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The Ising chain realizes the fundamental paradigm of spin fractionalization, where locally flipping a spin
creates two domain walls (spinons) that can separate apart at no energy cost. In a quasi-one-dimensional system,
the mean-field effects of the weak three-dimensional couplings confine the spinons into a Zeeman ladder of
two-spinon bound states. Here, we experimentally tune the confinement potential between spinons in the quasi-
one-dimensional Ising ferromagnet CoNb2O6 by means of an applied magnetic field with a large component
along the Ising direction. Using high-resolution single crystal inelastic neutron scattering, we directly observe
how the spectrum evolves from the limit of very weak confinement at low field (with many closely spaced
bound states with energies scaling as the field strength to the power 2/3) to very strong confinement at high
field (where it consists of a magnon and a dispersive two-magnon bound state, with a linear field dependence).
At intermediate fields, we explore how the higher-order bound states disappear from the spectrum as they move
to higher energies and overlap with the two-particle continuum. By performing a global fit to the observed
spectrum in zero field and high field applied along two orthogonal directions, combined with a quantitative
parametrization of the interchain couplings, we propose a refined single-chain and interchain Hamiltonian that
quantitatively reproduces the dispersions of all observed modes and their field dependence.
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I. INTRODUCTION

Fractionalization of coherently propagating spin flips into
two or more quasiparticles is a phenomenon of much interest
in condensed matter physics. While in two and higher dimen-
sions such phenomena require highly frustrated interactions,
in one dimension, reduced mean-field effects lead to fraction-
alization even in unfrustrated systems. A canonical example
is the Ising chain in tilted field, with a deceptively simple
Hamiltonian

H =
∑

j

−JSz
jS

z
j+1 − hxSx

j − hzS
z
j, (1)

with J > 0 the Ising exchange, and hx and hz applied trans-
verse and longitudinal fields, respectively. Consider first the
case hz = 0: starting from a ferromagnetic alignment of all
spins along the Ising z axis and flipping a single spin creates
two domain walls. These can separate at no energy cost and
move apart independently of each other in the presence of
the transverse field [1,2], as illustrated in Fig. 1(a). Therefore
a local spin flip, created for example in a neutron scattering
process, fractionalizes into a pair of domain wall quasiparti-
cles (spinons, also referred to elsewhere as solitons or kinks).
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However, in the presence of a finite longitudinal field hz > 0,
domain walls are no longer free but have an attractive inter-
action, because there is an energy cost proportional to hz that
increases linearly with their separation. The longitudinal field
acts as an effective string tension between the domain walls,
not allowing them to separate but confining them into bound
states, realizing a one-dimensional analog of the confinement
of quarks into mesons [3]. By tuning the strength of the lon-
gitudinal field hz, one could then explore the crossover from
the regime of weak confinement (with hz a small perturbation
on the scale of J) where many closely spaced bound states
are expected, with energy separation predicted to scale as
a power-law h2/3

z , to the regime of strong confinement (hz

comparable to J), where, depending on the relative sizes of J ,
hz, and hx and on what other subleading exchange terms may
be present in the spin Hamiltonian beyond the minimal model
in (1), only one or at most two bound states are expected,
with their energies scaling linearly with hz. The motivation
behind the present studies was to explore the manifestation
of this physics experimentally in a material where an external
magnetic field can be used to tune the longitudinal field hz to
cover the full range from weak to strong confinement.

The material CoNb2O6 is considered to be an excellent
experimental realization of a ferromagnetic Ising chain with a
low enough exchange energy scale that the full phase diagram
in magnetic field is experimentally accessible [4–10]. It dis-
plays a quantum phase transition in transverse field, from an
ordered phase to a quantum paramagnet, and around the crit-
ical point it displays the expected universal properties, such
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(c)

FIG. 1. (a) Domain walls (solid lines) can separate apart at no
energy cost in a ferromagnetic Ising chain. (b) In a finite longitudinal
field hz, there is an energy cost linear in the separation, as if the two
domain walls interacted via a string tension λ (curly line between
solid dots), which stabilizes confinement bound states. (c) In the
weak confinement regime (hz � J), many bound states exist, which
are coherent superpositions of states with the two domain walls
separated by many sites. Solid lines are the Airy wave functions for
the first three bound states as per (4) for parameters λμ/h̄2 = 0.072,
relevant for the longitudinal mean field due to interchain interactions
in CoNb2O6 [4]. The domain wall separation, x, is in units of the
spacing along the chain c/2.

as evidence for an emergent E8 spectrum [4,7]. The magnetic
ions are Co2+, arranged into zigzag chains running along the
crystallographic c direction, with the zigzag in the b direction,
as shown in Fig. 2. The chains form a distorted triangular
lattice in the ab plane and the crystal structure is orthorhombic
(space group Pbcn) with lattice parameters a = 14.1337 Å,
b = 5.7019 Å, and c = 5.0382 Å at 2.5 K [11]. The combi-
nation of crystal field effects and spin-orbit coupling leads
to an effective S = 1/2 Kramers doublet ground state with
strong Ising-like character, which is separated from the next
lowest Kramers doublet by 30 meV [12]. Weak interactions
between chains stabilize magnetic order at low temperatures,
and below 1.97 K, the spins are ferromagnetically aligned
along each zigzag chain due to a dominant nearest-neighbor
Ising exchange, with an antiferromagnetic pattern between
chains [11,13]. The magnetic moments lie in the ac plane
[14,15], at an angle γ = 30◦ to the c axis [11], which we
take to be the local Ising z axis; a field applied along the b
axis is then transverse to the Ising axes of all spins. The ferro-
magnetic nature of the dominant interactions makes CoNb2O6

an ideal candidate for experimental tuning of the confinement
potential between spinons. Here, we report high resolution
single crystal inelastic neutron scattering (INS) measurements
that probe the full wave vector dependence of the spectrum as
a function of magnetic field applied along the crystallographic
a axis, with a large longitudinal (along Ising axis) component.
Our results complement earlier terahertz (THz) spectroscopy
measurements for the same applied field direction, which
probed the spectrum at the zone center (wave-vector transfer
Q = 0) [9,16], as well as THz spectroscopy and INS measure-
ments previously taken on the Ising material CoCl2 · 2 H2O
where the interchain couplings are more significant [17,18].
In particular, we parametrize the evolution of the bound state
spectrum with field and find good agreement with scaling

FIG. 2. A zigzag magnetic chain in CoNb2O6, showing Co2+

ions (blue) inside edge-sharing octahedra (blue shading) of
O2− ions (red).

laws expected in the regimes of weak and strong confinement,
corresponding to low and high applied fields, respectively. We
also parametrize the effects of the interchain couplings on the
high-field dispersive modes for fields along both a and b to ex-
tract pure one-dimensional (1D) dispersion relations. We then
compare those with exact diagonalization (ED) calculations to
arrive at a refined spin Hamiltonian that quantitatively repro-
duces all the features seen in the full wave-vector dependence
of the inelastic neutron scattering data, across a wide range of
applied fields.

The rest of this paper is organized as follows. Section II
outlines the inelastic neutron scattering experiments and
Sec. III presents the experimental results for the spectrum in
field applied along a across a wide range of field strengths
from weak confinement (III A) to strong confinement (III B),
with the evolution of the high-order bound states presented
in Sec. III C. Next, in Sec. IV, we propose a Hamiltonian for
the in-chain interactions and refine the parameters by compar-
ison to the observed dispersions at zero field and high field
along two orthogonal directions (a and b). Section V contains
our conclusions. Appendices contain the characterization
and parametrization of the effects of the interchain interac-
tions, as well as comparisons between the data and other
parameter sets.

II. EXPERIMENTAL DETAILS

Inelastic neutron scattering measurements of the magnetic
excitation spectrum were performed using the direct geometry
time-of-flight spectrometer LET at the ISIS facility [19]. The
sample was a large single crystal (4.59 g) of CoNb2O6 grown
by the floating-zone technique, as described in Ref. [20],
and mounted in the (0kl ) horizontal scattering plane, where
the wave-vector transfer Q is labeled as (hkl ) in recipro-
cal lattice units of the structural orthorhombic unit cell, so
Q = 2π ( h

a , k
b ,

l
c ). The sample was mechanically fixed in place

using copper brackets so that it would not move or rotate
due to the torques from the applied field. The sample was
cooled using a dilution refrigerator insert and all data were
collected below 0.14 K. A magnetic field up to 9 T was
applied vertically, along the crystallographic a axis, which has
a longitudinal field component hz = gzμBB sin γ , where B is
the externally applied field magnitude.

LET was operated to measure simultaneously the inelas-
tic scattering of incident neutrons with energies of Ei =
2.46, 4.30, and 9.33 meV; the measured energy resolutions
(full width half maximum, FWHM) on the elastic line were
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0.038(1), 0.085(1), and 0.274(2) meV, respectively. To obtain
the overview of the field dependence of the spectrum, the
scattering was measured at each field for one fixed sample
orientation chosen such that data projected along the chain
direction covered a large part of the along-chain Brillouin
zone. For these measurements, the sample was aligned with
the (010) axis at an angle of 8◦ to the incident beam di-
rection, and scattering was measured for a typical counting
time of 3 hours per field at an average beam current of 40
μA of protons on target. In addition to the single orientation
measurements, multiangle (Horace) scans were performed to
obtain a full four-dimensional data set of scattering intensity
as a function of three momentum directions and energy at
two representative fields, 1.5 and 8 T. For these, the sample
was rotated about the vertical a axis in steps of 2◦ over
an angular range of 88◦ and 108◦, with 11 and 17 minutes
counting per step, respectively. Additional Horace scans were
collected in a separate experiment on LET at 0.14 K in a
field of 9 T ‖ b on the same crystal as in [21] mounted in the
(h0l ) horizontal scattering plane. For these measurements, the
incident energies used were Ei = 2.14, 4.02, and 10.17 meV,
and the angular range was 145◦ covered in steps of 1◦ with
6 minutes counting per step. The Horace scans were used
to quantitatively parametrize the interchain dispersions, as
detailed in Appendix A. The raw time-of-flight neutron data
were converted to scattering intensities S(Q, ω) using MANTID

[22], and the resulting data were then analysed using the
HORACE [23] and MSLICE [24] packages.

