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We investigate classical Heisenberg models on the distorted windmill lattice and discuss their applicability
to the spin-1/2 spin liquid candidate PbCuTe2O6. We first consider a general Heisenberg model on this lattice
with antiferromagnetic interactions Jn (n = 1, 2, 3, 4) up to fourth neighbors. Setting J1 = J2 (as approximately
realized in PbCuTe2O6) we map out the classical ground-state phase diagram in the remaining parameter space
and identify a competition between J3 and J4 that opens up interesting magnetic scenarios. Particularly, these
couplings tune the ground states from coplanar commensurate or non-coplanar incommensurate magnetically
ordered states to highly degenerate ground-state manifolds with subextensive or extensive degeneracies. In the
latter case, we uncover an unusual classical spin liquid defined on a lattice of corner-sharing octahedra. We then
focus on the particular set of interaction parameters Jn that has previously been proposed for PbCuTe2O6 and
investigate the system’s incommensurate magnetic ground-state order and finite-temperature multistage ordering
mechanism. We perform extensive finite-temperature simulations of the system’s dynamical spin structure
factor and compare it with published neutron scattering data for PbCuTe2O6 at low temperatures. Our results
demonstrate that thermal fluctuations in the classical model can largely explain the signal distribution in the
measured spin structure factor but we also identify distinct differences. Our investigations make use of a variety
of different analytical and numerical approaches for classical spin systems, such as Luttinger-Tisza, classical
Monte Carlo, iterative minimization, and molecular dynamics simulations.
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I. INTRODUCTION

Magnetic frustration plays a central role in determining the
collective behavior of interacting spins at low temperatures.
In particular, it can prevent conventional magnetic long-range
order and give rise to exotic phases, with spin liquids perhaps
representing the most notable ones [1]. From a classical point
of view, frustrated spin systems are often characterized by a
large ground-state degeneracy at zero temperature [2,3]. A
typical situation where this is the case arises when the lattice
consists of clusters of sites, in such a way that neighboring
clusters only have one site in common [4–9]. This is, for
example, realized in the two-dimensional kagome [4] and
in the three-dimensional pyrochlore [5] lattices, where the
corner-sharing units are given by triangles and tetrahedra,
respectively. If, additionally, antiferromagnetic Heisenberg
interactions couple all spins within a cluster, the classical
ground states are determined by the condition that the spins
within each cluster have to sum up to zero. Depending on
details of the spin degrees of freedom (number of spin com-
ponents) and the precise lattice geometry (number of sites in a
cluster and number of clusters per unit cell) these constraints
typically leave sufficient freedom for the relative spin orienta-
tions within a cluster, such that the constraints can be satisfied
by an infinite number of spin configurations [10,11]. This
creates a situation where, on the one hand, the classical spins
are free to fluctuate, but on the other hand are constrained in

their collective behaviors. A system with such a ground state
was called by Villain a cooperative paramagnet [12] and is
commonly identified as a classical spin liquid.

Adding quantum fluctuations enables tunneling between
the classical ground states, such that the new (and now possi-
bly unique) ground state is a macroscopic superposition of the
formerly degenerate classical states, a situation that is particu-
larly promising for producing a quantum spin liquid [13–15].
Because of the rich variety of phenomena arising from this
construction, the lattices hosting corner-sharing units have
been of central interest in the field of frustrated magnetism.
The most celebrated examples are the Heisenberg models
on the kagome [16–18] and pyrochlore [5,10,11,19] lattices,
which, classically, both have an extensive ground-state de-
generacy, that means the number of ground states scales
exponentially with the number of lattice sites. When turning
on quantum fluctuations the kagome Heisenberg model is
widely believed to realize a quantum spin liquid [20–22].
Quantum spin systems on the pyrochlore lattice are, generally,
also good candidates for quantum spin liquids; however, this is
well established only in the case when the Ising model is per-
turbed by small transverse interactions [13,14,23,24], while
latest results for the pyrochlore Heisenberg antiferromagnet
rather indicate a symmetry broken ground state [25–28].

Besides the well-known kagome and pyrochlore networks,
the distorted windmill lattice [29–32] is an alternative and
less explored corner-sharing lattice geometry that, likewise,
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appears very promising in the context of possible spin liquid
behavior. In fact, the distorted windmill lattice represents a
family of lattices that can be constructed from the hyperk-
agome lattice. The latter is a three-dimensional arrangement
of corner-sharing triangles, where each site participates in two
triangles and which can be thought of as a three-dimensional
generalization of the kagome lattice. Interestingly, there exists
a particular way of deforming the hyperkagome lattice—
described by one real parameter—such that its point group
remains unchanged. By tuning this parameter, one can realize
different corner-sharing geometries [7,30]. Moreover, several
material realizations are known [29,33–38], providing con-
crete possibilities for obtaining quantum spin liquids. Among
them, PbCuTe2O6 with spin-1/2 Cu2+ ions has recently at-
tracted the greatest attention. This material realizes a distorted
windmill lattice in which the nearest neighbors form isolated
triangles, while the second neighbors form a hyperkagome
network. Since the theoretical predictions for the Heisenberg
interactions indicate that first and second-neighbor couplings
are antiferromagnetic and almost equally strong [36], the
dominant couplings form a network of corner-sharing tri-
angles, where each spin is shared by three triangles. The
classical Heisenberg model for this lattice (which has recently
been dubbed the hyper-hyperkagome model [36]) admits an
infinitely large ground-state degeneracy, which, however, is
only subextensive, i.e., the number of ground states scales
exponentially only in the linear system size [30,31]. Cou-
plings beyond second neighbors, which are also present in the
Heisenberg Hamiltonian for PbCuTe2O6 lift this degeneracy
[36].

The experimental findings are consistent with a spin liq-
uid phase at low temperatures. Particularly, thermodynamic
probes do not find any signature of symmetry breaking via
a magnetic phase transition [37] and muon spin relaxation
experiments show no signs of static magnetism [38]. More-
over, inelastic neutron scattering on single crystals shows a
broad dispersionless continuum of magnetic excitations [36]
that can be interpreted as resulting from fractional spinon
quasiparticles, which are characteristic for quantum spin liq-
uids. The diffuse spin structure factor measured by neutron
scattering is compatible with either a U (1) gapless or a Z2

gapped quantum spin liquid according to a fermionic parton
mean-field theory [39].

Inspired by the experimental results on PbCuTe2O6, this
paper adds a different perspective on this material by per-
forming theoretical investigations of the classical version of
the model Hamiltonian in Ref. [36]. A first focus in Sec. II
is the reexamination of the lattice structure and the unusual
change of connectivity of lattice bonds upon varying the tun-
ing parameter for the site positions. Section III is dedicated
to understanding the precise role of the interactions Jn (n =
1, 2, 3, 4) up to fourth neighbors in determining the magnetic
ground state. The classical ground-state phase diagram, which
has so far only been investigated up to third neighbor interac-
tions [40], is mapped out including all four interactions and
setting J1 = J2 (as is approximately realized in PbCuTe2O6).
Surprisingly, the seemingly inconspicuous fourth-neighbor
coupling is found to have significant impact on the system’s
magnetic properties and can tune the network of interact-
ing spins towards an interesting and previously unexplored

TABLE I. Positions of the twelve atoms in the cubic unit cell
(with the lattice constant set to unity) of the distorted windmill
lattice, parameterized by the real parameter y ∈ R. For PbCuTe2O6

this value is given by y = −0.2258 [36]. All other sites of the lat-
tice are obtained by adding integer multiples of the lattice vectors
x̂ = (1, 0, 0), ŷ = (0, 1, 0), ẑ = (0, 0, 1).

Sublattice Position

1 (3/4 + y, 3/8, 1 – y)
2 (1/2 + y, 1/4 – y, 7/8)
3 (5/8, 1/2 – y, 3/4 – y)
4 (1/2 – y, 3/4 – y, 5/8)
5 (3/4 – y, 5/8, 1/2 – y)
6 (7/8, 1/2 + y, 1/4 – y)
7 (1 – y, 3/4 + y, 3/8)
8 (1/4 – y, 7/8, 1/2 + y)
9 (3/8, 1 – y, 3/4 + y)
10 (1/4 + y, 1/8, y)
11 (1/8, y, 1/4 + y)
12 (y, 1/4 + y, 1/8)

lattice of corner-sharing octahedra. We identify an exten-
sive ground-state degeneracy in this system giving rise to an
unusual type of classical spin liquid. Moreover, the phase
diagram contains regions with subextensive ground-state de-
generacies as well as commensurate and incommensurate
ground-state magnetic orders.

