Suppression of molecular field by lattice contraction in face-centered-cubic RNi_4Cd (R = Ce, Nd, Sm, and Gd-Tm)

Jeonghun Lee D and Eundeok Mun D

Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6

(Received 17 August 2023; revised 30 October 2023; accepted 30 October 2023; published 13 November 2023)

Single crystals of RNi_4Cd (R = Ce, Nd, Sm, and Gd – Tm) are grown by Cd flux and their physical properties are investigated by means of x-ray diffraction, magnetization, electrical resistivity, and specific heat measurements. Except for R = Ce, the unit cell volume of RNi_4Cd follows a lanthanide contraction, implying a 3+ valence state of rare-earth ions in this series. At high temperatures, magnetic susceptibility curves for R =Nd and Gd–Tm follow the Curie-Weiss behavior. The obtained Curie-Weiss temperature (θ_p) for R = Gd–Tm is small and negative. The temperature dependence of the electrical resistivity shows a metallic behavior for all RNi_4Cd compounds. Of the thermodynamic and transport property measurements, only GdNi₄Cd indicates an antiferromagnetic ordering below $T_N = 4.5$ K, while the remaining compounds show no signature of magnetic transition down to 1.8 K. The Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange mechanism is examined for its relevance to T_N and θ_p of isostructural metallic RT_4X (R = Gd–Tm, T = Cu and Ni, and X = Cd, In, Mg, Pd, Ag, and Au) compounds. Although the variation in θ_p can be qualitatively explained by the RKKY sum, the values of θ_p in this family are highly dependent on their lattice parameter. Unlike the RCu_4X , the strength of the exchange interaction between molecular fields produced by rare-earth planes is strongly suppressed by the lattice contraction in RNi_4X compounds.

DOI: 10.1103/PhysRevB.108.184409

I. INTRODUCTION

The RT_4X (R = rare-earth, T = Cu and Ni, and X = Cd, In, Mg, Pd, Ag, and Au) compounds adopt a MgCu₄Sn-type structure (F43m, No. 216) in which rare-earth atoms occupy a face-centered-cubic (fcc) lattice forming a network of edge-sharing tetrahedra [1-7]. Since all three (*R*, T, and X) positions can be substituted without changing the underlying crystal structure, this family of materials is well suited to study the evolution of physical properties and their relationships through chemical substitution. Within this family of materials, the low-carrier-density semimetallic RCu₄In compounds exhibit large values of the magnetic frustration parameter ($f \sim 10$), which is defined as the ratio between the absolute value of the Curie-Weiss temperature $|\theta_p|$ and the magnetic ordering temperature T_N , i.e., $f = |\theta_p|/T_N$. It has been suggested that short-range superexchange interaction between rare earths results in a low magnetic ordering temperature, giving rise to a large value of $f (T_N \ll |\theta_p|)$ [3,8]. Conversely, the good metallic *R*Cu₄Cd compounds exhibit a much smaller f value [3]. When the carrier density is increased, the frustration parameter becomes smaller ($f \sim 1$) [3]. The GdCu₄In_{1-x}Cd_x system reveals a systematic change in electrical resistivity from a semiconductorlike behavior (x = 0) to a metallic one (x = 1), resulting in an increase of T_N from 5.5 to 38 K and a decrease of θ_p from -52 to -72 K, and thus changing f from ~ 10 to ~ 2 [3]. In addition, replacing Cu with Ni in $Gd(Cu_{1-x}Ni_x)_4$ In makes the system a good metal, changing θ_p from a large negative value to a small positive one, while maintaining T_N near 5 K [9].