III. RESULTS

A. Weak confinement regime

In the limit of small longitudinal field hz � J , the confine-
ment of domain walls into bound states can be captured via a
Schrödinger equation for the domain wall separation distance
x in the continuum limit [3,25,26]

− h̄2

μ

d2ψn(x)

dx2
+ λ|x|ψn(x) = (mn − 2m0)ψn(x), (2)

where μ is the reduced mass for the domain wall pair, λ =
2hz/c is an effective string tension between the domain walls,
c/2 is the spacing of sites along the chain, and m0 is the energy
cost to create a single domain wall. For the Hamiltonian (1),
m0 = J/2 − hx [27]. Equation (2) can be recast as the Airy
equation, giving energy eigenvalues

mn = 2m0 +
(

h̄2

μ

)1/3

λ2/3zn, (3)

where −zn are the zeros of the Airy Ai function; the corre-
sponding eigenstates are

ψn(x) = Ai

((
μ

h̄2 λ

)1/3(
x − mn − 2m0

λ

))
. (4)

The wavefunctions for the lowest three bound states are
sketched in Fig. 1(c). This shows that the bound states in the
weak confinement regime are expected to be superpositions
of many states, with finite amplitude even for states with large
separations between domain walls.

Equation (2) is applicable for CoNb2O6 even in the ab-
sence of an externally applied field. This is because i) there
is a finite longitudinal (internal) mean field due to the weak
interchain interactions hz = 2JλMF〈Sz〉, with J and λMF de-
fined in Sec. IV A and 〈Sz〉 the expectation value of the spin
component along the Ising axis; and ii) there are terms in the
spin exchange Hamiltonian beyond the dominant Ising ex-
change (as will be shown in Sec. IV) that lead to domain wall
propagation, so a finite μ. The bound state spectra observed
in previous INS [4] and THz spectroscopy experiments [7,9]
have shown good agreement with the predictions of (2) with
hz interpreted as the interchain longitudinal mean field, which
has the same magnitude for all sites in the zero-field anti-
ferromagnetic phase. Zero-field data collected in the current
experimental setting are shown in Fig. 3(a), where the three
lowest bound states are clearly visible at the lowest energies.
Also notable is the sharp mode at the top of the spectrum with
a dispersion curving the opposite way to the lower modes.
This mode, which is stabilized by a different mechanism from
the low-energy confinement bound states, is a single-spin-flip
bound state stabilized by a subleading term in the spin Hamil-
tonian of the form −JλS

∑
j (S

+
j S−

j+1 + S−
j S+

j+1)/2. This XY
exchange term allows a single-spin-flip state (i.e., two domain
walls on adjacent sites) to hop between nearest-neighbor sites
along the chain as a single entity and this state was therefore
dubbed a kinetic bound state [4].

The zigzag nature of the magnetic chains illustrated in
Fig. 2 leads to a doubling of the unit cell along the chain
direction compared to straight chains, therefore a doubling
of the number of magnetic modes, so each “primary” mode
with dispersion ω(h, k, l ) has a “shadow” version with dis-
persion ω(h, k, l + 1) obtained from the “primary” version
by Brillouin zone folding. In zero field, in the approximation
of decoupled chains, the intensities of these modes are pro-
portional to cos2(2πkζ ) and sin2(2πkζ ) respectively, where
the magnetic ions alternate in position along the b direction
as ±ζb between consecutive sites along the zigzag chain
(ζ = 0.165) [21]. In Fig. 3(a), the top mode (the kinetic bound
state) is a shadow mode with finite intensity only because
of finite k, whereas all low-energy confinement modes are
primary. Throughout this paper, we refer to the nth lowest
energy (primary) mode as mn, in both the weak confinement
and strong confinement regimes. Modes with the same label
in these two regimes have very different character, but there is
a smooth crossover between the two regimes.

The remaining panels in Fig. 3 show the evolution of the
spectrum upon increasing field. It is known that low fields
applied along a induce a series of spin-flip transitions such
that above a threshold field of 0.14 T, all spin components
along a are parallel to the applied field [28–30]. All finite
field INS data were therefore collected at fields at and above
this threshold field to ensure all spin sites experience the same
magnitude longitudinal and transverse fields. Upon increasing
applied field, all bound states move up in energy, with the
higher order ones moving at a faster rate. This is because
the higher order bound states contain in their superposition
more weight for states with domain walls further apart [see
Fig. 1(c)], so with more spins flipped opposite to the applied
field direction, and therefore higher Zeeman energy or higher
effective g factor. Since the higher modes increase in energy
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FIG. 3. INS spectrum as a function of field from 0 to 2 T ‖ a, in the weak to intermediate confinement regimes, with field increasing from
left to right and top to bottom. Color is the raw neutron scattering intensity (i.e., no background has been subtracted) on an arbitrary scale,
collected using a high-resolution configuration (Ei = 4.30 meV) for a fixed sample orientation, with wave vectors projected along the chain
direction.

more quickly, the relative energy separation between adjacent
modes increases and modes become better resolved, such that
whilst at 0.14 T [panel (b)] only m1 to m3 are resolved, at
0.5 T [panel (d)], m1 to m7 can be resolved. The kinetic bound
state, however, increases in energy relatively slowly since it is
a single-spin-flip state, such that the confinement bound states
move past it as field is increased. Upon increasing field, the
extent of the spectrum covers a progressively wider energy
range and so, to probe the full spectrum above 2 T, we use a
higher incident energy, coarser-resolution configuration with
data plotted in Fig. 4. Data at 2 T are shown in both configura-
tions, [compare Figs. 3(h) and 4(a)]. At 2 T [panel (a)] modes
m1 to m4 (faint horizontal line near 3.7 meV) are clearly
resolved, but, upon further increasing field, modes m3 and
m4 become progressively fainter and above 6 T, in the strong
confinement regime, only m1 and m2 remain [panels (f) to
(h)]. In the following, we first discuss the strong confinement
regime, then discuss in detail the intermediate field regime.

B. Strong confinement regime

The INS spectrum at 8 T, representative of the strong
confinement regime, is shown in Fig. 5(a). Two dispersive
modes, lower energy m1 and higher energy m2, are seen,
each with both a (stronger intensity) primary and a (weaker
intensity) shadow version (obtained from the primary via an
l → l + 1 translation). In this regime, m1 is a magnon mode,
a coherently propagating single spin flip, as expected for
the lowest energy excitation in a field-polarized paramagnet.
Meanwhile, the m2 mode can be understood as a dispersive
two-spin-flip state, i.e., a bound state of two m1 magnons.
To understand why a two-magnon state can still exist in this
limit of high fields, and why it is dispersive, albeit with a
much suppressed bandwidth compared to m1, it is insightful

to consider a minimal Ising-like XXZ model in longitudinal
field

HXXZ = − J
∑

j

[
Sz

jS
z
j+1 + λS

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)]

−
∑

j

hzS
z
j . (5)

The spectrum can be solved exactly [31] and contains, in
addition to conventional one-magnon (m1) excitations, also a
two-magnon (m2) bound state, with dispersion relations

m1(l ) = hz + J (1 − λS cos π l ),

m2(l ) = 2hz + J

[
1 − λ2

S

2
(cos π l + 1)

]
, (6)

and (un-normalized) wave functions, expressed in wave-
vector units relevant here, as

|m1〉 =
∑

j

eiπ l j | . . . ↑↑↑↓ j↑↑↑ . . . 〉 (7)

and

|m2〉 =
∑

j

eiπ l j
(
| . . . ↑↑↓ j↓↑↑↑ . . . 〉

+ λSeiπ l/2 cos
π l

2
| . . . ↑↑↓ j↑↓↑↑ . . . 〉 + O

(
λ2

S

))
.

(8)

For m1, the dispersion comes at first order in the XY exchange
JλS . For m2, the hopping process occurs in two stages via an
intermediate state in which the spin flips are separated by one
site [second term in (8)], therefore the hopping process is sec-
ond order in the XY exchange, which leads to the dispersive
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FIG. 4. INS spectrum as a function of field from 2 to 9 T ‖ a, covering the intermediate to strong confinement regimes, with field increasing
from left to right and top to bottom. Color is the raw neutron scattering intensity on an arbitrary scale (different from Fig. 3), collected using a
high-coverage coarser-resolution configuration (Ei = 9.33 meV) for the same fixed sample orientation as in Fig. 3, with wave vectors projected
along the chain direction. (a) is at the same field as the higher-resolution data in Fig. 3(h).

term proportional to λ2
S in (6). We propose that the m2 state

seen experimentally has the same qualitative content as the
two-spin-flip bound state for the minimal model in (5), but
with modifications appropriate for the relevant Hamiltonian,
such that the m2 dispersion relation depends on all λ’s in (9), to
be discussed later. The dynamical correlations calculated for
this model are shown in Fig. 5(b) and capture all key features
of the dispersions and intensities of both m1 and m2 modes.

Note that a two-spin-flip state cannot usually be seen in
inelastic neutron scattering [it would not be observable for the
Hamiltonian in (5)], since the scattering intensity of a given
state is determined by its overlap with a single spin flip cre-
ated in a neutron scattering process. However, in the present
case, the external field is applied along the crystallographic
a axis, which makes a finite angle 90◦ − γ with the Ising
direction, and so the field is not perfectly longitudinal but also
has a finite transverse component. In addition, as we discuss
in Sec. IV, there are also subleading exchange terms in the
spin Hamiltonian that break spin conservation. Both the finite
(large) transverse field and the (relatively much smaller) ex-
change terms in the Hamiltonian that break spin conservation
lead to some mixing between states with different numbers of
spin flips, allowing the predominantly two-spin-flip m2 state to
have a finite admixture of a single-spin-flip state and therefore
to be visible in the present INS experiments.