In Sec. IV, we focus on the particular set of couplings that
have previously been proposed to be realized in PbCuTe2O6

[36]. First, we investigate in detail the magnetic properties of
this system such as the nature of its incommensurate ground
state and the sequence of two finite-temperature phase tran-
sitions at which this order builds up. In the second part of
Sec. IV, inspired by recent studies [41–49] according to which
quantum fluctuations in a variety of systems show a surpris-
ing resemblance to disordered thermal fluctuations, we aim
to identify a similar effect in PbCuTe2O6. Specifically, we
investigate the classical model Hamiltonian for PbCuTe2O6 in
the paramagnetic regime, i.e., above the ordering transitions.
Calculating the system’s dynamical spin structure factor and
comparing it with measured neutron scattering data, we inves-
tigate whether thermal fluctuations can mimic the effects of
quantum fluctuations in PbCuTe2O6. We indeed find that the
overall shape of the simulated spin structure factor agrees well
with the measured data, except for a feature of strong intensity
in our simulations that can be associated with the magnetic
long-range order below the critical temperature. These results
shed light on the nature of the observed spin fluctuations in
PbCuTe2O6 and reveal a partial quantum-to-classical corre-
spondence.

II. LATTICE AND HAMILTONIAN

The magnetic behavior of PbCuTe2O6 is determined by
Cu2+ ions with spin S = 1/2, and these ions form a distorted
windmill lattice [37]. This lattice has twelve atoms in its
cubic unit cell, located at the 12d Wyckoff positions of the
P4132 space group [29]. These positions depend on a real
parameter y ∈ R, as reported in Table I. By comparing the
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TABLE II. Exchange parameters of the Heisenberg Hamiltonian
(1) for PbCuTe2O6 from DFT calculations [36].

J1 J2 J3 J4

1.13 meV 1.07 meV 0.59 meV 0.12 meV

crystallography data on PbCuTe2O6 with the 12d Wyckoff
positions of the P4132 space group, one obtains y = −0.2258
for this compound [36,39].

The Hamiltonian for PbCuTe2O6 is given by

H =
4∑

n=1

Jn

∑
〈i< j〉n

Si · S j, (1)

where 〈. . .〉n indicates the sum over the nth-nearest neighbors
[36]. The estimates for the interaction strengths Jn are reported
in Table II. Since we focus on the classical model, the spins
are treated as three-component vectors Si = (Sx

i , Sy
i , Sz

i ) with
unitary norm |Si| = 1.

In the distorted windmill lattice, bonds of the same length
often form connected or disconnected arrangements of equi-
lateral triangles. As an example, in Fig. 1(a) we plot the
triangle configuration obtained by connecting one site to its
first and second nearest neighbors, for fixed value of the
position parameter y = −0.2258. Each site is shared by three
triangles that constitute the unit of the distorted windmill lat-
tice: two corner-sharing (hyperkagome) triangles (in orange)
and one isolated triangle (in blue). By increasing or decreasing
the value of y, the site positions move as indicated by the
gray arrows in Fig. 1(a) and the size of the triangles changes.
To visualize this, in Fig. 1(b) we plot the side lengths of
the smallest equilateral triangles created by connecting nth-
nearest neighbors, as a function of the position parameter y.
Other bond types, which do not form equilateral triangles
are omitted in Fig. 1(b). Since the change y → y + 1 leaves
the lattice invariant, it is sufficient to consider y in the in-
terval y ∈ [−1/2, 1/2] only. The triangles with the smallest
side length for a fixed value of y also correspond to the first
nearest neighbors among all bonds. For −1/2 < y < −y∗ and
y∗ < y < 1/2, with y∗ = (9 − √

33)/16 � 0.2035, the first
nearest neighbors create isolated triangles, see Fig. 1(c). For
−y∗ < y < y∗ and y = ±1/2, the first nearest neighbors cre-
ate the hyperkagome triangles, where each spin is shared by
two triangles, see Fig. 1(d). This lattice has been referred to as
the hyperkagome lattice [7]. At the special points y = ±y∗ the
corner-sharing and isolated triangles have equal size and each
spin belongs to three triangles [31]. At y = ±3/8 the isolated
triangles formed by the first nearest neighbors collapse into
one point and the positions in the unit cell become three
times degenerate. This can be understood by looking at the
direction along which the sites belonging to the isolated trian-
gle move when decreasing y [light gray arrows in Fig. 1(a)].
The resulting lattice for y = ±3/8 with four sites per unit
cell corresponds to the so-called trillium lattice [50]. Various
discontinuities in the side lengths as a function of y can be
observed in Fig. 1(b). For example, at y = 0.5 a hyperkagome
network is created with much smaller bond lengths than at
slightly smaller or larger values of y. This is explained by

FIG. 1. (a) Unit of the distorted windmill lattice: Each site is
shared by one isolated triangle (in blue) with coordination number
two [as shown in (c)] and two hyperkagome triangles (in orange)
with coordination number four [as shown in (d)]. The light (dark)
gray arrows indicate the directions along which the sites move when
decreasing (increasing) y. (b) Side lengths of the smallest triangles in
the distorted windmill lattice, as a function of y. Only the two small-
est types of isolated triangles (labeled “isolated 1” and “isolated 2”)
are shown. At the special points y = ±y∗ with y∗ = (9 − √

33)/16 �
0.2035 the hyperkagome and isolated triangles have equal size and
the system has six nearest neighbors. At y = ±3/8 the smallest
isolated triangles collapse into one point and the positions in the
unit cell become three times degenerate, resulting in a lattice with
four sites per unit cell. The classical nearest-neighbor Heisenberg
models with y = 0.125 and y = y∗ (dotted gray lines) have already
been studied in Ref. [7] and Refs. [30,31], respectively. [(c)–(f)] First
to fourth nearest-neighbor bonds of the distorted windmill lattice
with y = −0.2258 as realized in PbCuTe2O6. The black and grey
dots correspond to sites inside and outside the cubic unit cell, respec-
tively. (b) First nearest neighbors form isolated triangles. (d) Second
nearest neighbors create a network of corner-sharing (hyperkagome)
triangles. (e) Third nearest neighbors form chains parallel to the x̂, ŷ,
ẑ Cartesian directions. (f) Fourth nearest neighbors form chains along
the body diagonals.

the observation that at this point, the two smallest isolated
triangles have equal size and, when combining them, be-
come a hyperkagome network. The smallest triangles that are
truly isolated then occur with larger bond lengths outside the
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plotted region. Other discontinuities in Fig. 1(b) have a similar
origin.

For y = −0.2258 realized in PbCuTe2O6, the first and
second nearest neighbors create, respectively, a network of
isolated and corner-sharing triangles [Figs. 1(c) and 1(d)].
This value [red line in Fig. 1(b)] lies close to the special
point 1 − y∗. In fact, it was found that J1 � J2 (Table II),
reflecting the similar geometrical distance between the first-
and second-neighbor sites. As a result, each spin interacts
almost equally with six other spins, forming a network of
corner-sharing triangles where each site contributes to three
triangles. This network has the same connectivity as the one at
y = ±y∗ formed by the first nearest neighbors. Because of the
higher connectivity with respect to the hyperkagome lattice,
the present case has been referred to as a hyper-hyperkagome
lattice [36].

The magnetic Hamiltonian for PbCuTe2O6 also contains
antiferromagnetic interactions between the third and fourth
nearest neighbors (Table II). These form chains along the x̂,
ŷ, ẑ Cartesian directions [Fig. 1(e)] and the body diagonals
[Fig. 1(f)], respectively. In the next section, we will focus on
the role of all these interactions in determining the magnetic
ground state.

III. HYPER-HYPERKAGOME MODEL
AND MAGNETIC PHASE DIAGRAM

In this section, we present the T = 0 classical phase
diagram for the J1-J2-J3-J4 model at J1 = J2, obtained by
combining the Luttinger-Tisza (LT) [51] and the iterative min-
imization (IM) [52] techniques. Particularly, we also discuss
the role of the J4 coupling, which has not been considered in
previous studies [40]. Details of the LT and IM methods and
their comparison are given, respectively, in the Appendices A
and B. The LT method is an analytic approach where the
classical energy is minimized under the approximation of a
partially relaxed spin length constraint where only the total
spin but not necessarily the individual spins are normalized.
The IM approach, on the other hand, consists of minimiz-
ing the classical energy numerically, by aligning the spins
to the effective magnetic field created by the surrounding
spins, starting from a random configuration. As an iterative
technique, it is prone to detecting local energy minima instead
of global ones. Our procedure to identify the ground-state
magnetic order consists of comparing results from IM and
LT. A first insight into the ground-state spin configuration is
obtained by the magnetic ordering wave vector Q that min-
imizes the classical energy within LT. This wave vector can
also be calculated with IM, as it corresponds to the maxima of
the equal-time spin structure factor for spins belonging to the
same sublattice, summed over the sublattices [40]

Ssub(q) = 12

N

L×L×L∑
I,J

12∑
α=1

Sα,I · Sα,Jeiq·(RI −RJ ), (2)

where I, J index the unit cell, α the sublattice, and RI denotes
the real space position of the unit cell I . Furthermore, N is
the total number of spins in the simulated system, which is
a cube of L × L × L crystallographic unit cells (N = 12L3).
Since Ssub(q) only contains spatial Fourier transforms of spin