The series RT_4X (R = heavy rare earth) provides a way to compare the magnetism of highly localized 4f elements that share a similar crystal field environment. To gain insight into the evolution of θ_p in this series, θ_p values are plotted in Fig. 1 as a function of the lattice parameter for all isostructural RT_4X (R = Gd-Tm) compounds. For the antiferromagnetic (AFM) compounds, θ_p weakly depends on the lattice parameter below ~7.10 Å, while θ_p rapidly decreases above ~7.15 Å toward a very large negative value. For the ferromagnetic RCu₄Pd compounds, θ_p deviate from this trend. The effective moment values of these compounds, obtained from magnetic susceptibility measurements, are consistent with the theoretical values of free rare-earth ions, indicating a localized moment on R and no moment on T and X. The lattice parameter of $GdNi_4Cd$, obtained from the previously studied polycrystalline sample [1], locates a value near 7.06 Å, where θ_p starts to saturate close to zero as the lattice parameter decreases. When the Gd ions are replaced by smaller rare earths, it would be interesting to see whether θ_p of RNi₄Cd follows the same trend as the AFM RT_4X . Except for R = Yb and Y [11], the physical properties of RNi₄Cd compounds have not been previously reported. Thus, we grew single crystals of RNi₄Cd (R = Ce, Nd, Sm, Gd-Tm) and report their physical properties, characterized by powder x-ray diffraction, magnetization, resistivity, and specific heat measurements. To qualitatively understand the variations of θ_p in the isostructural RT_4X (R = Gd–Tm, T = Cu and Ni, and X = Cd, In, Mg, Pd, Ag, and Au) compounds, we compare all observed values of θ_p in the RT_4X series and explain the variations using Ruderman-Kittel-Kasuya-Yosida (RKKY) theory.

FIG. 1. θ_p of RT_4X (R = Gd-Tm, T = Cu and Ni, and X = Cd, In, Mg, Pd, Ag, and Au) as a function of lattice parameter *a*. Except $R\text{Ni}_4\text{Cd}$, θ_p and *a* values are taken from Ref. [10].

II. EXPERIMENTS

Single crystals of RNi_4Cd (R = Ce, Nd, Sm, Gd–Tm) were grown by Cd flux [11]. High-purity rare-earth, Ni, and Cd were loaded into an alumina crucible in the ratio of 1 : 4 : 25 and sealed into an amorphous silica tube. The ampoule was heated to 1050 °C and slowly cooled down to 750 °C at the rate of 2 °C/hr. Note that an attempt to grow single crystals for R = La and Pr was unsuccessful using this method. Powder x-ray diffraction (XRD) patterns of crushed RNi_4Cd single crystals were taken at room temperature in a Rigaku MiniFlex diffractometer.

Analysis, via FULLPROF software, of powder XRD patterns confirms that all RNi₄Cd samples crystallize into the MgCu₄Sn-type structure ($F\bar{4}3m$, No. 216), which is an ordered variant of the AuBe₅-type structure [12]. The powder XRD of $DyNi_4Cd$ is shown in Fig. 2(a), where the open symbol and red line are the observed and calculated XRD profiles, respectively. No other phases have been detected except minor Cd. The crystal structure is shown in the inset of Fig. 2(a) [1], where Ni atoms form a network of corner-sharing tetrahedra (Wyckoff 16e site) which leave cavities; these are filled in an orderly way by Cd (Wyckoff 4*a* site) and *R* (Wyckoff 4*c* site). The cubic point symmetry (T_d) on rare-earth ions minimizes magnetic anisotropy. Each Cd and R forms fcc sublattices, making a network of edge-sharing tetrahedra. The obtained lattice parameters (red solid circle) of RNi₄Cd single crystals, plotted in Fig. 2(b), are in good agreement with a previous polycrystalline sample (open star) study [1]. Except Ce, the lattice parameter of RNi₄Cd follows lanthanide contraction, indicating a 3+ valence state of rare-earth ions. For CeNi₄Cd, a deviation from the lanthanide contraction implies a 4+ valence state of Ce ions.

All physical property measurements were performed using polished single crystal samples. The dc magnetization, for temperatures ranging from 1.8 to 300 K and magnetic field up to 70 kOe applied along the [111] crystallographic direction, was collected in a Quantum Design (QD) Magnetic Property Measurement System (MPMS). The standard four-probe

FIG. 2. (top panel) Observed (open symbol) and calculated (red line) powder x-ray diffraction patterns of a crushed single crystal from DyNi₄Cd. (bottom panel) Lattice parameters of RNi_4 Cd (R = Ce, Nd, Sm, Gd–Tm) obtained from this work (single crystals) and the previous single crystals for R = Y and Yb [11] and polycrystalline samples [1].

resistivity measurements were performed from 300 to 1.8 K in a QD Physical Property Measurement Systems (PPMS). Specific heat was measured by the relaxation method down to T = 1.8 K in a QD PPMS.