It is notable that the m2 mode is expected to survive up to
indefinitely large field (although the intensity would become
progressively weaker as the mixing with the single-spin-flip
state would progressively decrease upon increasing Zeeman
energy). This is because the binding energy of m2 relative to
the 2m1 continuum for the minimal model in (5, 6) is m2 −
2m1 = −J in the limit λS → 0, i.e., the two magnons gain
Ising energy if they are next to one another. The fact that the
m2 mode is lower in energy than the 2m1 continuum means

that it is not possible for it to decay, hence it survives as a
sharp mode.

It is also important to note that at these high fields the m1

state has non-negligible dispersion bandwidth perpendicular
to the chain direction because of the finite interchain cou-
plings; this is discussed further in Appendix A. This has the
consequence that the line shape of the m1 mode in Fig. 5(a)
appears artificially broadened because the data are integrated
over a large range in the wave-vector direction transverse to
the chains. The interchain dispersion at high field is non-
negligible because the hopping strength between chains for
a single spin flip is first order in the interchain exchange.
In contrast, at lower fields, even the lowest energy mode
(m1) has multiple spin flips, as illustrated in Fig. 1(c) for
ψ1, so the interchain dispersion is higher order and is thus
much suppressed, such that it is essentially undetectable at
low field.

We also note that the bottom of the m1 dispersion is vis-
ibly flattened compared to a perfect sinusoid [see Fig. 5(a)],
indicating a double Fourier component along l , suggesting
hopping to next-nearest-neighbor sites along the chain, which
will be further discussed in Sec. IV A.

C. Fate of higher-order bound states

The evolution of the INS spectrum upon increasing field
from 2 to 9 T is shown in Fig. 4. A notable feature is that, upon
increasing field, the higher order bound states progressively
become less dispersive and rapidly lose spectral weight, with
the highest ones doing so at the fastest rate. In detail, at 2 T
[panel (a)], m1 and m2 have similar intensities and bandwidths,
m3 is fairly flat and m4 is very flat and fairly weak. Upon
increasing field, m4 moves up in energy and becomes weaker
until it disappears between 4 and 4.5 T. At those fields, m3 is
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FIG. 5. (a) INS spectrum at 8 T, deep in the strong confinement
regime, obtained by integrating a Horace scan over the transverse
wave-vector range |h| � 1.5 and |k| � 1.5. Intensities above the
dotted line have been scaled up by a factor of 2 to make them
more clearly visible. The incident energy used is the same as in
Fig. 4. (b) Calculated intensity S(Q, ω) as defined in (13) for the
single-chain Hamiltonian in (9), where interchain interactions are
included in a mean-field approximation as per (15), calculated using
ED on a chain of n = 16 sites (n/2 zigzag unit cells) with periodic
boundary conditions. ED gives the spectrum for a discrete set of wave
vectors spaced by �l = 2/n; for visualization purposes, the spec-
trum is plotted as constant over the interval �l around each discrete
wave vector. The ED results have been convolved with a Gaussian
in energy of FWHM 0.16 meV, representative of the experimental
resolution in this energy range and obtained by a fit to the observed
peak lineshapes. The white curves are the best fit single-chain dis-
persion relations with solid and dashed curves showing primary and
shadow modes (obtained via l → l + 1 translation) respectively. The
hatched region represents the 2m1 continuum obtained by assuming
that quasiparticles do not interact. Note that m2 is below the 2m1

completely flat and weaker in intensity, then becomes unde-
tectable above 6.5 T.

The field dependence of the m3 mode is summarized in
Fig. 6(a). The intensity (red triangles and right vertical axis)
drops off very rapidly upon increasing field, decreasing by
more than an order of magnitude between 1 and 4 T. In this
field range, the m3 energy (blue round symbols, left axis) is
below the estimated 2m1 continuum lower boundary (dashed
line), so the m3 mode should be stable, with no mechanism
for decay; nevertheless, its intensity drops off very fast upon
increasing field. A qualitatively similar behavior is observed
for the m4 mode [panel (b)]: the intensity drop-off is an even
steeper function of increasing field and again the intensity
decreases very quickly even before 2 T, above which m4 enters
the 2m1 continuum. Within the sensitivity of the experiments,
no systematic intensity change occurs for either of the m3,4

modes as they enter the continuum and their signal could
be followed even up to significantly higher fields, when the
modes should be deep into the continuum energy range [see
Figs. 6(c)–6(f)]. This might suggest that the matrix elements
for the decay processes m3,4 → m1 + m1 are relatively weak,
and that the dominant effect leading to the fast intensity
drop-off with increasing field is the progressively reduced
mixing of the single-spin-flip state into the wavefunction of
the m3,4 modes, as upon increasing field the number of spin
flips becomes a progressively better approximation for a good
quantum number. This picture is consistent with the results of
ED calculations, which indicate that while there is some decay
of the bound states when they overlap with the continuum,
the predicted broadening is of order 0.01 meV, which is not
resolvable within the experimental results presented here.

As well as studying the disappearance of the higher bound
states, the crossover between the weak and the strong con-
finement regimes was quantitatively tested by doing fits to the
expected field dependence of the mode energies. In the high
field regime, a linear dependence of mode energy on field is
expected. This is because, in this regime, the number of spin
flips in the mode is approximately a good quantum number,
with the mn mode containing states with n spins flipped com-
pared to the field-polarized state. Thus, the Zeeman energy is
expected to scale linearly with both mode number and field.
Indeed, the band averages are well fit by a linear dependence
of energy on field and mode number, i.e., a fit where the
gradients of the m2, m3 and m4 lines are constrained to be
2, 3, and 4 times respectively the gradient of the m1 line, as
illustrated in Fig. 7(a). A cutoff field of 3.5 T, assumed to
be close enough to the high field limit, was used, and only
data at fields above this were included in the fit, which was
performed simultaneously to the four lowest energy modes.
The quality of this fit, especially for the m1 and m2 modes,
also adds evidence that these are single-spin-flip and two-spin-
flip modes respectively, i.e., derived from modes with wave
functions given in (7) and (8). The fit in this regime used the
band averages, as we have found that the band minimum in
this regime is affected by the tilting of the local magnetization

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
continuum at all wave vectors. The m2 and 2m1 intensities have been
multiplied by factors of 2 and 40, respectively.

184416-6



TUNING THE CONFINEMENT POTENTIAL BETWEEN … PHYSICAL REVIEW B 108, 184416 (2023)

FIG. 6. [(a) and (b)] Energies (blue symbols, left axes) and integrated intensities (red symbols, right axes) deduced from multi-Gaussian
fits of the m3 (a) and m4 (b) mode at l = 0.5, extracted from cuts from data in the same configuration as in Fig. 4. Solid lines are guides
to the eye and the dashed lines show the estimated 2m1 continuum lower boundary at the same l value. [(c)–(f)] Energy scans showing the
field dependence of the various modes (integrated over 0.4 < l < 0.6), solid lines are fits to multi-Gaussian peaks. Intensities are raw neutron
scattering intensities on an arbitrary scale (the same for all panels). Note that a clear signal at the expected m3,4,5 energy is present even after
crossing the 2m1 continuum lower boundary [dashed vertical line in (c)–(f)], which has been calculated using fitted dispersion relations for the
m1 mode and assuming that m1 particles do not interact with each other.

towards the field, which leads to a field-dependent bandwidth.
This effect is quantitatively understood and is discussed in
more detail in Sec. IV C.

Figure 7(a) also illustrates that the linear fit breaks down
at low fields. This is expected, since at low field the number
of spin flips ceases to be even approximately a good quantum
number, and instead the weak confinement physics described
in Sec. III A holds. In this low field regime, a fit was performed
simultaneously to the band minima of all the modes, as shown
in Fig. 7(b), with the field dependence having a 2/3 power
law form, as per (3), and the spacing between the energy
levels being constrained by the zeros of the Airy function.
The band minima were corrected for the effects of interchain
dispersion by fitting the experimentally extracted dispersion
points to a parametrized three-dimensional (3D) dispersion
relation of the form given in Appendix A 2 a, then setting the
interchain hopping terms in those parametrizations to zero to
correct for the small energy shifts due to interchain dispersion.
The good agreement obtained between the field dependence
of the bound state energies and the different expected power-
law behaviors in the two field limits in Fig. 7 (solid lines)

lends support to the proposal that, in CoNb2O6, the interchain
couplings are sufficiently small relative to the dominant in-
chain exchange, and the Ising character sufficiently strong,
that both the weak and the strong spinon confinement regimes
are realized experimentally via tuning of the applied field. The
crossover region is approximately between 1.5 and 3.5 T. We
note that, according to the Hamiltonian and parameters refined
in Sec. IV, this crossover region is where the kinetic term
for domain walls and the Zeeman term are comparable, such
that the continuum approximation used in (2) for the weak
confinement regime is no longer applicable.