FIG. 2. Classical zero-temperature phase diagram for the
Heisenberg model on the distorted windmill lattice with fixed J1 =
J2 = J , as a function of J3 and J4. Four different cases can be dis-
tinguished. (1) In the green region where J4 < J3 the ground state
is magnetically ordered with an incommensurate wave vector Q.
(2) In the red region where J3 < J4 the ground state has coplanar
magnetic order with Q0 = 0. (3) Along the J3 = J4 line with the
point J3 = J4 = 0 included and the point J3 = J4 = J excluded, the
degenerate ground states form a subextensive (1D) manifold (M1),
equal to the one found for the J3 = J4 = 0 case [31]. (4) At the
point J3 = J4 = J the degenerate ground states form an extensive
(3D) manifold (M3), as further explained in the main text. The point
associated with PbCuTe2O6 is drawn by approximating J2 by J1.
It corresponds to the ratios J3/J1 and J4/J1, with the values of Ji

reported in Table II.

correlations on the same sublattice, it describes how spins
rotate between different unit cells but neglects information on
how spins are correlated within a unit cell. Using Ssub(q) for
characterizing magnetic order can be useful when the lattice
has a large unit cell. Besides that, it can be directly compared
to the LT results, by checking if Q is one of the wave vectors
that minimizes the energy within LT. The quantity Ssub(q)
should be distinguished from the equal-time spin structure
factor

S (q) = 1

N

∑
i, j

Si · S je
iq·(ri−r j ), (3)

which uses the actual site positions ri and considers corre-
lations between all sublattices and which will also be used
below.

We consider the set of interactions described in Fig. 1,
fixing J1 = J2 = J (hyper-hyperkagome case) and letting J3

and J4 vary in the range 0 � J3, J4 � J . Setting J1 = J2 is mo-
tivated by the physical situation in PbCuTe2O6 where y � y∗,
i.e., the isolated nearest-neighbor triangles and the hyperk-
agome triangles are approximately of the same size, and the
same is true for the corresponding interactions.

As shown in Fig. 2, the phase diagram contains two dif-
ferent extended phases and different types of ground-state
degeneracies at the boundaries, described in more detail be-
low.

(1) J4 < J3 < J: Incommensurate Q order. In the re-
gion where J4 < J3 < J the system orders magnetically in a
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FIG. 3. [(a), (b)] (Left) Spin configurations in one unit cell
corresponding to (a) the Q0 = (0, 0, 0) coplanar order and (b) the
Q1/3 = 2π (1/3, 1/3, 1/3) coplanar order. The coloring of the bonds
with interactions J1 (blue), J2 (orange), J3 (green), and J4 (red)
matches Figs. 1(b)–1(e). Only the bonds within the unit cell are
shown. Spins with the same orientation have the same color. Spins
with different colors enclose an angle of 120◦ around each tri-
angle. (Right) Corresponding construction of spin states over the
full lattice. The Q0 = (0, 0, 0) unit-cell configuration illustrated by
red boxes in (a) is repeated in each unit cell. The spins in the
Q1/3 = 2π (1/3, 1/3, 1/3) unit cell undergo a rotation about the axis
perpendicular to the plane they span, by an angle Q1/3 · R when
proceeding to the other unit cells, where R denotes the position of the
unit cell. Consequently, there are three distinct spin configurations in
one unit cell, indicated by different colors, that are arranged over the
full lattice as depicted in (b). (c) Possible ground-state configuration
for the J3 = J4 case obtained by mixing the Q0 = (0, 0, 0) (red) and
the Q1/3 = 2π (1/3, 1/3, 1/3) unit cells (from blue to green) with
periodic boundary conditions. The obtained configuration consists
of an alternating stacking of Q1/3 and Q0 unit cells along the (1,1,1)
direction.

non-coplanar spin state with incommensurate wave vector Q,
which varies as J3 and J4 vary. A similar result was found
respectively for the J4 = 0 case [40] and for the hyperkagome
model in presence of Dzyaloshinskii-Moriya interaction [53].
The procedure used to identify the incommensurate order is
explained in the next section, where we discuss the system’s

TABLE III. Bond contributions cn = 1
N

∑
〈i< j〉n

Si · S j for the
coplanar Q0, Q1/3 and mixed states, defined such that H =
N

∑4
n=1 Jncn. The mixed state is obtained by mixing a unit cells

with Q0 order and b unit cells with Q1/3 order in such a way that
J1 and J2 triangles remain in energetically optimal 120◦ spin con-
figurations; see main text for details. As indicated in the last row,
when J3 = J4, the energy contribution from J3 and J4 bonds given by
∼J3c3 + J4c4 = J3(c3 + c4) is independent of the parameters a and b
and equal to the Q0 and Q1/3 states.

Q0 state Q1/3 state Mixed state

c1 –0.5 –0.5 –0.5
c2 –1 –1 –1
c3 1 –0.125 a−0.125b

a+b

c4 –0.5 0.625 −0.5a+0.625b
a+b

c3 + c4 0.5 0.5 0.5

ground state and finite-temperature properties for the set of
interactions of PbCuTe2O6 (black dot in the phase diagram in
Fig. 2).

(2) J3 < J4 < J: Coplanar Q = 0 order. In the region
where J3 < J4 < J the system orders magnetically in a copla-
nar state with wave vector Q0 = 0. This means that the spin
arrangement, as depicted in Fig. 3(a), is the same in each unit
cell. Pairs of spins coupled by J1, J2, and J4 form an angle of
120◦ with each other. On the other hand, the chains formed
by J3 have a ferromagnetic spin alignment. As a consequence,
increasing the value of J3 increases the level of frustration,
as this bond gives a positive contribution to the energy, see
Table III for Q0. This spin configuration is unique up to global
spin rotations. A special subgroup of such rotations consists
of permutations of the three spin directions, which form this
state.

(3) J3 = J4 �= J: One-dimensional degenerate ground-state
manifold. Along the J3 = J4 �= J line, the system is charac-
terized by a subextensive ground-state manifold, equal to the
one found for the J3 = J4 = 0 case [31], where the number
of degenerate ground states scales exponentially in the linear
system size L. We will first briefly review the J3 = J4 = 0
case and then show how the results can be generalized to
the J3 = J4 �= J case. When J3 = J4 = 0, there are two differ-
ent types of coplanar ground states, characterized by Q0 = 0
and Q1/3 = 2π (±1/3,±1/3,±1/3), where the signs ± in
the three components of Q1/3 can be chosen independently.
The Q0 = 0 ground state corresponds to the one found in the
region (2). An example for a Q1/3 state with the choice of signs
given by Q1/3 = 2π (1/3, 1/3, 1/3) is depicted in Fig. 3(b)
for one unit cell. (Note that here and in the following, the
term “unit cell” refers to the crystallographic unit cell, not to
the magnetic one.) Other combinations of signs correspond to
other spin configurations not shown. The configurations in the
neighboring unit cells are found by rotating the spins about
the axis perpendicular to the plane in which the spins lie,
by an angle given by Q1/3 · R, where R denotes the position
of the unit cell. These rotations always involve an angle of
120◦. Therefore, for each combination of signs, there are three
possible arrangements of spins in the unit cell denoted A,
B, C that are cyclically or anticyclically repeated along each
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Cartesian direction. Particularly, for the signs as given in
Q1/3 = 2π (1/3, 1/3, 1/3), a cyclic progression A → B →
C → A occurs along all three Cartesian directions, which
results in stacked layers of different unit cells along the (111)
direction [see Fig. 3(b)], while other sign choices lead to
stacks along other body diagonals.

Both the Q0 and the Q1/3 coplanar ground-states feature
spins in the isolated and hyperkagome triangles that have
angles of 120◦ between each other, see Figs. 3(b) and 3(c),
respectively. Having the same mutual arrangement of spins
in the triangles allows the construction of an infinite set of
ground states, by mixing stacked layers of A, B, C unit cells
(corresponding to a Q1/3 order) with stacked layers of Q0
order along the respective body diagonal. Such a composition
of unit cells along the body diagonal has to be done under a
precise set of rules, explained in Ref. [31], to ensure that the
triangles shared by neighboring unit cells maintain the 120◦
angles. An example of a possible ground-state configuration
is depicted in Fig. 3(c). The existence of mixed ground states
gives rise to an exponentially large ground-state degeneracy
∼2L/6, where the exponent scales linearly with the system
size, see Ref. [31].

