± are
conjugate complex. From Eq. (12), it is easy to infer that,
|m1z| = |m2z| < 1 for arbitrary ωT . This means that the pre-
cession always exists for |ωT | > ωa

T .
Based on Eqs. (9) and (14), we build the phase diagrams

controlled by ωT and η in Fig. 2 for the AFMs with a strong or
weak anisotropy. According to the stability analysis of AFM
(see Appendix B) and FM states (see Appendix C), we find
that there is no stable equilibrium state in some parameter
regions, which are colored areas in Fig. 2. By integrating
Eq. (1) numerically, the evolution of magnetization indicates
that self-oscillations arise when ωT and η locate in these areas.

One direct observation form Fig. 2 is that when η > ηc,
the self-oscillation always occurs for ωT > ωa

T . If η < ηc,
two cases need to be distinguished, depending on the relative
magnitude of the anisotropy to the exchange interaction. If
ωK > ωE/3, ωa

T > ωc
T − for η < ηi, with

ηi = 3(1 + αβ )2 3ωK − ωE

8ω2
E

. (16)

ηi is obtained by solving ωa
T = ωc

T − and is labeled in Figs. 2(a)
and 2(b). It can be concluded that, for any ωT between ωa

T
and ωc

T −, only the FM or AFM exists and there does no self-
oscillation happen if η < ηi, as shown in Figs. 2(a) and 2(b).
Specially, in the absence of inertial term, no self-oscillation
occurs in this case. At η = 0, from Eqs. (9) and (14), we get
the critical values of ωT for AFM and FM states,

ω
a f m
T = 2α

1 + αβ

√
ωK (ωE + ωK ), (17)

ω
f m
T = 2α

1 + αβ
(ωE − ωK ). (18)

These two values are marked by the open dots in Fig. 2(b).
In general, when ωT < ω

a f m
T , the AFM state is stable. And

when ωT > ω
f m
T , the FM state is stable. Here, ω

f m
T < ω

a f m
T if

ωK > ωE/3 (for example, the uniaxial AFM FeF2), resulting
in a bistable state of FM and AFM, and then excluding the
self-oscillation in this interval from ω

f m
T to ω

a f m
T , as displayed

in Fig. 2(b).
By contrast, when ωK < ωE/3 (for example, the uniaxial

AFM MnF2), ω
f m
T > ω

a f m
T . Thus, in the interval from ω

a f m
T to

ω
f m
T , both AFM and FM equilibria are unstable and the self-

oscillation exists, as displayed in Figs. 2(c) and 2(d).

B. Analogy with spin flop and spin flip

As regards above-mentioned difference between the weak
anisotropy and the strong one, it is interesting to take an
analogy with the spin-flop and spin-flip transitions of AFM
under an magnetic field [80,81]. Both of the transitions are
triggered by an increasing magnetic field along the easy axis
of AFM. The spin flop occurs for a weak anisotropy. At a
critical field, the system suddenly snaps from an antiparallel
state into a configuration with m1 and m2 at a same angle
with respect to the easy axis. This is similar to the case of
ωK < ωE/3, for which the angle between m1 and the easy axis
is equal to that between m2 and the easy axis. But, unlike the
static spin-flop state, for which no external torques can cancel
the damping, in this case m1,2 precesses steadily around the
easy axis when the Gilbert damping is compensated by the
DLSOT. On the other hand, if ωK > ωE/3, the SOTs flip m1

(m2) to m2 (m1) at the critical ωT , similar to the field-triggered
spin-flip transition for a strong anisotropy.

C. Tunability of self-oscillation

From the precession solution and the phase diagram, we
can conclude that the presence of inertia extends the range of
ωT for the self-oscillation. For a relatively strong anisotropy,
as shown in Figs. 2(a) and 2(b), there does no precession
appear for any ωT if η = 0. When 0 < η < ηi, the system
turns from the AFM state to the FM one with an increasing
ωT across ωa

T . If increasing ωT further, the self-oscillation
happens beyond ωc+

T . When ηi < η < ηc, the system switches
from the AFM state to the precession at ωa

T , and then enter the
FM state with ωT crossing ωc−

T . With ωT increasing further,
the self-oscillation revives when ωT > ωc+

T . When η > ηc, the
self-oscillation always exists if ωT > ωa

T . The case is different
for a relative weak anisotropy, for which the self-oscillation
exists for any η. As shown in Figs. 2(c) and 2(d), if 0 � η <
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FIG. 3. A sketch of all the torques exerted on m1 and m2. Here,
the precession is triggered by a position ωT and the orbit is on the
hemisphere of m1z,2z > 0.