IV. QUANTITATIVE DETERMINATION
OF THE HAMILTONIAN

The Horace scans collected at high field have enabled us to
further refine the microscopic model for this system beyond
the minimal in-chain Hamiltonian proposed in Ref. [32]. In
this section, we will describe the refined in-chain terms, as
well as the fitting procedure, with details of the interchain
interactions referred to Appendix A. There, we revise and
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(a)

(b)

FIG. 7. (a) Band averages fit (solid lines) to a form En =
ngμBB + E0n where n labels modes, g = 4.20(2) is an effective g-
factor (for fields along a) and E0n is an effective zero-field energy.
The fit only includes data for B � 3.5 T. (b) One-dimensional band
minima, corrected for the effects of interchain hopping, as a func-
tion of field in the low field regime. The band minima have been
simultaneously fit (solid lines) to a form En = αzn|B − B0|2/3 + E0

as per (2), where −zn are the zeros of the Airy Ai function, B0 =
−0.24(2) T is a field offset due to the mean-field effects of the
antiferromagnetic interchain interactions, α = 0.221(2) meV T−2/3

is a constant of proportionality related to (h̄2/μ)1/3, and E0 =
0.92(2) meV is the energy required to create a pair of domain walls.
The fit only includes data in the field polarized paramagnetic regime
for 0.14 � B � 1.5 T; the zero field data were omitted from the fit as
the magnetic structure is different from that above 0.14 T such that
a different value of B0 would be needed. In both panels, the dashed
line shows the energy of the lower boundary of the 2m1 continuum at
l = 0.5 under the assumption that the quasiparticles do not interact.

extend a minimal model of the interchain interactions previ-
ously proposed to explain the dispersions in large transverse
field [21], such that we can consistently reproduce the high
field dispersions for field along both a and b directions.

The quantitative parametrization of the interchain disper-
sions obtained in Appendix A allows us to obtain effective
1D dispersion relations to which a single-chain Hamilto-
nian can be fit, which is done in Secs. IV A and IV B:
Sec. IV A introduces the proposed single-chain Hamiltonian
and Sec. IV B describes the fitting method. In Sec. IV C, we
then demonstrate that this proposed Hamiltonian also quan-
titatively captures the behavior of the magnetic excitations in
CoNb2O6 away from the fields at which the fit was performed.
We also show that the proposed Hamiltonian can account for
the spectrum observed in THz spectroscopy in Ref. [33].

A. Proposed single-chain Hamiltonian

The proposed single-chain Hamiltonian is an extension of
one recently proposed on symmetry grounds [32], and it is
convenient to write it as

Hsingle chain = H1 + H2 + HMF, (9)

where

H1 = J
∑

j

[ − Sz
jS

z
j+1 − λS

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)
+ (−1) jλyz

(
Sy

j S
z
j+1 + Sz

jS
y
j+1

)]
− μB

∑
j

[
gxBxSx

j + gyBySy
j + gzBzS

z
j

]
, (10)

H2 = J
∑

j

[
λAFSz

jS
z
j+2 + λ

xy
AF

(
Sx

j S
x
j+2 + Sy

j S
y
j+2

)
− λA

(
Sx

j S
x
j+1 − Sy

j S
y
j+1

)]
, (11)

where j runs over all sites on a single chain. Here, xyz form
an orthogonal right-handed coordinate system with y along the
crystallographic b axis and z defined to be the equilibrium spin
direction in zero applied field, which for the Hamiltonian (9)
coincides with the direction along which the spin components
have the largest exchange, i.e., the Ising axis.

We will show that H1 is the minimal Hamiltonian required
to qualitatively reproduce all key features of the INS spectra
seen in zero field, high field along a, and high purely trans-
verse field, while H2 is needed to quantitatively capture all
details of the spectra.

The first term in H1 is the dominant Ising exchange. The
second (λS) is a symmetric XY exchange term, which allows
single spin flips to hop, and the third term (λyz) is an off-
diagonal staggered exchange term which allows domain walls
to hop. These three terms (together with HMF, defined below,
for zero field and transverse fields below the critical point)
can qualitatively account for all of the features seen in the INS
spectrum, not only in field parallel to the a axis presented here,
across the full range of field values considered, but also in
purely transverse field (‖ b) below [34] and above the critical
field [32]. In particular, the XY exchange is needed to account
for the kinetic bound state seen in zero field [near l = −1 in
Fig. 9(a)] [4], and for the large m1 bandwidth seen in field
parallel to the a direction [Fig. 9(e)], as this term allows single
spin flips to hop. The staggered off-diagonal exchange term
λyz is needed to account for the fact that domain walls can hop
in zero applied field [seen in the fact that the bands around
l = 0 in Fig. 9(a) are dispersive] [32]. The key features of
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(a)

(b)

FIG. 8. Graphical representation of the nearest-neighbor part of
the exchange Hamiltonian (9) projected onto the bc (a) and ac
(b) planes for a single chain. The blue spheres represent cobalt atoms
while the red ellipsoids at the mid-point of each nearest-neighbor
bond represent the exchange matrix on that bond. The principal axes
of the ellipsoids correspond to the principal axes of the exchange
matrix, with the lengths of the principal axes proportional to the
absolute values of the relevant eigenvalues of the exchange matrix.
(a) Consecutive bonds along the chain are symmetry-related by the c
glide of the crystal structure (mirror in the ac plane passing through
the middle of each zigzag bond followed by translation by c/2),
which leads to the staggered orientations of the ellipsoids between
consecutive bonds along the chain; this corresponds to the staggered
exchange term λyz in (10). (b) The Ising z axis is at an angle γ to
the c axis in the ac plane. The absolute signs of λyz and angle γ

cannot be determined from neutron scattering measurements, only
their magnitude, so only one of the four possible orientations of the
exchange ellipsoids compatible with the experiments is shown. The
other three options are obtained by mirroring the exchange ellipsoid
for a reference bond in a plane passing through its center, parallel
to the ab, bc, or ac crystallographic planes. The resulting orientation
is then propagated via crystal symmetry operations onto all the other
bonds, i.e., via the c glide to obtain the other bonds on the same chain
and via the b (or n glide) to relate bonds on the chain passing through
the origin to bonds on the chain passing through the body-center of
the orthorhombic structural cell, as described in Fig. 14.

the nearest-neighbor exchange are graphically illustrated in
Fig. 8: the major axis of the ellipsoids at the middle of each
bond corresponds to the Ising exchange, the diameter in the
perpendicular plane to the Ising direction illustrate the XY
exchange λS , and the staggered orientation of the ellipsoids
is due to the staggered exchange λyz. Finally, the last term in
(10) is the Zeeman interaction with an applied magnetic field,
where we have assumed that the g tensor is diagonal in the
xyz axes.

In order to quantitatively account for the full wave-vector
dependence of the data, however, other, subleading terms
are needed, included under H2: the first term, λAF, is a next-
nearest-neighbor antiferromagnetic Ising term [4,32] needed
to account for the energy of the kinetic bound state. The
second term, λ

xy
AF, is an XY part to the next-nearest-neighbor

term which accounts for the flattening of the bottom of the m1

dispersion in high field along a [Fig. 9(e)]. The third term (λA)
is an asymmetry between the XX and YY exchanges, which

TABLE I. Single-chain Hamiltonian parameters used in this
work as defined in (10)–(12).

J 2.48(2) meV
λS 0.251(6)
λA −0.021(1)
λyz 0.226(3)
λAF 0.077(3)
λ

xy
AF 0.031(1)

gx 3.29(6)
gy 3.32(2)
gz 6.90(5)
λMF 0.0158(2)

is needed to account for the position and bandwidth of the
m2 dispersion in large field along a; without this term, the m2

mode is too low in energy. These last two terms are only of or-
der 2-3% of the Ising term and the necessity for their inclusion
in the parametrization can be seen by comparing Fig. 9(e)
with Fig. 9(g). The discrepancies illustrated in the latter
between the empirical and calculated dispersions motivates
our further refinement of the Hamiltonian with the inclusion
of the λA and λ

xy
AF terms which were fixed to zero in Ref. [32].

For completeness, we note that, as mentioned in
Ref. [32], two other nearest-neighbor exchange terms
are symmetry allowed, λxzJ

∑
j (S

x
j S

z
j+1 + Sz

jS
x
j+1) and

λxyJ
∑

j (−1) j (Sx
j S

y
j+1 + Sy

j S
x
j+1). However, the definition

of the axes used so far—that z is the direction of the
equilibrium spin in zero field—places a constraint between
these two terms, i.e., only one can vary independently.
This is because each of these two terms on their own
when added to (9) leads to a rotation of the zero-field
equilibrium spin direction away from the z axis, but for a
given λxz one can choose a corresponding λxy of appropriate
magnitude and sign such that, when both terms are present,
the zero-field equilibrium spin direction is still along z.
However, we find that allowing finite λxz and λxy with the
above constraint does not measurably improve the agreement
with the present experimental data, so in the following we
assume λxz = λxy = 0.

Finally, HMF captures the effects of interchain couplings in
a mean-field approximation, where in zero and low transverse
field

HMF = −J
∑

j

2λMF〈S〉 · S j . (12)

In fields above 0.14 T applied along the a direction, the rele-
vant form is instead given in Sec. IV C, and, at high field, this
simplified form is no longer sufficient as excitations acquire
a finite interchain dispersion at first order in the interchain
couplings. Therefore, in this high field regime, we use the full
explicit form for the relevant interchain exchanges proposed
in (A4).