Remarkably, all the degenerate ground states in the case
J3 = J4 = 0 remain ground states when J3 = J4 �= 0. This can
be understood by examining the energy contributions from the
individual J1, J2, J3, and J4 bonds in the Q0, Q1/3 and mixed
states, respectively, reported in Table III. Particularly, when
J3 = J4 the energy contributions from the chain interactions
are equal in all three states and also independent of the precise
mixing of Q0 and Q1/3 orders. Furthermore, the corresponding
energies agree with the ones found within IM and LT, indicat-
ing that these degenerate states are also ground states. Thus,
the ground-state manifold of the J3 = J4 < J case is identical
to the one in the J3 = J4 = 0 case.

A finite-temperature order-by-disorder transition towards
the Q0 state was previously observed in the J3 = J4 = 0 case
[31]. To investigate whether an analogous behavior also oc-
curs for J3 = J4 �= 0 we perform finite-temperature classical
Monte Carlo (MC) simulations of N = 12 × L × L × L spins
with periodic boundary conditions, interacting according to
the Hamiltonian in Eq. (1). Details of the simulations are
given in Appendix C. We fix J1 = J2 and change the value of
J3 = J4. The specific heat as a function of temperature shows
a peak for each value of J3 = J4, indicating the presence of an
order-by-disorder transition [Fig. 4(a)]. Below the transition
the system is always found to be in the Q0 state, in analogy
with the J3 = J4 = 0 case. The temperature of the order-by-
disorder transition decreases as J3 = J4 increases. This can
be understood by investigating the energy bands from LT,
which are obtained by diagonalizing the coupling matrix Ji j .
As shown in Fig. 4(b) increasing the value of J3 = J4 causes
a flattening of the lowest band around the minimum (which
forms a line in momentum space), making the system more
prone to explore different configurations driven by thermal
fluctuations. As a consequence, the order-by-disorder transi-
tion shifts towards lower temperatures.

(4) J3 = J4 = J: Three-dimensional degenerate ground-
state manifold

At the point J3 = J4 = J the system features an exten-
sive ground-state manifold where the number of degenerate

FIG. 4. (a) Specific heat as a function of temperature obtained
by MC simulations with L = 8, for J1 = J2 = J and four different
values of J3 = J4 ∈ {0, 0.25, 0.5, 0.75}. For every value of J3 = J4,
the system undergoes an order-by-disorder transition, as indicated
by the peak. By increasing the value of J3 = J4, the temperature
of the transition decreases. (b) Energy e0 of the lowest band from
the LT method, along the momentum cut [h, 0, 0] that contains the
energy minimum emin at Q0 = (0, 0, 0). For better comparison of the
behaviors at low energies, the bands are shifted by the respective
minimum emin for each value of J3 = J4. The flattening of the band
with increasing J3 = J4 causes a downward shift of the order-by-
disorder transition temperature.

ground states scales exponentially in the number of sites N .
This is due to the fact that when J1 = J2 = J3 = J4 = J , the
Hamiltonian can be rewritten as a sum over spin clusters that
have the shape of irregular octahedra,

H = J

2

∑
octa

(Socta)2 + const., (4)

where Socta is the sum of the spins in each irregular octahedral
cluster. More precisely, in this specific case, each spin is
coupled to ten other spins with the same interaction strength.
These ten spins can be divided into two groups of five spins,
where each group together with the reference spin forms an
irregular octahedra. This property holds for each spin in the
lattice, creating thus a network of corner-sharing clusters of
six spins. Within each cluster, all pairs of spins are coupled
with the same interaction J . We call these clusters irregular
octahedra because they have six vertices and eight faces; how-
ever, the triangles composing the faces are not equilateral (as
they would be in a regular octahedron) even though all inter-
action strengths are the same [see Fig. 5(a)]. The underlying
lattice created by the center points of the octahedral clusters
is a trillium lattice with four sites in the cubic unit cell where
each site is shared by three triangles [50], see Fig. 5(b). Due to
this property, we will refer to this network as the dual-trillium
lattice.

The present case is similar to the well-known classical
Heisenberg model on the pyrochlore lattice, in which the
spins create a network of corner-sharing tetrahedra. As for the
pyrochlore lattice, the origin of the extensive degeneracy on
the dual-trillium lattice can be understood from a Maxwellian
counting argument [10,11]. The number of degrees of freedom
can be estimated as F = Nc

2 (n − 1)q, where n is the number of
spin components, q is the number of spins in a cluster (for the
dual-trillium lattice q = 6), and Nc is the number of clusters.
The factor n − 1 comes from the fact that the spin’s length
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(a) (b)

(c) (d)

FIG. 5. (a) Distorted windmill lattice with y = −0.2258. The
colored bonds represent the J1, J2, J3, and J4 couplings, which are
all of equal strength J . We refer to this network as the dual-trillium
lattice. All bonds within an irregular octahedron are illustrated with
the same color. (b) Centers of the irregular octahedra plotted in (a).
The centers of the octahedra that share a site are connected by a black
line, creating a nearest-neighbor trillium network. The trillium lattice
has four sites per unit cell, which are represented by four different
colors of the sites. These colors match the ones used for the octahe-
dral bonds in (a). (c) Hyperkagome lattice where the colored bonds
correspond to the hyperkagome couplings J2 shown in Fig. 1(c).
The same color is used for the hyperkagome triangles corresponding
to the same trillium sublattice of the double-trillium lattice formed
by the centers of the triangles plotted in (d). The centers of the
hyperkagome triangles that share a site are connected by a black line
in (d), creating a double-trillium network. The double-trillium lattice
is bipartite and composed of two trillium sublattices highlighted
here by the two colors that match the colors of the corresponding
hyperkagome triangles in (c).

constraint fixes one of its components, while the factor 1/2
is due to the fact that each spin belongs to two clusters. The
number of constraints Socta = 0 that determine the ground-
state manifold is given by K = nNc. If the constraints are
independent the dimension of the ground-state manifold is
given by D = F − K = Nc

2 [n(q − 2) − q], which for q = 6 is
extensive for Heisenberg spins with n = 3 (where D = 3Nc)
and for XY spins with n = 2 (where D = Nc). Interestingly,
these estimates for the dimension of the ground-state man-
ifolds are even larger than for the pyrochlore lattice where
q = 4 and, consequently, D = Nc for Heisenberg spins and
D = 0 for XY spins.

It is also instructive to compare the magnetic properties
of the dual-trillium Heisenberg model and the hyperkagome
Heisenberg model, since the latter, likewise, features an ex-
tensive ground-state degeneracy [7]. As mentioned earlier the

(a) (b)

FIG. 6. (a) Equal-time spin structure factor [Eq. (3)] of the clas-
sical dual-trillium Heisenberg model with J1 = J2 = J3 = J4 = J in
the [h, h, l] plane at T/J = 0.01 obtained by means of MC sim-
ulations (right), compared with the one obtained by means of the
large-N approach [17] (left). (b) Specific heat per spin for the same
model as a function of temperature obtained by MC simulations. No
peak is observed down to T/J = 0.01.

hyperkagome network is a special type of distorted windmill
lattice where only J2 bonds but no other J1, J3, or J4 bonds
contribute. In the hyperkagome lattice, the spins create a
network of corner-sharing triangles and the dual lattice that
is formed by connecting the centers of these triangles corre-
sponds to a lattice with two interconnected trillium lattices,
that we call the double-trillium lattice, see Figs. 5(c) and
5(d) and Ref. [54]. This lattice has a doubled unit cell with
respect to the trillium lattice, and each site is connected to
three sites of the respective other trillium sublattice (conse-
quently the double-trillium lattice is bipartite). The classical
hyperkagome Heisenberg model is characterized by dipolar
spin correlations, which manifest as pinch points in the equal-
time spin structure factor [7]. On the other hand, however, the
system shows partial order at low temperatures T/J � 0.001
[7], where an order-by-disorder transition drives the system
into a phase with coplanar spin configurations.