ηc, the AFM state, the precession, the FM state, and another
precession appear in turn when increasing ωT . If η > ηc, the
case is the same as the strong anisotropy. With η increasing,
the range of precession widens for both cases. Given that the
frequency is proportional to ωT [Eq. (13)], the extension of the
ωT range also broadens the frequency range, further enabling
an ultrahigh frequency.

Moreover, to understand the extension of precession range
due to the inertia, it is instructive to take an intuitive argument
based on the vector analysis of all the torques exerted on m1,2,
as schematically shown in Fig. 3. For the considered system,
there are six kinds of torques in total. The intrinsic damping
toque [αm1(2) × dm1(2)/dt] points along the normal of pre-
cessional cone. For a right-handed rotation, it points towards
the precessional axis (z axis) and decreases the precessional
angle. While, for a left-handed rotation (the case displayed in
Fig. 3), the damping torque turns m1,2 away from the rotation
axis. The DLSOT [−ωT m1(2) × (m1(2) × ez )] is also along
the normal of precessional cone, and in our sign conven-
tion, directs to the z axis for positive ωT . Both the damping
torque and the DLSOT are on the same line. To realize a
self-oscillation, the DLSOT must cancel the damping. If their
directions are identical, the self-oscillation cannot happen. If
they are opposite, a self-oscillation possibly occurs. So, as
shown in Fig. 3, under the SOTs with positive ωT , only the
left-handed precession possibly exists owing to the balance
between the damping and the DLSOT.

The other four torques are along the tangential of preces-
sional cone, as indicated in Fig. 3. By use of Eqs. (10)–(12),
the exchange torque [ωE m1(2) × m2(1)] born by m1(2) can
be expressed as ωE cos θm1(2) × ez with θ being the preces-
sional angle. This torque propels m1,2 rotating left handedly.
Also, from Eqs. (10)–(12), the inertia torque ηm1(2) × m̈1(2)

is written as ηω2 cos θm1(2) × ez with ω = 2π f , which still
results in a left-handed precession. This is in contrast to the
precession in a ferromagnet, for which the inertial torque
opposes and reduces the precessional torque produced by the
anisotropy or the magnetic field [54].

The anisotropy torque and the FLSOT enable a right-
handed precession. The sum of them reads −(ωK cos θ +
βωT )m1(2) × ez. Considering the strong AFM exchange cou-
pling and consequent high frequency, the exchange and

inertial torques generally overwhelm the anisotropy torque
and the FLSOT. Therefore, m1 and m2 rotate left handedly.

In the absence of inertia (η = 0), the precession is mainly
driven by the exchange torque on the promise of a balance
between the DLSOT and the damping. By Eq. (13), the fre-
quency increases with ωT increasing. This means that the
exchange torque must increase. From the expression of ex-
change torque [ωE cos θm1(2) × ez], the precessional angle θ ,
which can serve as a measure of the oscillating amplitude
(proportional to sin θ ), becomes more and more smaller, until
it vanishes. Thus, the region of self-oscillation is limited, as
demonstrated in several previous works [17,22,23,28,32].

In the presence of inertia (η �= 0), the dominant driving
torques are (ωE + ηω2) cos θm1(2) × ez. The second term fol-
lows a parabolical dependence on ω and becomes significant
for a high frequency. In experiment, it has been found that
this term manifests itself in an additional stiffening of the
ferromagnetic resonance [45]. If increasing ωT , the enhance
of ω strengthens the driven torques, postponing the decrease
of θ and enlarging the range of precession. Furthermore, when
η > ηc, the term ηω2 is predominant. Even if θ increases
(cos θ decreases), the total driven torques still get stronger.
Therefore, the self-oscillation always exists when increasing
ωT . Above argument is displayed by the variation of the color
scale in Fig. 2, which denotes the precessional angle θ . Spe-
cially, for the stronger SOTs, θ is very close to π/2. Namely,
the precession is almost in the x-y plane.