The refined parameter values are shown in Table I. The
Hamiltonian shown above quantitatively reproduces the spec-
trum seen in zero field, high field ‖ a, and high field ‖ b.
Furthermore, it also reproduces data at low fields along b, as
shown in Ref. [34] and at intermediate fields along a, and also
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FIG. 9. INS data in (a) zero field, (e) 8 T ‖ a, and (i) 9 T ‖ b compared to dynamical correlations computed via ED for different models
for a chain of 16 sites. (a) is adapted from Ref. [4]. White dots in (b)–(d) show experimentally extracted dispersion points from the data in (a),
solid white lines in (f)–(h) and (j)–(l) show the analytic parametrization of the experimental dispersion relations with interchain terms set to 0.
The models used were: the model 1D Hamiltonian in (9) with parameters in Table I [(b), (f), and (j)]; the model refined in Ref. [32] with gx

and gz taken from Table I [(c), (g), and (k)]; the model used in Ref. [33] with gx and gz taken from Table I [(d), (h), and (l)]. In (e)–(h), data
below 5 meV (dashed line) are integrated over |h| < 1.5 and −1.1 < k < −0.9. Note that the shadow mode is the more intense mode here, as
the range of transverse integration has been chosen in order to show the whole dispersion along l while minimizing artificial broadening due
to interchain dispersion. Data above 5 meV are integrated over |h| < 1.5 and |k| < 1.5 and intensities in this region have been multiplied by 2
to make the m2 mode more clearly visible. In (i)–(l), data below 4.1 meV (dashed line) are integrated over 0.8 < h < 1.2 and −0.1 < k < 0.1.
Data above the dashed line have been integrated over −1 < h < 4 and |k| < 1 and intensities in this region have been multiplied by 4 to make
the faint diffuse feature around l = −1 at about 5 meV more clearly visible. The ED calculations have been convolved with Gaussians of
FWHM 0.066, 0.16, and 0.3 meV in (b)–(d), (f)–(h), and (j)–(l), respectively. In (b)–(d), the intensity shown is Sxx (l, ω), as the data in (a) have
been corrected for the single ion magnetic form factor and the polarization factor under the assumption that Sxx = Syy and Szz = 0 for inelastic
scattering. In (f)–(h) and (j)–(l), all components of the dynamical structure factor are included and the integration range, polarization factor
and magnetic form factor have all been accounted for in the calculation.

accounts for previously published THz spectroscopy data in
low transverse field, as we discuss later in Sec. IV C.

B. Fitting procedure

The fitting procedure used a global simultaneous fit to
the dispersion relations corresponding to data taken in zero
field, 8 T ‖ a, and 9 T ‖ b, with the aim of arriving at a
consistent description of all these different regimes within the
same Hamiltonian.

First, cuts were taken through the data as a function of
energy transfer at constant wave-vector transfer. Dispersion
points were obtained by fitting Gaussian peak shapes to these
cuts. Many dispersion points were extracted from each data set
(over 500 for the 8 T ‖ a data). Empirical dispersion relations
were then fit to these dispersion points. For the high field data,
these were 3D dispersion relations, as per (A2) and (A8) for
field along a and b, respectively. In zero field, the interchain
hopping effects are negligible, due to the multi-spin nature of
the bound states as well as the antiferromagnetic order pattern
between chains, which suppresses interchain hoppings for the
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kinetic bound state (see Appendix B) so a 1D form was used.
The single-chain Hamiltonian was then fit to these empirical
dispersion relations with the interchain parameters set to zero.
It was not possible to use the parameters derived from linear
spin wave theory fits directly, since the predominantly 1D
nature of the magnetic interactions together with the small
effective spin S = 1/2 leads to strong quantum fluctuations
that renormalize the dispersions even at the high magnetic
fields investigated. In addition, we wanted to capture the
various bound states, i.e., the zero field confinement bound
states, as well as the high field ‖ a m2 bound state; this is
not possible in linear spin wave theory. Instead, exact di-
agonalization (ED) calculations on finite chains were used,
with periodic boundary conditions at the ends of the chains.
The fits used calculations on 12 sites as the best compromise
between minimal finite size effects and the computation being
quick enough to be carried out many times for fitting (for
fitting to the kinetic bound state, 10 sites were used as this
required more eigenstates to be found and is not strongly
affected by finite size effects). Lanczos algorithms were used
to diagonalize only the low energy subspace and speed up the
calculation. There were 10 parameters in the fit but 13 pieces
of information across these different data sets, so the fit was
not underconstrained. In particular, the pieces of data used
for the fit were the dispersions of the first two confinement
bound states and the kinetic bound state from the zero field
data [4], the m1 and m2 dispersions from the 8 T ‖ a data,
and the magnon dispersion from the 9 T ‖ b data. For each
of these data sets, the squared difference χ2 between the ED
at each momentum point and the empirical fitted dispersion
relation was calculated, normalized by the uncertainty on the
fitted dispersion relation as calculated from the covariance
matrix of the fitted dispersion parameters, and summed; the
fit minimized this total χ2. When calculating χ2 for the high
transverse field data, only the portion of the dispersion for
l � 0.5 was used, as at higher values of l , quasiparticle break-
down occurs [32,35], meaning that the dispersion relation
ceases to be well defined. The optimization used a quasi-
Newton algorithm and the initial parameters were varied in
order to make sure that a global minimum was found. The
very good one-to-one agreement obtained in the simultaneous
fits of the ED to the empirical dispersion relations is shown in
Fig. 10.

Uncertainties on the fitted parameters were estimated by
varying the parameters of the empirical dispersion relations
according to their covariance matrices. There are significant
correlations between some of the parameters, especially be-
tween J and λS and between λS and gx. However, while a
number of slightly different parameter sets give similar agree-
ment with the features to which the single-chain Hamiltonian
was fit, the final parameter set presented in Table I gives
the best agreement not only with the features to which the
Hamiltonian was fit, but also to other features in the spectra.
These include the relative intensities of different features, the
full bandwidth of the magnon in the high transverse field data,
the energy and intensity of the faint diffuse feature around
l = −1 at about 5 meV in the high transverse field data, the
field dependence of the bandwidths of the m1 and m2 modes
in field along a, and the spectra in low transverse field (see
Ref. [34]).

FIG. 10. Energies of dispersion points as calculated from ED on
16 sites compared to their values as calculated from the empirical
dispersion relations. The one-to-one agreement obtained is excellent.

A comparison between the data to which the Hamiltonian
was fit and the spectrum calculated by exact diagonaliza-
tion using this refined Hamiltonian is shown in the first two
columns of Fig. 9. In these plots, the color indicates the
measured/calculated scattering intensity, while the overlaid
white dots/curves show the data points/dispersion relations
that were being fit to. It can be seen that very good quantita-
tive agreement is achieved. In these calculations, the plotted
intensities are

S(Q, ω) = | f (Q)|2
∑
α,β

(δα,β − Q̂αQ̂β )Sαβ (13)

where α, β both run over x, y, z, f (Q) is the magnetic form
factor, and Q̂α is the component along direction α of the
unit vector parallel to the wave-vector transfer Q. The partial
dynamical structure factors Sαβ are

Sαβ = gαgβ

∑
λ f

〈GS|Sα (Q)|λ f 〉〈λ f |Sβ (Q)|GS〉δ(Eλ f − h̄ω),

(14)

where the sum is over all excited states |λ f 〉 with energy
Eλ f relative to the ground state |GS〉 and where the Fourier
transformed spin is Sα (Q) = ∑

r Sα
r eiQ·r, summing over all

sites r.
The right hand columns of Fig. 9 contain comparisons

to previous models that cannot quantitatively or qualitatively
account for key features in the experimental data. These are
discussed in Appendix C. This comparison provides evidence
that all of the parameters are indeed needed in order to quan-
titatively capture all features in the data.
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(a)

(b)

FIG. 11. Band minima (a) and maxima (b) showing experimen-
tally extracted points (symbols) corrected for interchain dispersion.
The results of ED calculations on 16 sites (solid lines) are overlaid in
the corresponding color, with effects of interchain couplings included
as a mean-field correction. There is good agreement over the whole
field range probed. The dependence of the band maxima on field
was found to discriminate more strongly between different models
than the field dependence of the band minima. Note that the higher
bound states cease to be well defined in ED once they overlap with
the continuum; for this reason solid lines stop when they intersect
the dashed line indicating the lower boundary of the 2m1 continuum
in (a). In (b), the discrepancy between ED and experiment where
the m1 and m2 ED curves touch is due to the fact that experimental
values were extracted by fitting to the hopping form (A2) and points
were not extracted in regions where different modes overlapped, as
they do in Figs. 4(c) and 4(d). The interchange in the gradient of
the maxima of m1 and m2 modes with respect to field where they
intersect is due to the exchange in character of the top of the mode:
between approximately 2 T and 4 T, it is the top of the m2 mode that
has single-spin-flip character around l = 1.

C. Comparison of the Hamiltonian to experiment at other fields

The refined Hamiltonian can also be compared to the re-
sults of INS data taken at fields other than those to which

FIG. 12. Dynamical structure factor at zero momentum transfer
as a function of transverse field. Color indicates Sxx (0, ω) as per (14),
calculated using ED for a chain of 16 sites for the Hamiltonian in (9)
and convolved with a Gaussian of FWHM 0.067 meV. White dots are
data points extracted from the estimated local intensity maxima in
the energy-dependent THz spectroscopy data presented in Ref. [33]
at 1.5 K [Fig. 2(c) of that work].

the fit was performed. The data agree significantly better with
the calculation when using the fit with all terms included than
when omitting any of the terms in H2.

Figure 11 shows comparisons between ED calculations
and the data at fields away from those used for the fits.
Excellent quantitative agreement is found. In the calculations
shown here, the component of interchain interactions parallel
to the magnetization direction was taken into account in
a mean-field picture. For the field-polarized phase in field
above 0.14 T along the a direction, the form of the interchain
mean field in (12) does not hold because the ordering pattern
of the chains changes, and instead the relevant form of the
mean field term is

HMF =
∑

j

2(J1 + J ′
1)〈S〉 · S j − 4J2〈Sz〉Sz

j, (15)

where the interchain exchanges are defined in Appendix A 2 b.
This was the form used in Fig. 11.