The classical dual-trillium Heisenberg model obtained
at J1 = J2 = J3 = J4 = J shows significant differences com-
pared to the hyperkagome Heisenberg model. First, the
equal-time spin structure factor [see Eq. (3)] does not show
any pinch points, neither within the large-N approximation
[17] nor within classical MC; see Fig. 6(a) for a comparison of
the equal-time spin structure factors in the [h, h, l] plane ob-
tained by both methods. As explained in Ref. [55], the absence
of pinch points can be traced back to the fact that the parent
trillium lattice (that is created by connecting the centers of the
irregular octahedra) is non-bipartite. In contrast, the double-
trillium lattice (that is created by connecting the centers of
the hyperkagome triangles) is bipartite. A non-bipartite nature
of a lattice of corner-sharing clusters gives rise to fascinating
physical phenomena, most strikingly, these systems have been
proposed to host “classical Z2 spin liquids” [55], which can be
understood as the classical counterparts of quantum Z2 spin
liquids (see also the recent studies in Refs. [56–58] for gen-
eral classification schemes for classical spin liquids). In the
classical case, these phases are characterized by exponentially
decaying spin correlations and an absence of pinch points in
the spin structure factor.
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Furthermore, the specific heat from MC simulations of
the classical dual-trillium Heisenberg model does not show
any sign of an order-by-disorder transition [see Fig. 6(b)].
This is in agreement with the argument given in Ref. [19],
according to which a system is expected to show an order-by-
disorder transition if n < (q + 2)/(q − 2). In the present case
with six-site clusters (q = 6) and Heisenberg spins (n = 3)
this condition is not satisfied. Our MC calculations predict
a specific heat per spin that approaches the value cv = kB/2
at low temperatures. This value can again be explained within
the aforementioned Maxwellian counting argument and is also
consistent with the absence of an order-by-disorder transition
in the following way. The D modes in the ground-state mani-
fold (which correspond to flat bands in LT) do not contribute
to the specific heat. The other F − D = K = nNc modes con-
tribute with kB/2 to the specific heat, provided that these
are all harmonic modes. Hence the specific heat per spin is
expected to be cv = nNckB/(2N ). Since the number of sites
N and the number of octahedral clusters Nc are related by
N = 3Nc and assuming Heisenberg spins (n = 3) one indeed
reproduces the value cv = kB/2 from MC calculations. For
this agreement, it is essential that all K nonflat modes outside
the ground-state manifold are harmonic. If that was not the
case, particularly, if a subset of the K modes were quartic
[4,11] (which would then contribute kB/4 to the specific heat),
these modes would be selected within an order-by-disorder
mechanism, in contradiction with our observations.

The dual-trillium lattice constitutes an interesting platform
for investigating novel types of classical spin liquids. We defer
a more detailed investigation of this system to future work and
now focus on the relevance of the distorted windmill lattice for
PbCuTe2O6.

IV. CLASSICAL STUDY OF PbCuTe2O6

In this section, we focus on the classical version of the
Heisenberg Hamiltonian for PbCuTe2O6 in Eq. (1) with the
couplings given in Table II and the site positions from Table I
with y = −0.2258. Besides an investigation of the magnetic
properties of this model, we discuss to which extent previous
experimental results on PbCuTe2O6 can already be explained
on a classical level, despite the S = 1/2 quantum nature of this
compound, following a similar strategy as in Refs. [41–49].
We simulate N = 12 × L × L × L classical spins with pe-
riodic boundary conditions, using different analytical and
numerical techniques. To characterize the magnetic order at
T = 0, we proceed similarly to the previous section by apply-
ing IM and LT. We then study the finite-temperature behavior
by means of MC simulations. Finally, we investigate the
magnetic excitations, i.e., the dynamical spin structure factor
in the paramagnetic regime using molecular dynamics (MD)
simulations.

A. STATIC MAGNETIC ORDER AT ZERO AND FINITE
TEMPERATURES

As indicated in the phase diagram in Fig. 2, the classi-
cal Hamiltonian for PbCuTe2O6 has a magnetically ordered
ground state with an incommensurate wave vector Q.
Although this type of magnetic long-range order does not

FIG. 7. (a) Ground-state energy per spin eGS (left) and ordering
wave vector Q = 2π (±m/L, ±m/L, ±m/L) (right) of the classi-
cal Heisenberg Hamiltonian for PbCuTe2O6 obtained within IM as
a function of the linear system size L. The horizontal blue line
marks the optimal wave vector Q = 2π (±ξ,±ξ, ±ξ ) with ξ =
0.285756(1) found by means of LT. (b) Average energy per spin e
for different linear system sizes L as a function of the temperature
T , obtained on cooling by means of MC simulations. The energy
drop indicates a phase transition towards a magnetically ordered
state. The curve for L = 13 is almost completely covered by the
curve for L = 12. (Inset) Hysteresis loop for L = 7, 14. The arrow
pointing down (up) indicates that the curve is obtained by decreasing
(increasing) the temperature during a MC simulation. (c) Critical
temperature from the MC simulations on cooling as a function of
the linear size. Linear sizes with the same ordering vector [see (a)]
are marked with the same color and connected by a dashed line. The
light gray dashed line serves as a guide to the eye.

seem realized in PbCuTe2O6, we investigate its properties
here, to complete our study of the classical model Hamiltonian
for this compound. To identify the incommensurate order by
means of IM we proceeded similarly to Ref. [40], by investi-
gating different linear system sizes L. As reported in Fig. 7(a),
the ground-state energy and the corresponding ordering wave
vector Q = 2π (±m/L,±m/L,±m/L) with m integer, depend
on the simulated linear size L. The lowest energy is found for
L = 11 and the ordering wave vector for this system size is
given by Q = 2π (±3/11,±3/11,±3/11), where all combi-
nations of signs occur and yield identical energies. For L = 7
and L = 14 we find only slightly larger ground-state energies
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which differ from the one at L = 11 only after the fourth dec-
imal digit. The corresponding ordering wave vector for L = 7
and L = 14 is given by Q = 2π (±2/7,±2/7,±2/7). Similar
energies for these two wave vectors are expected, since 2/7
and 3/11 only differ by approximately 5%. These results are
also consistent with LT, where the ordering wave vector Q
is found to be Q = 2π (±ξ,±ξ,±ξ ) where ξ = 0.285756(1),
i.e., very close to 2/7 � 0.285714. The dependence of these
results on the linear size and the presence of two almost
degenerate estimates of the ground-state energy indicate that
the exact ground state is not reached by finite-size simulations.
This is the case when Q approaches an irrational number,
which corresponds to a ground state characterized by incom-
mensurate magnetic order.

Next, we study the finite-temperature behavior by means of
MC simulations. By decreasing the temperature, the energy
per spin as a function of temperature exhibits a drop that
becomes steeper with increasing linear size L [Fig. 7(b)],
which is a clear signature of a phase transition. The posi-
tion of the energy drop, i.e., the critical temperature Tc of
the transition again strongly depends on the linear system
size L, see Fig. 7(c). This size dependence of Tc is expected
since different linear sizes realize different magnetic orders,
corresponding to finite-size approximations of the actual in-
commensurate order. For small values of L the available m/L
values of the ordering vector can significantly differ from the
actual incommensurate number, see for example the Q order-
ing vector for L = 5 and the LT estimate of Q in Fig. 7(a).
The inability of the systems with these linear sizes to approx-
imate the ground state results in a lower critical temperature
and a higher energy below the transition, see Fig. 7(b). By
increasing the linear size, the Q ordering vector is discretized
in smaller steps and the difference between m/L and the actual
incommensurate value decreases. Consequently, this effect is
suppressed and the fluctuations of the critical temperature as a
function of the linear size decrease, see Fig. 7(c). By compar-
ing the critical temperatures of the linear sizes characterized
by the same ordering wave vector Q, one recognizes another
type of dependence on the linear size: The critical temperature
Tc decreases with increasing system sizes, see Fig. 7(c). Such
a behavior could be due to thermal hysteresis effects [7,31],
that are more pronounced with increasing the linear size [59].
To verify this possibility, we perform simulations starting
from a low-temperature configuration and gradually heating
up the system for the two linear sizes L = 7, 14 with the same
ordering vector. The curves obtained, respectively, by heat-
ing and cooling the system do not match around the critical
temperature and the mismatch is larger for the largest size,
confirming the presence of a hysteresis effect [Fig. 7(b) inset].
The energy jump at the critical temperature and the thermal
hysteresis effect are indications that the phase transition is of
first order [60].

Because of the strong dependence of the results on the
linear system size, it is difficult to give a value of the critical
temperature in the thermodynamic limit. Our best estimates
are Tc = 3.25 K (L = 14) and Tc = 3.3 K (L = 11), obtained
by taking into account the largest linear sizes with the lowest
ground-state energy.