D. Effects of the fieldlike SOT

The FLSOT acts as a precessional torque like an external
magnetic field. Recent experiments report that the FLSOT can
be adjusted (examples of the literature are Refs. [82,83]), and
even becomes much stronger than the DLSOT [82], as well
as switches its sign [83]. First of all, we have checked the
maps of the signs of Hurwitz determinants for different β and
find that ωa

T of Eq. (9) is always the instability threshold of
AFM state. For definiteness, we restrict above discussions to
the case 1 + αβ > 0 and positive ωT . If 1 + αβ < 0, m1z =
m2z < 0 for ωT > 0, and a similar analysis indicates that m1,2

rotates around −ez left handedly.
It is interesting to consider a special scenario 1 + αβ = 0,

which, however, is not easily obtained by tuning the param-
eters at present. In this case, ηc = 0 [see Eq. (15)], ωa

T =√
2α

√
ωK/η [see Eq. (9)]. Along with η increasing, the sys-

tem enter the self-oscillation state more easier. In addition,
ωc

T ± = ±i
√

2α
√

(ωE − ωK )/η [obtained by taking the limit
1 + αβ → 0 in Eq. (14) or Eq. (C24)]. According to the sta-
bility analysis of FM state in Appendix C, complex ωc

T ± mean
that the FM state can not emerge and the system always keeps
the self-oscillation state beyond the instability of AFM state.
Moreover, m1z = m2z = 0 [see Eq. (12)] for the oscillating
solution, suggesting an exact in-plane precession. Also, these
features can be understood by a simple argument based on the
vector calculation. According to the LLG equations [Eqs. (1)–
(3)] and the precessional solution Eqs. (10)–(13) for the
case 1 + αβ = 0, the precessional torques from the exchange
interaction, the anisotropy, and the inertia vanish for this
in-plane precession (mi × ∂E

∂mi
= 0, and ηmi × m̈i = 0). The

damping torque αmi × dmi
dt = −ωT ez, which is offset by the
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DLSOT [(−ωT mi × (mi × ez ) = ωT ez]. Both of them are
proportional to ωT . So, the balance always holds for any
ωT and the FM state can not emerge when increasing ωT .
Moreover, the precession is propelled only by the FLSOT
−βωT mi × ez. For this in-plane precession, the rate of change
of mi can be expressed as ṁi = −2π f mi × ez = ωT

α
mi × ez.

Then, the condition 1 + αβ = 0 is obtained consistently from
ṁi = −βωT mi × ez.

V. DISCUSSION

Before ending this paper, several remarks are in order.
First, in the above concise deduction, the strengths of vari-
ous torques are scaled in unit of frequency, including that of
SOTs. Here, from Eq. (4), we estimate the current density
corresponding to relevant ωT . ηc is an important parameter.
When η > ηc, the range of self-oscillation is dramatically
enlarged. Taking the parameters in Fig. 2, ηc is about 21 fs for
FeF2, and 14 fs for MnF2. Although there is no experiment on
the AFM inertial effect, these values of η seem reasonable,
if referring to the inertial relaxation time in FMs ranging
from fs to ps (see Ref. [33] and references therein). Corre-
sponding to ηc, ωa

T , beyond which the self-oscillation appears,
is about 0.1046 THz for FeF2, and 0.0205 THz for MnF2.
Taking d = 3 nm, ξ = 0.32, as well as Ms = 44.6 kA/m for
FeF2 [75] and 47.7 kA/m for MnF2 [79] in Eq. (4), the
corresponding current densities are 7.55 × 1011 A/m2 and
1.59 × 1011 A/m2, respectively. These values are moderate
in experiment. From Eq. (13), the lowest frequency of self-
oscillation is 1.664 THz for for FeF2, and 0.3267 THz for
MnF2. When increasing the current, this frequency increases
unlimitedly for η > ηc and is in the THz ranges.

Second, although the inertial effect is observed only in FMs
at present, it seems to be naively believed that there also exists
inertia in AFMs. It was demonstrated in an ab initio calcula-
tion that the magnetic inertia is produced by the spin-orbit
coupling and can be tuned through the electronic structure
[70]. So, some AFM materials with tunable inertia (different
η) are expected.

Third, for the sake of completeness, we study both the
linear and nonlinear oscillations of AFMs under the SOTs.
The linear oscillations at small currents belong to the damped,
small-amplitude, and resonancelike excitations, which can be
used to detect the inertial relaxation time and the nutational
frequency, for example, in the resonance experiment by ap-
plying an additional ac current. In comparison, the nonlinear
oscillations is steady, self-sustained, and of large amplitude.
Thus, it is preferable to use the self-oscillations to emit THz
signals.