III. RESULTS

A. Light rare earth (R = Ce, Nd, Sm)

Figures 3(a) and 3(b) show magnetization measurements as a function of temperature and magnetic field, respectively, for R = Ce, Nd, and Sm. Note that we use cgs units for the magnetization plots. The magnetic susceptibility, $\chi(T) =$ M/H, of CeNi₄Cd does not follow the Curie-Weiss (CW) law, $\chi(T) = C/(T - \theta_p)$, where $\chi(T)$ weakly depends on the temperature at high temperatures. The 4+ valence state of Ce ions can be clearly deduced from the deviation of CW law in magnetic susceptibility, the departure of the lanthanide contraction in the lattice parameter, and the small residual magnetization at T = 1.8 K. For R = Nd, the inverse magnetic susceptibility H/M is linear in temperature above ~ 50 K, where the estimated effective moment, $\mu_{eff} = 4.24 \ \mu_B/\text{Nd}$, is somewhat larger than the theoretical value of 3.62 μ_B/Nd . As shown in Fig. 3(b), the magnetization value at 1.8 K and 70 kOe is 2.3 μ_B /mol_{Nd}, which is smaller than the fully saturated moment value gJ = 36/11, probably due to the crystalline electric field effects. For R = Sm, it is well known that the nonlinearity in the plot of inverse magnetic susceptibility arises because the first excited state of the Hund's rule multiplet (J = 7/2) is very close to the ground state (J = 5/2). For this reason, the inverse magnetic susceptibility for R = Sm is fitted only at low temperatures by the modified CW formula $\chi(T) = \chi_0 + C/(T - \theta_p)$ to estimate its effective moment

FIG. 3. Magnetization measurements of RNi_4Cd for R = Ce, Nd, and Sm. (a) Inverse magnetic susceptibility at H = 10 kOe. (b) Isothermal magnetization at T = 1.8 K. (c) $\rho/\rho(300$ K) vs T. (d) Specific heat at low temperatures.

and θ_p . The estimated effective moment $\mu_{eff} \sim 0.95 \ \mu_B/\text{Sm}$ with the Hund's rule ground state J = 5/2 is slightly larger than the theoretical value of 0.84 μ_B/Sm . The isothermal magnetization at 1.8 K and 70 kOe is smaller than its gJ value, as shown in Fig. 3(b). Electrical resistivity curves normalized at 300 K, $\rho(T)/\rho(300 \text{ K})$, of RNi_4Cd (R = Ce, Nd, Sm, and Y) are plotted in Fig. 3(c), where the resistivity curves indicate a metallic behavior. The low-temperature specific heat of RNi_4Cd (R = Ce, Nd, and Y) clearly confirms there are no phase transitions in these compounds, as shown in Fig. 3(d). The specific heat curve of NdNi₄Cd indicates a broad hump around 20 K, which is probably due to the crystalline electric field (CEF) effect. The electrical resistivity and specific heat of YNi₄Cd are consistent with an earlier report [11].

B. Heavy rare earth (R = Gd-Tm)

The H/M curves of RNi_4Cd (R = Gd-Tm), measured at H = 10 kOe along $H \parallel [111]$, are plotted in Fig. 4(a). In contrast to the light rare-earth compounds, H/M curves of heavy rare-earth compounds follow the Curie-Weiss behavior at high temperatures. Thus, μ_{eff} and θ_p are estimated by fitting the curves with the CW formula from 150 to 300 K. The obtained results are summarized in Table I. The values of μ_{eff} are found to be consistent with that of respective trivalent rare-earth ions.

The small and negative values of θ_p suggest a weak antiferromagnetic nature of the exchange interaction between rare-earth ions. The obtained θ_p deviates from the de Gennes factor (dG) scaling [13]. At low temperatures, only GdNi₄Cd shows a peak at 4.5 K in the magnetic susceptibility as a signature of magnetic ordering. For the rest of the rare

FIG. 4. Magnetic properties of RNi_4Cd for R = Gd-Tm. (a) Inverse magnetic susceptibility at H = 10 kOe. (b) Isothermal magnetization at T = 1.8 K.

TABLE I. A summary of magnetic properties of RNi_4Cd obtained from magnetic susceptibility measurements. M (70 kOe): absolute value of magnetization in μ_B/R at H = 70 kOe and T = 1.8 K. μ_{eff} : effective moment in μ_B/R obtained from Curie-Weiss (CW) fit and modified Curie-Weiss (MCW) fit. Value inside the parentheses is the theoretical value for trivalent R. Θ_p : paramagnetic Curie-Weiss temperature in K. T_N : magnetic ordering temperature in K.