To study the magnetically ordered low-temperature regime
in more detail, we focus on L = 11 for the rest of this sub-

FIG. 8. (a) Specific heat for L = 11 as a function of temperature
for the classical Heisenberg Hamiltonian for PbCuTe2O6, obtained
by means of MC simulations. The peak at Tc = 3.3 K corresponds to
the onset of the magnetic long-range order. The peak at Tc2 = 1.05 K
is associated with additional discrete lattice symmetry breaking, as
discussed in the main text. (b) Ssub(q) at q = Q1 and q = Q2 as a
function of the temperature, obtained by means of MC simulations
at finite temperature and with IM at T = 0. The vectors Q1 and Q2

are two distinct combinations of signs in the ordering wave vector
Q = 2π (±3/11, ±3/11, ±3/11). The gray line marks the total in-
tensity

∑
q∈HBZ Ssub(q) = N/2 where the summation is only done

over half of the first Brillouin zone (HBZ) since the other half is
identical due to Ssub(q) = Ssub(−q). This value N/2 results from a
sum rule and is independent of the temperature. (c) Ssub(q) in the
[h, k, k] plane, obtained from one MC run at T = 3 K (left) and T =
0.5 K (right). At Tc2 < T = 3 K < Tc a peak emerges in Ssub(q) at
Q1 = ±2π (−3/11, 3/11, 3/11). At T = 0.5 K < Tc2 a second less
intense peak emerges in Ssub(q) at Q2 = ±2π (3/11, 3/11, 3/11).

section. According to our previous results, this value provides
the lowest ground-state energy among all simulated system
sizes. The specific heat as a function of temperature displays
two peaks, one at Tc = 3.3 K and another, less pronounced
peak at Tc2 = 1.05 K [Fig. 8(a)]. The peak at Tc corresponds
to the position of the energy drop in Fig. 7(b) and marks the
onset of magnetic long-range order. To investigate the origin
of the second peak in the specific heat at Tc2 we consider
the Fourier transform of the spin-spin correlations Ssub(q) as
defined in Eq. (2). [Since Ssub(q) only takes into account the
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spin-spin correlations within the same sublattice, it is peri-
odic in momentum space with respect to the first Brillouin
zone.] Particularly insightful is Ssub(q = Q) as a function of
temperature at the ordering wave vector Q, which is Q =
2π (±3/11,±3/11,±3/11) for L = 11, where we now ex-
plicitly distinguish between different combinations of signs
in this vector [see Fig. 8(b)]. The results at T > 0 (T = 0)
in Fig. 8(b) are obtained by means of MC calculations (IM
calculations). We find that the onset of magnetic order at Tc

is associated with the selection of a particular sign combina-
tion in Q = 2π (±3/11,±3/11,±3/11) (due to the random
initialization and spin updates within MC, this selection is
also random in each MC run). Denoting this chosen wave
vector as Q1, below Tc we observe the onset of a finite weight
in Ssub(q = Q1). Note that, since Eq. (2) is invariant with
respect to momentum inversion q → −q the same signal is
also found at −Q1, i.e., Ssub(q = Q1) = Ssub(q = −Q1). Be-
low Tc2 , we find that, additionally, Ssub(q = Q2) acquires a
finite weight, where Q2 corresponds to another selected com-
bination of signs in Q = 2π (±3/11,±3/11,±3/11). The
sum Ssub(Q1) + Ssub(Q2) exhibits a small kink at Tc2 and
accounts for almost the total intensity at T = 0. This indi-
cates that the changes, which the system undergoes at Tc2 do
not just correspond to a redistribution of signal in Ssub(q)
but rather the generation of additional signal, pointing to-
wards another magnetic ordering transition associated with
the formation of enhanced static magnetic moments. To fur-
ther illustrate the presence of the additional magnetic Bragg
peak, in Fig. 8(c) we show Ssub(q) in a plane that contains
both Q1 and Q2, at two different temperatures Tc2 < T < Tc

and T < Tc2 , from a single MC run. The fact that we observe
this transition for all simulated system sizes, indicates that this
is an intrinsic feature of the system, rather than a finite-size
effect.

The physical picture that emerges is the following: The
spins undergo a two-stage ordering mechanism, in which
at Tc they first develop magnetic order characterized by a
single ordering wave vector Q1. At the lower temperature
Tc2 additional long-range correlations described by another
(symmetry related) wave vector Q2 set in. This corresponds
to the loss of certain types of fluctuations that are still allowed
for Tc2 < T < Tc. Since the presence of two peaks of unequal
height at Q1 and Q2 represents a weight distribution in Ssub(q)
with lower momentum space symmetries compared to the
presence of just one peak at Q1, we expect that the magnetic
order that develops at Tc2 is associated with additional lattice
symmetry breaking. A possible explanation for the occurrence
of two consecutive phase transitions is provided by the LT
approach. Within this method a single-Q magnetic ordering in
the ground state is allowed, but with the caveat that the length
constraint of individual spins is not fulfilled. At sufficiently
large temperatures (i.e., in the temperature range Tc2 < T <

Tc) a single-Q state can nevertheless be realized since thermal
fluctuations reduce the static magnetic moment such that the
spin’s length constraint is effectively relaxed. With decreasing
temperature and the loss of thermal fluctuations, however,
the fulfillment of the individual length constraints eventually
requires an additional ordering wave vector Q2, which leads
to the observed second phase transition at Tc2 . Such a multi-Q
ordering in the ground state is not common but can occur

when the interactions are particularly complex and generate
a high level of frustration [61,62].

In summary, the classical Heisenberg model corresponding
to PbCuTe2O6 orders magnetically in a state with incommen-
surate Q. This behavior is very different from the one obtained
experimentally for PbCuTe2O6. In fact, both thermodynamic
probes and inelastic neutron scattering (INS) experiments
show no sign of magnetic order down to T = 0.01 K [36,37].
This indicates that quantum effects, completely neglected in
the classical model, play an important role in determining the
behavior of the real material at low temperatures.

B. DYNAMICS

As pointed out in the previous section, the low-temperature
magnetic behavior of the classical Heisenberg model in
Eq. (1) differs strongly from the one of the real material
PbCuTe2O6: While the model Hamiltonian exhibits magnetic
order below Tc � 3.3 K, the material shows no sign of a
magnetic phase transition down to T = 0.01 K. These differ-
ences are also reflected in the low-temperature properties of
the dynamical spin structure factor. A magnetically ordered
classical spin system gives rise to well-defined dispersive spin
wave features in the spin structure factor, in contrast to the
dispersionless and broad features found in INS experiments
on PbCuTe2O6 [36]. Thus, classical simulations performed
at the same temperature as INS experiments (i.e., below the
critical temperature Tc of the classical model), do not repro-
duce the dynamical spin structure factors from experiments.
On the other hand, in the paramagnetic regime at T > Tc the
classical model also shows broad and dispersionless features,
due to the absence of magnetic order caused by thermal fluctu-
ations. Consequently, in this regime, it is possible to attempt a
comparison between the simulated classical model at suitably
chosen temperatures T > Tc and the experimental data. In the
following, we will investigate whether thermal fluctuations
at T > Tc can indeed mimic the strong quantum fluctuations
observed in PbCuTe2O6 at low temperatures.

We compute the dynamical spin structure factor at T > Tc

by means of molecular dynamics (MD) simulations. Due to
the absence of magnetic order in this temperature regime, pos-
sible finite-size effects resulting from the incompatibility of
the finite system and incommensurate ordering wave vectors
are not present. As a consequence, we can fix the linear system
size to a moderate (i.e., not too large) value L = 8. For this
system size, the critical temperature is given by Tc = 3.25 K.
MD simulations consist of numerically solving the classical
equations of motion for the spins, where the starting spin
configuration is taken from a snapshot of a MC run at a
given temperature, when the system has reached thermal equi-
librium. Further numerical details are given in Appendix D.
Within MD simulations the dynamical spin structure factor
S (q, ω) is accessible via the Fourier transform of the time-
dependent spin-spin correlation function

S (q, ω) = βω|F (q)|2
N

√
Nt

Nt∑
nt =0

e−iωnt δt
N∑
i, j

eiq·(ri−r j )S j (t ) · Si(0),

(5)
where ri is the position of site i. Furthermore, Nt is the
number of time steps and δt is the time step size. The
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factors F (q) and βω correspond respectively to the form fac-
tor for the Cu2+ ions [63] and a commonly used factor to take
into account the differences between quantum and classical
statistics [46].

In the specific case of an isotropic Heisenberg model as
the one under exam, S (q, ω) in Eq.(5) corresponds to the
perpendicular structure factor, used to compare theoretical
calculations with INS data [46,47], because it takes into ac-
count the impossibility of neutrons to probe excitations with
momentum parallel to the scattering direction. Also note that,
since S (q, ω) contains the actual site positions ri, which are
noninteger multiples of the lattice vectors in direct space, this
quantity is not periodic in the first Brillouin zone. To take
into account the spin length S = 1/2 of the Cu2+ ions in
our comparisons between theory and experiment, we rescale
the frequency ω by a factor of 2. This can be justified by
linear spin wave theory where the spin wave energies are
proportional to S and match the classical ones from MD simu-
lations (where spins are normalized as |Si| = 1) when S = 1.
Consequently, to adjust the energy scales of a classical MD
simulation with the energy scales of a spin-wave approach
at S = 1/2, we need to rescale our MD results according to
ω → ω/2.

We compute the dynamical spin structure factor by means
of MD simulations for four different temperatures T =
4 K, 5 K, 6 K, 7 K in the paramagnetic regime and com-
pare it with INS data from Ref. [36]. We emphasize that
these temperatures are significantly smaller than the temper-
ature corresponding to the typical energy scale of exchange
couplings (∼13 K). Therefore, spins are already strongly
correlated at such temperatures, defining the correlated para-
magnetic regime. In Figs. 9(a) and 9(b) the comparison is
shown for the [h, k, 0] plane while Figs. 9(d) and 9(e) present
the comparison in the [h, h, l] plane. The MD results in these
plots are obtained at T = 4 K and T = 7 K, while the INS data
has been measured at T < 0.1 K. The simulated inelastic spin
structure factor is also shown at T = 3 K < Tc to highlight
the changes, which the system undergoes when entering the
magnetically ordered phase.