Finally, in this paper, we only investigate the case that
the spin polarization of SOTs is parallel to the easy axis of
AFMs, for which the analytic results can be obtained easily.
For other magnetic configurations and SOT schemes, e.g.,
the AFMs with a biaxial anisotropy or the SOTs with an
arbitrary spin polarization, the analytic calculations are very
complicated. However, there is a similar qualitative physics.
When increasing the current, the sublattice magnetization
m1,2 rotate around the spin-polarization direction left hand-
edly [10,11,16,22,23] after the instability of AFM ground
state. According to the qualitative analysis in Sec. IV C, it

can be argued that the inertial torque accelerates this pre-
cession and allows large-amplitude oscillations. But, a more
detailed understanding of this phenomenon for other SOTs-
driven AFMs with different configurations require a separate
analysis, which is beyond the scope of this work and will be
pursued in the future.

VI. SUMMARY

In summary, we investigate the linear and nonlinear oscil-
lations driven by the SOTs in uniaxial AFMs based on two
coupled inertial LLG equations. For the linear oscillation,
we find that the magnetic inertia results in a red shift of the
precessional mode and the emergence of a high-frequency
nutation mode. The SOTs lift the degeneracies of both the
precession and the nutation. Moreover, the phase boundary
of nonlinear oscillation (self-oscillation) is defined by the
stability analysis of AFM and FM equilibria as well as the
analytic precessional solution. From the phase diagram, it can
be revealed that the region of self-oscillation is expanded in
the presence of inertia. Especially, when the inertial relax-
ation time is greater than a critical value (η > ηc), the system
will no longer enter the FM state and the self-oscillation
always persists for arbitrary high currents. Additionally, the
frequency is proportional to the current and can access the
ultrahigh regime. When increasing the current, the precession
almost keeps in-plane, ensuring a large-amplitude oscillation.
For a special scenario that 1 + αβ = 0, an exact in-plane pre-
cession appears as long as the AFM state becomes unstable.
From an application perspective, these features of ultrahigh
frequency and large amplitude, as well as the expanded tun-
able region of self-oscillation, provide an attractive and novel
clue for the AFM THz technique.
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APPENDIX A: EQUILIBRIA

To study the linear and nonlinear oscillations, it is con-
venient to start from the equilibrium states under the SOTs,
which are defined by the equilibrium between the precessional
torque and the SOTs. Setting ṁi = 0 in Eq. (1), these equilib-
ria satisfy

ωE mi × m3−i − ωK (mi · ez )(mi × ez )

− ωT mi × (mi × ez ) − βωT (mi × ez ) = 0. (A1)

In view of the rotation symmetry about the z axis, it is easy
to find that there are two kinds of equilibria. One is two
equivalent AFM states, which is written as m0

1 = ±ez and
m0

2 = ∓ez. The other is two opposite FM states m0
1 = m0

2 =
±ez.

APPENDIX B: STABILITY OF AFM STATES

Now, let us analyze the stability of AFM states first. Ac-
cording to the regular procedure of linear stability analysis,
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FIG. 4. Maps of the signs of Hurwitz determinants (�3−7) in the parameter plane spanned by the SOT strength ωT and the inertial relaxation
time η. The shaded areas cover the range of parameters for positive �3−7. For the panels in the first and second (third and fourth) rows, the
magnetic parameters of MnF2 (FeF2) are used. The panels in the second and fourth rows show magnified views at small ωT . The columns from
left to right correspond to �3, �4, �5, �6, and �7 in turn. Here, α = 0.01 and β = 1. The magnetic parameters of FeF2 [74,75] are HE = 540
kOe and HK = 200 kOe, corresponding to ωE = 9.5 THz and ωK = 3.5 THz. Those of MnFe2 [74,79] are HE = 526 kOe and HK = 8.2 kOe,
corresponding to ωE = 9.25 THz and ωK = 0.14 THz.

we will linearize Eq. (1) in the vicinity of the AFM equilibria.
So, we obtain the secular equation [Eq. (8)] of the linear
oscillating ansatz Eq. (5). Based on this secular equation, we
analyze the dispersion and attenuation of the linear modes in
Sec. III of the main text. Here, by use of the Routh-Hurwitz
criterion [76–78], we attempt to obtain the analytic expression
of the instability condition of AFM states. It is argued that, if
all the roots of Eq. (8) have a negative real part, the corre-
sponding equilibrium state is stable. Then, we define a series
of determinants,