R	<i>M</i> (70 kOe)	$\mu_{ ext{eff}}$	Θ_p	T_N	Fit method
Ce	0.04 (2.1)	N/A (2.54)	N/A		N/A
Nd	2.24 (3.2)	4.24 (3.62)	-27		ĊW
Sm	0.20 (0.7)	0.95 (0.84)	3		MCW
Gd	6.76 (7)	7.93 (7.94)	-7	4.5	CW
Tb	8.39 (9)	10.17 (9.72)	-7		CW
Dy	9.39 (10)	10.63 (10.63)	-2		CW
Ho	8.34 (10)	9.66 (10.60)	-2		CW
Er	8.34 (9)	9.75 (9.59)	-3		CW
Tm	5.38 (7)	7.71 (7.51)	-4		CW

FIG. 5. Normalized $\rho/\rho(300 \text{ K})$ of *R*Ni₄Cd in zero field. Inset: The absolute value of resistivity at 300 K.

earths, the magnetic susceptibility measurement at H = 1 kOe indicates no magnetic transition down to 1.8 K. Note that YbNi₄Cd undergoes an antiferromagnetic ordering below $T_N = 0.97$ K [11]. The isothermal magnetization for R = Gd–Tm, plotted in Fig. 4(b), linearly increases with the field and indicates a tendency to saturate above 20 kOe. The magnetization values at 70 kOe are somewhat smaller than the theoretical *gJ* values.

The electrical resistivity curves, $\rho(T)/\rho(300 \text{ K})$, for R = Gd-Tm are plotted in Fig. 5. The $\rho(T)$ for all compounds follows a metallic behavior. The absolute value of the resistivity at 300 K is shown in the inset. The $\rho(300 \text{ K})$ values can vary between samples and are largely dependent on the geometry error. Unlike the *R*Cu₄In series, the *R*Ni₄Cd series has consistently low resistivity values for all measured temperatures, which is similar to that of *R*Cu₄Cd [3].

The temperature dependence of the specific heat, C_p , curves for R = Gd-Tm and Y are shown in Fig. 6. Among *R*Ni₄Cd compounds, only GdNi₄Cd shows a clear λ -like peak at 4.5 K, which is the onset of the antiferromagnetic ordering. C_p for R = Tb–Er indicates an upturn at low temperatures, where the rise in specific heat as the temperature decreases may suggest a possible magnetic ordering below 1.8 K. It is necessary to measure specific heat below 1.8 K to confirm whether magnetic ordering exists. The specific heat for R =Tm shows a broad maximum around 3 K (more clearly seen in the inset), which can be related to a Schottky anomaly due to low-lying CEF levels. The magnetic part of the specific heat (C_m) of RNi_4Cd (R = Gd-Tm) is estimated by subtracting the specific heat of YNi₄Cd and is plotted in the inset of Fig. 6. The C_m curves for R = Tb–Tm indicate broad maxima at high temperatures, which correspond to the Schottky contributions, as the R^{3+} ions are influenced by the CEF.

C. GdNi₄Cd

Since GdNi₄Cd is the only *R*Ni₄Cd single crystal to exhibit a magnetic ordering at 4.5 K, the magnetic properties of this compound are more thoroughly investigated. Magnetic

FIG. 6. Specific heat of *R*Ni₄Cd below 50 K. Inset: The magnetic part of the specific heat.

susceptibility of GdNi₄Cd at H = 1 kOe shows a peak at 4.1 K and a hump near $T \sim 3.0$ K, as shown in Fig. 7(a). The resistivity in zero field is plotted alongside susceptibility, showing a sharp drop below 4.5 K, probably due to the loss of spin-disorder scattering. The observed ordering temperature in our single crystal sample is consistent with the previously reported polycrystalline sample [1]. However, a ferromagnetic ordering at $T \sim 32$ K, observed in the previous polycrystalline sample due to the binary GdNi₅ inclusion [1], is not detected in our single crystal sample.