In the [h, k, 0] plane [see Figs. 9(a) and 9(b)], the MD sim-
ulations are able to reproduce the ring-shape features found
in experiments. However, the regions of highest intensities
on this ring do not occur around (h, k, 0) = (±2, 0, 0) and
(0,±2, 0), as seen in the experimental data, but are shifted
towards (±1,±1, 0). At T = 3K , i.e., below the critical tem-
perature, the inelastic structure factor continues to display
similar broad and ring-shaped features. This is because the
[h, k, 0] plane does not contain magnetic Bragg peaks and,
consequently, the signal at T = 3K stems from the fluctuating
part of the spins.

In the [h, h, l] plane [see Figs. 9(d) and 9(e)], the simulated
inelastic spin structure factors at T = 4 K and T = 7 K again
reproduce the overall ring-like distribution of signal observed
in INS experiments, except for the region around (±1,±1, 0),
which appears overemphasized in our simulations, as already
mentioned above. Interestingly, even weaker features outside
the ring are contained in our MD results in the [h, h, l]
plane such as two radial streaks at l > 2 and a feature of
enhanced intensity at h � 2. Below Tc the simulated mag-
netic structure factor shows multiple magnetic Bragg peaks

in the [h, h, l] plane, the one with the highest intensity is
located at (h, h, l ) = (±1.25,±1.25,±0.25) [pink arrow in
Fig. 9(d)]. This peak position is consistent with our findings
for the system’s ground-state order from IM in Fig. 7(a) where
an ordering wave vector Q = 2π (±m/L,±m/L,±m/L) with
m/L = 1/4 was found for L = 8. More precisely, the dom-
inant magnetic Bragg peak at (±1.25,±1.25,±0.25) can
be written as (±(1 + m/L),±(1 + m/L),±m/L) where the
integer parts correspond to reciprocal lattices vectors. This
dominant peak also explains the strong simulated signal at
T > Tc in the nearby region around (h, h, l ) = (±1,±1, 0),
which can be interpreted as a molten remnant of the
magnetic long-range order. In contrast, the INS data does
not show a particularly strong signal around (h, h, l ) =
(±1.25,±1.25,±0.25). This indicates that despite the obvi-
ous similarities between the calculated and the measured data,
the spin structure factor from INS cannot be simply inter-
preted as displaying smeared remnants of classical magnetic
Bragg peaks.

The plots in Figs. 9(c) and 9(f) show the same compar-
ison between MD results and INS data but now along line
cuts in the [h, k, 0] and [h, h, l] planes as indicated by the
shaded regions in Figs. 9(a) and 9(b) and Figs. 9(d) and 9(e),
respectively. Furthermore, to match the processing of the INS
data, the calculated spin structure factor has been integrated
in a direction perpendicular to the line cut, as indicated by the
width of the shaded regions. These plots demonstrate that in
the temperature range 4 K � T � 7 K the width of simulated
features in the spin structure factor approximately agrees with
the typical broadening from quantum fluctuations in the INS
data (overall, however, the changes of our results within this
temperature range are rather small). They also confirm our
observation that the best agreement between MD and INS
data occurs in the [h, h, l] plane away from the (±1,±1, 0)
region, where the simulated results along the investigated line
cut reproduce the experimental data even within error bars
[Fig. 9(f)]. On the other hand, for the plotted line cut in the
[h, k, 0] plane, which contains contributions from the strong
signal at (±1,±1, 0), larger deviations between theory and
experiment are observed [Fig. 9(c)].

Finally, in Fig. 9(g) we report the simulated dynamical spin
structure factor in a plane spanned by the frequency ω (vertical
axis) and the [0.3, 0.3, l] momentum direction (horizontal
axis). At all simulated temperatures T = 4 K, 5 K, 6 K, 7 K,
the MD results exhibit a rather featureless region of strong
signal. With decreasing temperature, the features in the
simulated data become slightly more distinct and the intensity
shifts towards lower frequencies, reminiscent of spin waves.
The wave vectors where the intensities are largest at low
frequencies correspond to the magnetic Bragg peaks at
( ± m/L,±m/L,±(2 − m/L))= (±0.25,±0.25,±1.75) and
( ± m/L,±m/L,±(3 + m/L)) = (±0.25, ± 0.25, ± 3.25)
(where m/L = 1/4 for the simulated system size L = 8), see,
respectively, green and yellow arrows in Fig. 9(d). The second
peak is clearly less intense than the first peak, also due to the
form factor in S (q, ω) that reduces the intensity at large wave
vectors. Comparing these observations with experimental
results, INS data [Fig. 9(h)] show a similar dispersionless
and smeared feature, whose intensity reaches up to maximal
energies 1.5 meV � ω � 2 meV, in agreement with our
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FIG. 9. (a) Dynamical spin structure factor from MD in the [h, k, 0] plane, integrated in the energy range 0.415 meV � ω � 0.604 meV,
at T = 4 K and T = 7 K (top) compared with the one at T = 3 K (bottom). (b) Dynamical structure factor at T = 0.1 K from INS experiments
in the [h, k, 0] plane, integrated in the energy range 0.4 meV � ω � 0.6 meV [36]. (c) Dynamical spin structure factor from INS and MD as a
function of h along the line cut [h, 1.69, 0] where the signal is integrated in the perpendicular direction [0, k, 0] respectively over 1.125 � k � 2
(MD) and 1.1 � k � 2 (INS), as indicated by the orange shaded region in (a) and (b). (d) and (e) show the same as (a) and (b) but now in
the [h, h, l] plane. The colored arrows in the simulated data at T = 3 K mark the Bragg peaks discussed in the main text. The experimental
data are additionally integrated along the perpendicular direction [h,−h, 0] in the range −0.1 � h � 0.1. (f) Dynamical spin structure factor
from INS and MD as a function of h along the line cut [h, h, 1.69] where the MD signal is integrated in the perpendicular direction [0, 0, l]
respectively over 1.25 � l � 2.125 (MD) and 1.2 � k � 2.1 (INS), as indicated by the orange shaded region in (d) and (e). (g) From left to
right: dynamical spin structure factor along the [0.3, 0.3, l] direction and as a function of frequency ω, computed by means of MD simulations
at T = 4 K, 5 K, 6 K, 7 K. The white dashed lines mark the positions of the Bragg peaks below Tc at (±0.25, ±0.25, ±1.75) [green arrow in
(d)] and (±0.25,±0.25, ±3.25) [yellow arrow in (d)]. The simulated data are integrated along the perpendicular direction [h, h, 0] in the range
0.25 � h � 0.375 [white shaded area in (d)]. The finite resolution in energy of the INS data (δE = 0.18 meV) is added to the simulated data
by means of a Gaussian broadening. (h) Dynamical spin structure factor along the [0.3, 0.3, l] direction from INS experiments at T < 0.1 K
[36]. The intensity at low frequencies is due to nonmagnetic incoherent background and is not reproduced in MD simulations. In all plots, the
simulated intensity is rescaled such that the maximum matches the one from the INS experiments.

calculations. The MD simulations are also able to reproduce
this maximum intensity region in the correct momentum
space position. More precisely, the INS data show large
intensities at (±0.3,±0.3,−1.67), which is compatible with
the Bragg peak position at (±0.25,±0.25,±1.75) found in
the classical simulations below Tc.

Overall, our classical simulations at finite temperatures
correctly reproduce the main features of the dynamical spin

structure factor of PbCuTe2O6 measured at much lower tem-
peratures and subject to strong quantum fluctuations. An
exception is the region around (h, k, l ) = (±1,±1, 0) where
our calculated signal is comparably large. This region in mo-
mentum space is close to the dominant Bragg peak position
observed in the magnetically ordered low-temperature regime
of the classical model. This indicates that despite the demon-
strated similar effects of thermal fluctuations in the classical
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model and quantum fluctuations in PbCuTe2O6, the spin struc-
ture factor of PbCuTe2O6 cannot be purely explained by
molten remnants of classical magnetic long-range order. On
the other hand, the signal distribution in the measured spin
structure factor of PbCuTe2O6 can be consistently interpreted
in terms of spin liquid behavior, as already demonstrated in
previous studies [36,39].

V. CONCLUSIONS

In the first part of this paper, we investigated the classi-
cal T = 0 phase diagram of the hyper-hyperkagome J1 = J2

Heisenberg model with varying chain interactions J3 and J4.
We identified a rich variety of ground states in this phase
diagram, with a subextensive degenerate manifold along the
J3 = J4 line, and an extensive manifold for the point J1 =
J2 = J3 = J4. We expect that, when extending the phase di-
agram for J3, J4 > J1 = J2, further subextensively degenerate
lines can be found, which connect to the J1 = J2 = J3 = J4

point. In fact, highly degenerate points are often conjunctions
of subextensively degenerate lines in parameter space [52,64].
Our preliminary LT calculations, indeed, show that for the line
cuts J1 = J2 = J3, J4 > J1 and J1 = J2 = J4, J3 > J1 the min-
ima of the lowest energy band form a surface in momentum
space.