�1 = a1, (B1)

�2 =
∣∣∣∣a1 a0

a3 a2

∣∣∣∣, (B2)

�3 =
∣∣∣∣∣∣
a1 a0 0
a3 a2 a1

0 a4 a3

∣∣∣∣∣∣, (B3)

�4 =

∣∣∣∣∣∣∣∣

a1 a0 0 0
a3 a2 a1 a0

a5 a4 a3 a2

a7 a6 a5 a4

∣∣∣∣∣∣∣∣
, (B4)

�5 =

∣∣∣∣∣∣∣∣∣∣

a1 a0 0 0 0
a3 a2 a1 a0 0
a5 a4 a3 a2 a1

a7 a6 a5 a4 a3

0 a8 a7 a6 a5

∣∣∣∣∣∣∣∣∣∣
, (B5)

�6 =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 0 0 0
a3 a2 a1 a0 0 0
a5 a4 a3 a2 a1 a0

a7 a6 a5 a4 a3 a2

0 a8 a6 a7 a5 a4

0 0 0 a8 a7 a6

∣∣∣∣∣∣∣∣∣∣∣∣
, (B6)

�7 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 0 0 0 0
a3 a2 a1 a0 0 0 0
a5 a4 a3 a2 a1 a0 0
a7 a6 a5 a4 a3 a2 a1

0 a8 a6 a7 a5 a4 a3

0 0 0 a8 a7 a6 a5

0 0 0 0 0 a8 a7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (B7)

�8 = a8�7, (B8)

where a1−8 are functions of ωT and η, written be-
low Eq. (8). If all � are positive, the real parts of
eight roots of λ are all negative. First of all, �1 =
4αη3 > 0, and �2 = 4α[(1 + 5α2) + (ωE + 2ωK )η]η5 > 0.
In addition, a8 = [(1 + β2)ω2

T − 4ωK (ωE + ωK )]2 + 4(ωE +
2ωK )2ω2

T . Obviously, a8 > 0. So, from Eq. (B8), �7 and �8

have the same sign. Then, we just need to seek the conditions
that �3−7 are all positive.

The analytic solutions of �4−6 > 0 are tanglesome. So,
as an example in Fig. 4, we depict the lines of �3−7 = 0
and shade the areas where �3−7 > 0 for two typical uniaxial
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AFMs. By comparing the panels along each row, it can
be observed that when increasing ωT , �7 first becomes
negative at a given η. Thus, the stability of AFM state is
determined by the sign of �7. It should be pointed out that
this feature still holds if varying β. From Eq. (B7), �7 is
explicitly factorized as �7 = 4096η6/(1 + β2)2�7a�7b�7c,
where �7a = 4α4ωK (ωE + ωK ) − α2[(1 + αβ )2 + 2η(ωE +

2ωK )]ω2
T + η2ω4

T , �7b = α4[ηω2
E + (1 + α2)(ωE + 2ωK )]2

+ α2(1 + α2)[(1 + α2)(α − β )2 + 2β2η2ω2
E + 2(1 + α2)β2

η(ωE + 2ωK )]ω2
T + (1 + α2)2β4η2ω4

T , �7c = {η(1 + β2)
[(1 + β2)ω2

T + ω2
E ] + [(1 + αβ )2 − (α − β )2](ωE + 2ωK )}2

+ 4(α − β )2(ωE + 2ωK )[(1 + β2)ηω2
E + (1 + αβ )2(ωE +

2ωK )]. It is evident that �7b > 0 and �7c > 0. Then, solving
�7a = 0 yields

ωa
T ± = α√

2η

√
(1 + αβ )2 + 2η(ωE + 2ωK ) ±

√[
(1 + αβ )2 + 2η(ωE + 2ωK )

]2 − 16η2ωK (ωE + ωK ). (B9)

We plot the curves of ωT = ωa
T ± in rightmost column of

Fig. 4, which coincide with the contours of �7 = 0 by nu-
meric calculation. By superposing all the regions that �3−7 >

0 in Fig. 4, it can be observe that the AFM state becomes
unstable when ωT > ωa

T −. In Eq. (9), ωa
T − is replaced by ωa

T
for simplicity.