In addition, in Fig. 12, we compare recently reported THz
spectroscopy data (white dots) with predictions based on the
Hamiltonian proposed here. The comparison is shown for
fields up to 3.5 T, which we consider to be in the region where
ED is sufficiently reliable, as the gap is still large (i.e., finite
size effects are small), and interchain effects are also small.
All the trends in the THz spectroscopy data are reproduced.
The good agreement in the intensities can be seen visually by
comparing Fig. 12 to Fig. 2(c) of Ref. [33] (not shown).
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V. CONCLUSIONS

In summary, we tuned the confinement potential between
spinons in the ferromagnetic Ising chain material CoNb2O6 by
applying an external magnetic field along the crystallographic
a direction, such that there was a large longitudinal (along
Ising axis) field component. In the low field, weak confine-
ment regime, we found a hierarchy of bound states, with their
energy varying as field to the 2/3 power and the spacing
between modes determined by the zeros of the Airy function,
as expected in a picture of domain walls in a linear confining
potential proportional to the strength of the longitudinal field.
Upon increasing field, higher-order bound states increase
more quickly in energy and progressively disappear from the
spectrum such that in the limit of high field, in the strong
confinement regime, we found only two bound states whose
energies depend linearly on field. The higher energy of these
two bound states is a dispersive two-spin-flip bound state
which is stabilized by the proximity to the Ising limit. By
performing a global fit to the full wave-vector dependent
spectrum observed in various fields, we also proposed a mi-
croscopic Hamiltonian including both in-chain and interchain
interactions, down to 2% of the dominant Ising exchange.
This Hamiltonian quantitatively reproduces the INS data
obtained across a wide range of field conditions including
zero field, high near-longitudinal field and high transverse
field, as well as intermediate fields to which the Hamiltonian
was not fit, leading to a fully consistent description of the spin
dynamics using a single set of exchange parameters.

Access to the data will be made available from Ref. [36].
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APPENDIX A: INTERCHAIN DISPERSIONS
IN HIGH FIELD

In this Appendix, we present the characterization of the ex-
perimentally observed interchain dispersion relations at high
field and their quantitative parametrization.

1. Characterization of the interchain dispersions in high field

INS data probing the dispersions in the interchain direc-
tions are plotted in Fig. 13. Panel (a) shows that in large field
along a, no systematic dispersion bandwidth is detected along
h within the experimental resolution used. Therefore all data
taken with field along a presented in the rest of this work were
integrated across the entire range of h in the data, that is, over
−1.5 < h < 1.5. Along k, however, there is visible dispersion
and further, the bandwidth and even sign of the dispersion
depends on the mode energy, i.e., on l . This is illustrated in
Fig. 13(b), where the lower energy and higher energy modes
have k dispersions that are of opposite signs (white solid
lines are fits as described in Appendix A 2 a). Note that the
bottom mode is the shadow version of the primary m1 mode
wave-vector-translated from l = 0 whereas the top mode is
the primary m1 mode at l = 1. This coupled kl dispersion is
accounted for by the exchange pathways shown schematically
in Fig. 13(i) and is discussed mathematically in the following
subsection.

Panels (d), (e), (g), and (h) of Fig. 13, meanwhile, show
the dispersions in the directions perpendicular to the chains
in a transverse field, 9 T ‖ b. It can be seen that in this
regime, there is interchain dispersion along both h and k, of
similar magnitude to that seen along k for B ‖ a. However,
while the dispersion along k remains of similar magnitude but
switches sign when moving from l = 0 [Fig. 13(e)] to l = −1
[Fig. 13(h)], i.e., from the bottom to the top of the dispersion,
similarly to what is seen for B ‖ a, the dispersion along h
is strongly suppressed at l = −1 [Fig. 13(g)] compared to at
l = 0 [Fig. 13(d)]. The model proposed in Ref. [21] captures
some, but not all, of these interchain dispersion effects. In par-
ticular it predicts that the interchain bandwidth is suppressed
at higher energy (i.e., l = −1 compared to l = 0). This is
indeed seen along h, but not along k. The same model also
predicts that there will be very little interchain dispersion for
near-longitudinal field, which is again seen along h but not
along k; in fact, the dispersion bandwidth along k at l = 1
in near longitudinal field is approximately the same as in
transverse field (the l = 0 transverse field k dispersion band-
width is enhanced by the bonds in the ab plane). We therefore
expand and revise the interchain interaction model in Ref. [21]
with the proposal that the bonds with a component along the
a direction [the dash-dot light blue J2 paths in Fig. 13(j)] are
approximately Ising, whereas those in the bc plane [the solid
and dashed light blue paths in Fig. 13(i), i.e., J1 (t1) and J ′

1
(t ′

1)] are approximately Heisenberg.

2. Parametrization of the dispersion relations in high field

Parametrization of the interchain dispersion relations was
done by assuming that the dispersion of single spin flips in
directions perpendicular to the chains could be quantitatively
captured using a linear spin wave formalism, but with in-chain
parameters which may be renormalized compared to those
deduced from the exchange Hamiltonian. The linear spin wave
formalism is expected to be asymptotically exact in the limit
of high field (when the gap is much larger than the bandwidth).
In this limit, the linear spin wave dispersion relation can be
perturbatively expanded to become equivalent to a spin-flip
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FIG. 13. Interchain dispersions at 8 T ‖ a [(a) and (b)] and 9 T ‖ b [(d), (e), (g), and (h)]. White curves represent best fit dispersion
relations. Color is the raw neutron scattering intensity on an arbitrary scale. The incident energies Ei used were 9.33 [(a) and (b)], 2.14
[(d) and (e)], and 10.17 meV [(g) and (h)], and the overall intensity scale is different for each experimental configuration. [(c) and (f)]
Comparison of observed and calculated energies with best fit parameters for the 8 T ‖ a hopping dispersion (A2) and 9 T ‖ b linear spin
wave theory dispersion respectively, with ω1,2(Q) = ω±(Q) and ω3(Q) = ω−(Q + a∗), with ω± as per (A8). [(i) and (j)] Exchange interaction
paths in the bc and ab planes, respectively. Labels t1,3,4 and t ′

1 are hopping parameters for the dispersion model in (A2), while J1 and J2

refer to the Hamiltonian (A4). Dark/light colored lines indicate in-chain/interchain bonds, respectively. The gray shaded area indicates the
structural unit cell shifted from the conventional Pbcn unit cell such that the origin is at one Co2+ site. The site labels α and β are used in
the hopping calculations for the Hamiltonian in (A1) and in the linear spin wave theory calculations for the full interchain Hamiltonian in
(A4). Filled/open circles represent spins with the local Ising axis at an angle ±γ to the c direction, respectively. The experimental data were
integrated in the transverse wave-vector directions as follows: −1.05 � k � −0.95, −0.05 � l � 0.05 (a); −1.5 � h � 1.5, 0.95 � l � 1.05
(b); −0.1 � k � 0.1, −0.05 � l � 0.05 (d); 0.8 � h � 1.2, −0.05 � l � 0.05 (e); −0.1 � k � 0.1, −1.05 � l � −0.95 (g); and 0.8 � h �
1.2, −1.05 � l � −0.95 (h).

quasiparticle hopping (or tight-binding) formalism. As the
hopping formalism depends only on the exchange pathways,
this same formalism can also be applied to quasiparticles
composed of multiple spin flips. In the case of field along the
a direction, we seek to parametrize the dispersion of bound
states of various different numbers of spin flips within a single
formalism, and therefore use a hopping formalism. For high
transverse field, we seek to parametrize only a single magnon
mode, but in a case where the gap is fairly small compared to

the bandwidth such that a perturbative expansion in terms of
a hopping formalism does not hold; we therefore use a linear
spin wave theory formalism.

a. Hopping model parametrization of the 3D dispersions in high
near-longitudinal field (‖ a)

To account for the coupled kl dispersion observed in high
field ‖ a [see Fig. 13(b)], we propose a hopping model, shown
schematically in Fig. 13(i), where solid and dashed bonds
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indicate paths across which excitations could hop. This ap-
proach was used in order to be able to describe both the m1

and the m2 modes using the same formalism. The effects of the
Ising parts of the interchain coupling are taken into account at
a mean-field level (see Sec. IV C) which affects both the m1

and m2 states. This more phenomenological formalism is also
able to capture the full 3D dispersions of higher bound states
in lower fields. In Fig. 13(i), the dark blue lines represent
in-chain bonds (parametrized by t3 and t4), whose Hamilto-
nian is described in detail in (9), while the light blue lines
represent inter-chain bonds (parametrized by t1 and t ′

1). The
next-nearest-neighbor in-chain hopping (t4) accounts for the
flattening of the bottom of the dispersion [see Fig. 5(a)] while
the diagonal interchain bonds (t ′

1) explain why the dispersion
bandwidth along k depends on l .