It remains an open question how the presented phase di-
agram changes when quantum fluctuations are taken into
account. The latter usually lift classical ground-state degen-
eracies and stabilize new phases that do not have a classical
counterpart [65–67]. The experimental results on PbCuTe2O6

can be considered as an indication of how quantum fluctu-
ations affect the classical system. In fact, the results of the
classical study presented in this paper strongly differ from
the quantum picture that has emerged from experiments. First,
the classical model has a phase transition at around Tc = 3.3 K
towards a magnetically ordered state, that is absent in the
real material. It is worth mentioning that further experimental
works on PbCuTe2O6 identified a ferroelectric transition at
T � 1 K [68,69]. For a rough estimate of whether this ferro-
electric transition could be related to the magnetic transition
we found at Tc = 3.3 K, one needs to adjust the tempera-
ture (energy) scales of our classical simulation with spins
normalized to one (|S| = 1) and the S = 1/2 degrees of free-
dom of the Cu2+ magnetic ions. Since critical temperatures
of magnetic transitions are expected to scale as ∼S2, this
means that the ferroelectric transition temperature has to be di-
vided by S2 = 1/4 to compare it with our simulated transition
temperature (assuming that the ferroelectric transition was
accompanied by magnetic order). This would give a critical
temperature of T = 4 K, that is higher than Tc = 3.3 K found
for the classical model. If the observed ferroelectric transition
was accompanied by magnetic order occurring at the same
transition temperature, we would expect the classical model
to predict a higher critical temperature than observed in ex-
periments. This is because quantum fluctuations are expected
to lower magnetic transition temperatures. Indeed, there is no
evidence for magnetic long-range order at any temperature in
PbCuTe2O6 and quantum fluctuations have been experimen-
tally demonstrated to play an important role in suppressing
order.

Finally, our simulated dynamical spin structure factors
in the paramagnetic regime show an overall good agree-
ment with experimental data. This indicates that thermal
fluctuations are able to reproduce the broad features in the ex-
perimental dynamical spin structure factor caused by quantum
fluctuations. There are already existing examples for materials
that show a good agreement between the dynamical structure
factors from classical simulations and INS experiments at
different temperatures [46,47]. However, in these cases, the
behavior of the system does not change drastically when quan-
tum fluctuations are taken into account. More specifically,
no phase transition occurs between the temperature used in
the simulations and the one at which the INS experiments
are carried out. The temperature for the classical simulations
is tuned to get the best match between simulated and mea-
sured dynamical structure factors. This usually results in a
higher temperature with respect to the experimental one, in
agreement with the fact that the materials are also subject to
quantum fluctuations. In the present case, at the temperature
of the INS experiments, the classical model is magnetically
ordered, while the real material does not show any magnetic
phase transition. Nevertheless, the dynamical spin structure
factor in the paramagnetic regime of the classical model is
able to reproduce the main features found by means of INS
experiments. Although it is not possible to draw specific
conclusions on the nature of quantum fluctuations based on
this agreement, identifying and explaining such quantum-
to-classical correspondences [70] will remain an interesting
research direction that may give new insights into the quantum
ground states of strongly frustrated spin systems.
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APPENDIX A: LUTTINGER-TSIZA (LT)

To apply the LT method we proceed as follows. First we
rewrite the Hamiltonian in Eq. (1) as

H = 1

2

∑
α,β

∑
i∈α, j∈β

Ji, j (�ri, j )Si · S j, (A1)

where i, j index the sites and α, β = 1 . . . 12 index the sublat-
tices. Furthermore, ri is the position of the site i and �ri, j =
ri − r j .

Then we define the Fourier transform of the spins on the
individual sublattices

S̃α (q) = 1√
N/12

∑
i∈α

e−iq·ri Si, (A2)

and its inverse

Si∈α = 1√
N/12

∑
q

eiq·ri S̃(q). (A3)
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Inserting Eq. (A3) into Eq. (A1) we obtain

H =
∑

q

∑
α,β

J̃α,β (q)S̃α (q) · S̃β (q), (A4)

where

J̃α,β (q) = 1

2

∑
i∈α, j∈β

Ji, j (�ri, j )e
iq·(ri−r j ) (A5)

is the Fourier transform of the interaction matrix.
The ground-state energy and the magnetic ordering vector

correspond respectively to the minimum in q space of the
lowest eigenvalue of the matrix J̃α,β (q) in Eq. (A5) and the
wave vector q where this minimum is located. In the case of a
non-Bravais lattice (such as our distorted windmill lattice), the
LT method only provides a lower bound to the ground-state
energy and the predicted Q ordering may not correspond to the
exact ground-state order [52]. In fact, this procedure ensures
that the spin length constraint |Si| = 1 (the so-called strong
constraint) is satisfied only globally,

∑
i |Si|2 = N (which is

referred to as the weak constraint). As a consequence, the
obtained ground state could be ruled out when the strong
constraint is also imposed.

In this paper, we performed the diagonalization of J̃α,β (q)
numerically: each component of q = (qx, qy, qz ) in Eq. (A5)
is discretized in finite steps between −π and +π , and for
each value of q the diagonalization of the 12 × 12 matrix in
Eq. (A5) is carried out.

APPENDIX B: ITERATIVE MINIMISATION (IM)

The IM method consists of finding the classical ground
state, based on the property that in a ground state, all spins
are aligned to the effective magnetic field created by the
surrounding spins with which they interact. More precisely,
we start by rewriting the Hamiltonian in Eq. (1) as

H = −
∑

i

Beff
i · Si, (B1)

where

Beff
i = −1

2

∑
j

Ji, jS j (B2)

is the effective local magnetic field to which the spin Si is
subject, due to the Heisenberg interactions with other spins.
The procedure is simple, we first initialize a finite number
of spins, in our case N = 12 × L × L × L spins, in a random
configuration. We then select a random site and align it to its
effective magnetic field

Si → Beff
i∣∣Beff
i

∣∣ , (B3)

where the magnetic field Beff
i on the right-hand side is divided

by its norm to keep the spin length equal to one. We iterate this
procedure until the energy per spin does not change up to the
10th decimal digit. The Q ordering wave vector is obtained by
the wave vector q at which Ssub(q) in Eq. (2) calculated from
the resulting spin configuration has its maximum.

Coplanar configurations are characterized by the nematic
order parameter [18]

Qν,μ = 1

N

∑
i

(
Sν

i Sμ
i − 1

3
δν,μ

)
, (B4)

where ν, μ = x, y, z. In particular, the trace of the second
moment of (B4)

∑
μ,ν

Qμ,νQν,μ = 1

N2

∑
i, j

(
(Si · S j )

2 − 1

3

)
, (B5)

is equal to 1/6 in a coplanar configuration [18]. This quantity
has been used to determine whether a spin configuration is
coplanar or not.

We remark that IM does not have any control over whether
it reaches the real ground state or a metastable state. Thus, one
has to perform different attempts with the same linear system
size L, and then check for convergence to the same result when
varying the linear size L.

APPENDIX C: CLASSICAL MONTE CARLO (MC)

We simulated the Heisenberg model given in Eq. (1) on
the distorted windmill lattice with periodic boundary condi-
tions using different linear sizes L, which correspond to a
total number of spins N = 12 × L × L × L. A single MC step
includes N local heat-bath moves [71], followed by three over-
relaxation moves [72]. Each run is initialized with a random
spin configuration and gradually cooled down from T � 2J
to T � 0.02J , where J corresponds to the largest coupling.
Physical quantities are averaged over 2 × 105 MC steps, after
3 × 105 MC steps for thermalization.

APPENDIX D: MOLECULAR DYNAMICS (MD)

We performed molecular dynamics simulations to compute
the Fourier transform of the time-dependent spin-spin correla-
tion function S (q, ω) defined in Eq. (5) at a fixed temperature.
The starting configuration is taken from the MC simulations.
The spins are then evolved in time according to the equation of
motion

dSi

dt
= Si × Beff

i , (D1)

where Beff
i is defined in Eq. (B2). This equation describes the

precession of the spins around their local effective field. We
numerically integrate Eq. (D1) with a fourth-order Runge-
Kutta method. This procedure is repeated for different starting
configurations at a fixed temperature and then averaged over
50 independent runs. To compute S (q, ω), we employed the
approach described in Ref. [46]. This consists of accumulating
the time Fourier transform of each spin component during the
simulation, rather than computing the time-dependent corre-
lations and Fourier transform afterward.
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