APPENDIX C: STABILITY OF FM STATES

Without SOTs, the FM states m0
1 = m0

2 = ξez (ξ = ±1)
certainly are unstable equilibria from the viewpoint of en-
ergetics. In the presence of SOTs, they could be stable.
Expressing mi in terms of a static part and a small amplitude
dynamic contribution, we assume

mi = ξez + Xie
λt ex + Yie

λt ey. (C1)

By the same linearization procedure used in Appendix B,
we obtain the secular equation, which can factorized into the
product of two quartic equations,

(
b0λ

4 + b1λ
3 + b2λ

2 + b3λ + b4
)

×(
c0λ

4 + c1λ
3 + c2λ

2 + c3λ + c4
) = 0, (C2)

where

b0 = η2, (C3)

b1 = 2αη, (C4)

b2 = 1 + α2 + 4ηωK + 2βηξωT , (C5)

b3 = 4αωK + 2(1 + αβ )ξωT , (C6)

b4 = (βξωT + 2ωK )2 + ω2
T , (C7)

c0 = η2, (C8)

c1 = 2αη, (C9)

c2 = 1 + α2 − 4η(ωE − ωK ) + 2βηξωT , (C10)

c3 = −4α(ωE − ωK ) + 2(1 + αβ )ξωT , (C11)

c4 = [βξωT − 2(ωE − ωK )]2 + ω2
T . (C12)

According to the Routh-Hurwitz criterion [76–78], the Hur-
witz determinants are calculated as

�b
1 = 2αη, (C13)

�b
2 = 2η2(1 − αβ )(ωT 1 − ξωT ), (C14)

�b
3 = 4η2(1 + α2)

(
ωb

T + − ξωT
)(

ξωT − ωb
T −

)
(C15)

�b
4 = b4�

b
3, (C16)

�c
1 = 2αη, (C17)

�c
2 = 2η2(1 − αβ )(ωT 2 − ξωT ), (C18)

�c
3 = 4η2(1 + α2)

(
ωc

T + − ξωT
)(

ξωT − ωc
T −

)
(C19)

�c
4 = c4�

c
3, (C20)

where

ωT 1 = α

η

1

1 − αβ
(1 + α2 + 2ηωK ), (C21)

ωT 2 = α

η

1

1 − αβ
[1 + α2 − 2η(ωE − ωK )], (C22)

ωb
T ± = α

2η
[(1 + αβ ) ±

√
(1 + αβ )2 + 8ηωK ], (C23)

ωc
T ± = α

2η
[(1 + αβ ) ±

√
(1 + αβ )2 − 8η(ωE − ωK )].

(C24)

Next, we try to find the conditions where all the Hurwitz
determinants are positive. First, and most obviously, b4 > 0,
c4 > 0, �b

1 > 0, and �c
1 > 0. Then, from Eqs. (C16) and

(C20), �b,c
4 has the same sign as �b,c

3 . Hence, we only need
to determine the signs of �b

2,3 and �c
2,3. In view of the strong

exchange interaction, it is reasonable to assume that ωE > ωK .
Then, if η > ηc with

ηc = (1 + αβ )2

8(ωE − ωK )
, (C25)

ωc
T ± are conjugate complex. It is easy to infer that �c

3 < 0,
i.e., the FM states are unstable.

Second, given α ∼ 10−2, we assume 1 ± αβ > 0 for a
moderate estimate of β. Then, on the promise of η < ηc,
the conditions that �b,c

1−4 > 0 are ξωT < ωT 1, ξωT < ωT 2,
ωb

T − < ξωT < ωb
T +, and ωc

T − < ξωT < ωc
T +. Furthermore,

184418-8



LARGE-AMPLITUDE AND WIDELY TUNABLE … PHYSICAL REVIEW B 108, 184418 (2023)

it can be proved that ωc
T + < ωT 2 < ωT 1, ωc

T + < ωb
T +, and

ωb
T − < ωc

T −. Then, the conditions are simplified as ωc
T − <

ξωT < ωc
T +. For the FM state m0

1 = m0
2 = ez, the stable

region is ωc
T − < ωT < ωc

T +. While for m0
1 = m0

2 = −ez, the
stable region is −ωc

T + < ωT < −ωc
T −. This phase boundary

is consistent with the boundary of precession state [Eq. (14)].
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