We can write this hopping model for the paths illustrated
in Fig. 13(i) as a two sublattice model (a single zigzag chain
with two sites per effective unit cell) with sublattices labeled
α and β. The different Ising directions on the two chains in
the structural unit cell can be neglected as we do not include
interactions along the a direction since no dispersion along h
is detected within the resolution of the experiment. This is
consistent with the picture of the interchain couplings pre-
sented in the following subsection where the only coupling
with a component along a, J2, is Ising like. This means that
the hopping induced by J2 is suppressed by a factor of sin2 θ

where θ is the angle between the local Ising axis and the
local magnetization direction, and is small even for large fields
along a. Therefore, in high field along a, we can approximate
the Hamiltonian as being decoupled into bc planes with hop-
ping interactions within planes and we write it as

Hhopping =
∑

R

ω0(c†
R,αcR,α + c†

R,βcR,β )

+ [t3(c†
R,αcR,β + c†

R,βcR+c,α )

+ t4(c†
R,αcR+c,α + c†

R,βcR+c,β )

+ t1(c†
R,αcR+b,α + c†

R,βcR+b,β )

+ t ′
1(c†

R,βcR+b,α + c†
R,βcR+b+c,α ) + H. c.]. (A1)

where c†
R,α (cR,α) creates (annihilates) a quasiparticle on the

α sublattice in the unit cell with origin at R. The sum runs
over all single-zigzag-chain unit cells, with primitive lattice
vectors (a − b)/2, b and c [the projection of the primitive unit
cell in the ab plane is shown by the shaded area in Fig. 14(b)].
The dispersion relations in this two sublattice model are then
obtained as

E± = A ± |B|,
A = ω0 + 2t4 cos 2π l + 2t1 cos 2πk,

B = 2 cos π l (t3e4π ikζ + t ′
1e−2π i(1−2ζ )k ). (A2)

Here, ti are parameters of the model that ultimately originate
from spin exchange interactions between sites connected by
the bonds indicated in Fig. 13(i) and ζ is the fractional dis-
tance in the b direction of the Co2+ ions from the center of the
zigzag. The ± signs are to be chosen for the primary/shadow
modes respectively for |l| < 0.5 and vice versa for 0.5 < l <

1.5. If the hopping quasiparticle is a spin flip, the dynamical

(a) (b)

FIG. 14. (a) ab plane of the crystal structure where filled/open
circles represent Co2+ ions with the local Ising axis at an angle
±γ away from c towards a. This alternation of the local Ising axis
leads to two zigzag chains per orthorhombic unit cell (rectangular
shaded area). These two chains are symmetry-related by both a b
glide (mirror in the 1

4 ỹz̃ plane followed by translation by b/2) and an
n glide (mirror in the x̃ỹ 1

4 plane followed by translation by (a + b)/2)
of the Pbcn space group of the crystal structure. Here x̃ỹz̃ define the
fixed spin axes frame parallel to the orthorhombic abc crystal axes.
Lower diagrams show the definition of a mathematically convenient
spin axes frame xyz that rotates between the two chains such that z is
always along the local Ising axis. (b) In this rotating spin axes frame,
the two chains become equivalent and the unit cell halves (shaded
parallelogram).

structure factor in inelastic neutron scattering is expected to
be proportional to

I± = 1 ± cos (arg B). (A3)

The very good agreement between the observed and cal-
culated m1 dispersions using the best fit parameter values is
shown in Fig. 13(c) and corresponding values for the inter-
chain hopping parameters are listed in Table II. Similarly good
agreement is found for the m2 mode; in this case the interchain
parameters t1 and t ′

1 were set to zero because the m2 state is
a two-spin-flip state, and so any interchain dispersion would
be second order in the interchain interaction strength, and thus
expected to be too small to resolve experimentally.

The hopping model dispersion relation in (A2) was used to
parametrize each mode at each field in the B ‖ a data. One-
dimensional band characteristics were obtained by setting t1
and t ′

1 to zero and calculating the relevant characteristic based
on the fitted values of the other parameters, that is ω0 (the
energy offset due to Ising and Zeeman terms), t3 and t4. For
the fits in Sec. III C, these were the band average, Eaverage = ω0

and the band minimum, Emin = ω0 + 2t3 + 2t4 (note that t3
is negative for all bands as the dominant nearest-neighbor
interaction is ferromagnetic). It was found that, as the field
decreases, the interchain dispersion decreases, which is con-
sistent with the picture that upon lowering field, quasiparticles
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TABLE II. Interchain parameter values. 2t1, 2t ′
1 are hopping pa-

rameters from the 8 T ‖ a fit to the m1 dispersion. These should be
compared to the values of J1 and J ′

1 respectively. The fact that the
respective values are comparable is evidence that these bonds are ap-
proximately Heisenberg. J1, J ′

1, and J2 are from the fit to 9 T ‖ b data.
JλMF is the value of the zero-field interchain mean field derived from
the fit to zero field data. We expect JλMF = J1 + J ′

1 = 0.032(1) meV,
under the assumption that J1 and J ′

1 are Heisenberg. This number is
comparable to the fitted value.

Parameter Value (meV)

2t1 −0.0147(4)
2t ′

1 0.0477(6)
J1 −0.008(2)
J ′

1 0.040(2)
J2 0.023(1)
JλMF 0.0391(7)

acquire a more pronounced multi-spin-flip character and the
hopping of multi-spin-flip excitations is suppressed as it is of
higher order in the interchain couplings. The kinetic bound
state remains dispersive down to 0.14 T, consistent with this
being a single-spin-flip mode, but has unresolvable dispersion
in zero field, consistent with the zero field magnetic structure,
in which the interchain hopping of the single spin flip is sup-
pressed, as shown in Appendix B. These trends were extracted
from fits to the single orientation data, where the wave-vector
components k and l are coupled, and were confirmed by
investigation of the Horace scan data set at 1.5 T.

We also note that the generic intensity from (A3) captures
the general intensity dependence along the interchain direc-
tions as observed, e.g., in Fig. 13(b). Together with the good
agreement with the dispersions, this justifies a posteriori the
use of a hopping model to parametrize the excitations in this
regime.

b. Linear spin-wave theory parametrization of the 3D dispersions
at high transverse field (‖ b)

We here discuss the formalism used to describe the inter-
chain dispersion in high transverse field (‖ b).

In the actual crystal structure of CoNb2O6, there are two
zigzag chains per structural unit cell, shown in Fig. 14(a) (gray
shading), one at the corner of the ab cell (filled circle) with
Ising axis tilted at an angle +γ away from c towards a, and
one chain in the center (open circle) with Ising axis tilted at
an angle −γ . In order to make progress analytically, we work
in a reference frame where the Ising axes of the central chains
are rotated to match those of the chains in the corners, such
that the unit cell halves [as shown in Fig. 14(b)], reducing the
problem from a four sublattice to a two sublattice problem.
This is possible because the interchain couplings are assumed
to have a simplified form, being Heisenberg or Ising-like. In
this frame, the Hamiltonian is

Htotal =
∑

chains

H1 + H2

+
∑

R

J1(SR,α · SR+b,α + SR,β · SR+b,β )

+ J ′
1(SR,α · SR+b,β + SR,β · SR−b+c,α )

+ J2
[
Sz

R,α

(
Sz

R+(a+b)/2,α
+ Sz

R+(a−b)/2,α

)
+ Sz

R,β

(
Sz

R+(a+b)/2,β
+ Sz

R+(a−b)/2,β

)]
.

(A4)

where H1,2 contain in-chain interactions defined in (10) and
(11). Here, R runs over all single zigzag chain unit cells,
as in (A1).

We now solve this Hamiltonian in linear spin wave the-
ory. Assuming spins polarized along the b axis, after a
Holstein-Primakoff transformation and a Fourier transform,
the Hamiltonian in (A4) takes the form (up to quadratic order
in magnon operators and omitting the constant term)

H = 1

2

∑
Q

ϒ†
QD(Q)ϒQ, (A5)

where ϒ
†
Q = (a†

Q, b†
Q, a−Q, b−Q) and a†

Q and b†
Q are the

magnon creation operators for the two single-chain sublat-
tices. The matrix D(Q) has the form

D(Q) =

⎛
⎜⎜⎝

A B C D∗
B∗ A D C
C∗ D∗ A B
D C∗ B∗ A

⎞
⎟⎟⎠, (A6)

where A, B, C, and D are functions of Q and are given by

A = J
(
λS − λA − λ

xy
AF

) − J1 − J ′
1 + gyμBB

+ J
λAF + λ

xy
AF

2
cos 2π l

+ J1 cos 2πk + J2 cos πh cos πk,

B =
[
−J

(λS + λA + 1)

2
+ J ′

1e2π ik

]
e−4π iζk cos πk,

C = J
λAF − λ

xy
AF

2
e−2π il + J2e−π ih cos πk,

D = J
λS + λA − 1

2
e4π iζk cos π l. (A7)

Note that the off-diagonal staggered exchange λyz does not
appear in these expressions, since this term vanishes in the
linear spin wave theory approximation when the ground state
is fully aligned along the y direction. However, this term
leads to higher order interactions which cause quasiparticle
breakdown in the region where this is kinematically allowed
[32,35]. This effect is not captured in the linear spin wave
treatment.

The spin wave Hamiltonian in (A5) and (A6) has the same
functional form as another two sublattice system discussed in
detail in Ref. [38] so the derivation of the dispersion relations
and dynamical correlation functions is identical and we only
reproduce key steps here.

The dispersion relations are obtained by diagonalizing
the matrix GD(Q) where G = diag(1, 1,−1,−1) and
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are given by

ω2
± = A2 + |B|2 − |C|2 − |D|2 ±

√
(2AB − CD∗ − D∗C∗)(2AB∗ − CD − C∗D) + (BD − B∗D∗)2. (A8)

To calculate the neutron scattering intensities, we need the right eigenvectors of GD. The components of these are

W (ω) = −(A + ω)(A2 + |B|2 − |C|2 − |D|2 − ω2) + 2A|B|2 − BDC∗ − B∗D∗C

X (ω) = (A2C∗ + |B|2C∗ − |C|2C∗ + |D|2C − C∗ω2) − A(BD − B∗D∗) + ω(BD − B∗D∗)

Y (ω) = B∗[(A + ω)2 − |B|2 + |C|2] − (ACD + ADC∗ + CDω + C∗Dω) + BD2

Z (ω) = D(A2 + C∗2 − |D|2 − ω2) + B∗2D∗ − 2AB∗C∗

up to a normalization

N (ω) =
√

| − |W |2 + |X |2 − |Y |2 + |Z|2|.
From this we obtain, in the rotating frame,

Sxx(Q, ω) = |W − X + Y − Z|2 [δ+(Q) + δ−(Q)]

4N ,

Szz(Q, ω) = |W + X + Y + Z|2 [δ+(Q) + δ−(Q)]

4N ,

Syy(Q, ω) = 0. (A9)

where δ±(Q) = δ(ω − ω±(Q)).
We now transform to global coordinates x̃ỹz̃, defined to be

parallel to the abc crystallographic axes respectively, with the
two local z axes defined as ẑ± = z̃ cos γ ± x̃ sin γ with the
sign alternating between the layers along the a direction as
shown in Fig. 14(a).

Thus we have

Sx(Q) =
∑

r

(Sx̃ cos γ − e2π irx̃/aSz̃ sin γ )eiQ·r,

Sz(Q) =
∑

r

(Sz̃ cos γ + e2π irx̃/aSx̃ sin γ )eiQ·r,

Sy(Q) =
∑

r

SỹeiQ·r,

where r runs over all magnetic sites and where rx̃ is the
component of r along x̃. Transforming the other way,

Sx̃(Q) =
∑

r

(Sx cos γ + e2π irx̃/aSz sin γ )eiQ·r,

Sz̃(Q) =
∑

r

(Sz cos γ − e2π irx̃/aSx sin γ )eiQ·r,

Sỹ(Q) =
∑

r

SyeiQ·r,

such that

Sx̃(Q) = Sx(Q) cos γ + Sz(Q + a∗) sin γ ,

Sz̃(Q) = Sz(Q) cos γ − Sx(Q + a∗) sin γ .

Thus the Fourier transformed magnetization components are
(in units of μB)

Mx̃(Q) = gxSx(Q) cos γ + gzS
z(Q + a∗) sin γ ,

Mz̃(Q) = gzS
z(Q) cos γ − gxSx(Q + a∗) sin γ .

From this, we get the dynamical structure factor including the
neutron polarization factors as

S(Q, ω) =
(

1 − Q2
x̃

Q2

)(
g2

xSxx(Q, ω) cos2 γ

+ g2
zS

zz(Q + a∗, ω) sin2 γ
)

+
(

1 − Q2
z̃

Q2

)(
g2

zS
zz(Q, ω) cos2 γ

+ g2
xSxx(Q + a∗, ω) sin2 γ

)
, (A10)

where Qx̃,z̃ are the components of Q projected along x̃ and z̃ re-
spectively. In this expression, there are no mixed polarization
terms as Sxz = −Szx, and there are no crossterms involving
Fourier transformed spins at different wave vectors since these
are zero by conservation of momentum.

To obtain intensities to compare with experiment, the delta
functions in (A9) are replaced by Gaussians in energy to
reflect the finite instrumental energy resolution and the in-
tensity is multiplied by the squared spherical magnetic form
factor for Co2+. The analytic calculations presented here were
crosschecked against numerical calculations performed using
SPINW [39].

The fact that the intensity contains terms with shifted wave
vector Q + a∗ is a mathematical expression of the real space
unit cell doubling (due to alternation of Ising axes) leading to
Brillouin zone folding and a consequent shadow mode. This
shadow mode is responsible for the additional weak scattering
intensity at slightly higher energy than the main mode in
Figs. 13(d) and 13(e). We see from (A10) that the intensity of
the shadow mode relative to the primary mode is proportional
to tan2 γ . Note that this shadow mode is distinct from the
shadow mode due to the zigzag of the chains, such that the
full model in the fixed frame has a total of four dispersion
relations, ω±(Q) and ω±(Q + a∗).

In order to extract a parametrization of the 3D dispersion
in high transverse field, fits were done to the linear spin
wave dispersion relations (A8). The fitted values for the in-
terchain parameters are shown in Table II. We note that these
parameters yield minima in the magnon dispersion relations
at (1,±q, 0) with q ∼ 0.39, which is compatible with the
minima observed at 7 T ‖ b in Fig. 5 of Ref. [21], and can
thus be related to the propagation vector q = 0.37 of the
spontaneous incommensurate spin density wave order that
sets in at the magnetic ordering temperature 2.95 K in zero
field [11]. To draw a direct comparison with the interchain
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exchange parameters proposed in Ref. [21], the relevant value
to compare to J1 in Ref. [21] is J1 + J ′

1 in the present work.

APPENDIX B: SUPPRESSION OF THE INTERCHAIN
HOPPING OF THE KINETIC BOUND STATE

IN ZERO FIELD

A surprising result found experimentally is that the kinetic
bound state, the sharp mode near l = −1 at the top of the spec-
trum in zero field [Fig. 9(a)], has no measurable dispersion
in either interchain direction, even though it is a single-spin-
flip state, and generically one expects interchain dispersion
at first order in the interchain couplings. We explain in this
Appendix that this is due to the combination of the particular
antiferromagnetic order pattern between chains and the form
of the interchain couplings by introducing a simplified toy
model.

As the interchain J2 bonds in Fig. 13(j) are Ising like, and
in zero field the spins are aligned along the Ising axis, the
J2 terms create no hopping along h. The J2 bonds also do
not contribute to a mean field, as the triangular lattice and
the antiferromagnetic pattern mean that the effects of the two
bonds cancel out. We therefore only need to consider the inter-
chain bonds in the bc plane. In the simplest approximation, we
consider straight (ζ = 0) ferromagnetic Ising chains along the
c direction, with an antiferromagnetic Heisenberg interaction
between chains in the b direction, i.e.,

Hsimple =
∑

r

−JSz
rSz

r+c/2 + J1Sr · Sr+b

where the sum is over all magnetic sites. In the absence of any
applied field, the chains order in an antiferromagnetic pattern
along the b direction (both in this simplified model and in
the real material). Therefore, to calculate the linear spin wave
spectrum, the quantization axis must be rotated by 180◦ about
the y direction on alternating chains along the b direction such
that the ordered spin is along the +z direction on all chains.
In this rotating frame, the quadratic spin wave Hamiltonian is

1

2

∑
Q

ϒ†
QD(Q)ϒQ,

where ϒ
†
Q = (a†

Q, a−Q) and

D(Q) =
(

J + J1 J1 cos 2πk
J1 cos 2πk J + J1

)
.

This gives a dispersion relation

ω(Q) =
√

(J + J1)2 − J2
1 cos2 2πk.

Now, J1 � J (experimentally, J1/J � 2%), so this can be
Taylor expanded, such that the bandwidth along k is propor-
tional to J2

1 /J , i.e., appears at second order in J1. This is not
experimentally resolvable, which explains why no interchain
dispersion is observed for the kinetic bound state in zero field.
In contrast, in field ‖ a above 0.14 T, the spin components
along a are all parallel, with the consequence that the in-
terchain dispersion along k appears at first order in J1. This
is experimentally resolvable, and indeed is clearly detected
experimentally, with the kinetic bound state at 1.5 T having a
bandwidth along k of 0.114(2) meV (not shown).

TABLE III. Values of χ 2 corresponding to fixing some of the
Hamiltonian (9) parameters to zero.

Parameters fixed χ 2

None 2008.17
λA = 0 2718.21
λ

xy
AF = 0 5910.82

λA = λ
xy
AF = 0 7009.55

APPENDIX C: COMPARISON TO OTHER
HAMILTONIAN PARAMETER SETS

In this Appendix, we provide evidence that all the terms
in the Hamiltonian (9) are indeed needed in order to fit all
features of the dispersive modes in the full data set.

The values of χ2 corresponding to fits in which some of the
parameters in H2 are fixed to zero are shown in Table III. We
only consider setting to zero those parameters which were not
included in the parametrization of Ref. [32], as the parameters
fit in that work were shown to all be necessary to parametrize
just the zero field data. It is seen that it is not possible to
fit all features in the data well without using all parameters.
These values have not been divided by the number of data
points because the fits were not done directly to the data but
instead to the empirical 1D dispersion relations corrected for
interchain dispersion effects. However, the fit was indirectly
performed to many hundreds of data points.

In addition, Fig. 9 shows comparisons between the data
and ED calculations using different Hamiltonian models. The
third column [panels (c), (g), and (k)] presents calculations
using the Hamiltonian model proposed in [32], with gx and
gz taken from Table I. The calculation for the 8 T ‖ a data
[panel (g)] does not fully capture the flattening of the bottom
of the m1 dispersion and the calculated m2 dispersion is shifted
downwards from where it is found empirically. It is found that
in order to capture the former effect, it is necessary to include
either λ

xy
AF or λA in the fits, and that in order to capture the

position and shape of the m2 dispersion, both of these must be
non-zero.

The right-most column of Fig. 9 presents calculations using
the Hamiltonian model used in Ref. [33], which contains a
subset of the nearest-neighbor exchange terms in (10) and (11)
with certain constraints between the parameter values. While
that model can capture the energy levels at the zone center
(l = 0) in zero and transverse field, i.e., the regime probed in
Ref. [33], we find significant qualitative and quantitative dis-
crepancies between calculations using that model and the full
spectrum observed via INS. The model does not capture the
wave-vector dependence of the spectrum either in zero field,
where the kinetic bound state near l = −1 is not captured at
all [compare Fig. 9(d) (calculation) with Fig. 9(a) (data)], or in
field applied along either a or b, where the predicted magnon
bandwidths are much smaller than observed experimentally
[compare (h) and (l) with (e) and (i), respectively]. Moreover,
in high field along a [panel (h)], the model does not capture
the spectrum even at l = 0, as the small magnon bandwidth,
which is underestimated by almost a factor of 2, leads to too
large a predicted magnon gap. We ascribe these differences
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primarily to the fact that in the model used in [33] there
is no Sx

j S
x
j+1 exchange term and only a very small Sy

j S
y
j+1

term. In contrast, in the present work, we find that the Sx
j S

x
j+1

and Sy
j S

y
j+1 exchange terms are of very similar size, and of

magnitude comparable to that of the staggered off-diagonal
exchange, those being the main subleading terms after the
dominant Ising exchange, as already noted in Ref. [32]. The

fully refined Hamiltonian model we propose in (9) accounts
quantitatively not only for the full energy and wave vector
dependence of the INS spectrum at all probed fields aligned
along two orthogonal directions, but also for the THz spec-
troscopy data in Ref. [33] without any adjustable parameters,
as discussed in Sec. IV C. Therefore we propose that it is an
accurate model of the actual spin Hamiltonian in CoNb2O6.
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