The magnetic specific heat C_m in zero field also shows a clear λ -like transition at 4.5 K, as shown in Fig. 7(b). The

FIG. 7. Low-temperature magnetic susceptibility, specific heat, and resistivity of GdNi₄Cd. (a) Magnetic susceptibility at H = 1 kOe (left axis) and resistivity in zero field (right axis). (b) Magnetic specific heat at various magnetic fields. (c) C_m/T vs T in zero field. (d) Estimated S_m in zero field. See details in the text.

magnetic ordering can be suppressed below 1.8 K by an external magnetic field less than \sim 50 kOe. A broad maximum in C_m is developed at $T \sim 3.5 \text{ K}$ at H = 30 kOe and this maximum moves to a higher temperature as the magnetic field increases, which is probably due to the Zeeman splitting of S = 7/2 energy level. The magnetic specific heat divided by temperature, C_m/T , is plotted in Fig. 7(c). C_m/T does not go to zero below the magnetic ordering temperature, showing a slight upturn below 2.7 K. Below the magnetic ordering temperature, an anomalous temperature dependence of the specific heat typically occurs in Gd-based compounds arising from the broken degeneracy of the Gd ground state [14]. Note that the nuclear Schottky anomaly is observed near T = 0.25 K in HoCu₄In and HoCu₄Cd [15]. We believe that the upturn just below T_N in C_m/T of GdNi₄Cd does not originate from the nuclear spin, but from the contribution of the Schottky anomaly arising from broken degeneracy of the ground state J. Since C_m/T does not go to zero, the magnetic entropy (S_m) is estimated by two scenarios. First, C_m/T below 1.8 K is linearly extrapolated to zero temperature with the value of 3.8 J/(mol K^2), which may reflect the upper limit of S_m . S_m in this limit (solid symbols) almost reaches the full $R \ln(8)$ entropy at T_N , as shown in Fig. 7(d). Second, C_p must be zero at zero temperature; thus we assume $C_m/T = 0$ at 0 K, which can be considered as the lower limit (underestimate of the magnetic entropy). The estimated S_m in this limit (open symbol) recovers 70% of $R \ln(8)$ by T_N . It has been observed in this family of materials that the S_m value at T_N is 86% of $R\ln(8)$ for GdCu₄Cd [3] and 67% of $R\ln(8)$ for GdCu₄In [16]. In addition, the neutron diffraction experiments have revealed that Ho moments in HoCu₄Cd are fully ordered [15] and Gd moments in GdCu₄In are partially ordered [16]. It is expected that the similar S_m value of GdNi₄Cd with that of GdCu₄Cd may indicate that Gd moments in GdNi₄Cd are also fully ordered without magnetic frustration. Note that the zero field C_m of GdNi₄Cd shows an unusual increase above 10 K, despite CEF splitting not being expected in Gd-based compounds. The full recovery of $R \ln(8)$ entropy at T_N for GdNi₄Cd suggests that the broad feature above 10 K observed in C_m is due to the subtraction error.

IV. DISCUSSION

The RKKY exchange mechanism is examined for its relevance to T_N and θ_p of RT_4X compounds. In this family, the 4f moments of heavy rare earths are well respected with their Hund's rule ground-state J values, and their magnetic susceptibility curves are weakly affected by crystalline electric field (CEF) effects due to the small energy level splittings. In general, the strength of the molecular field λ can be estimated from Curie-Weiss temperature θ_p . When θ_p is positive, it indicates ferromagnetic (FM) interactions, while negative values indicate antiferromagnetic (AFM) interactions [17,18]. The magnetic ordering temperature (T_m) reflects the exchange energy, which depends on the arrangement of magnetic moments on the lattice and the types of exchange interactions such as superexchange and RKKY interactions. In highly localized 4 f moment materials, it is often observed that $T_c \sim \theta_p$ for ferromagnets and $T_N < \theta_p$ for antiferromagnets, due to the simplified molecular field interactions. In some cases,

FIG. 8. Lattice parameter, $\rho(300 \text{ K})$, T_N , and θ_p of metallic Gd T_4X compounds. (a) $\rho(300 \text{ K})$ vs lattice parameter. (b) T_N vs $\rho(300 \text{ K})$. (c) θ_p vs $\rho(300 \text{ K})$. (d) $|\theta_p|/T_N$ vs $\rho(300 \text{ K})$. $\rho(300 \text{ K})$, θ_p , and T_N data are obtained from Ref. [19]. Dashed lines are guides to the eye.

 T_N can be further reduced by geometrically frustrated lattice structures such as fcc, kagome, and pyrochlore. Comparing θ_p in this family can provide valuable insights into the relative strength of the exchange interactions and the dominant parameters affecting the magnitude of both θ_p and T_m in isostructural settings. In particular, Gd-based compounds are suitable for this analysis because of the L = 0 state.

For Gd T_4X compounds, we investigate a correlation between the electrical resistivity at 300 K, $\rho(300K)$, and other parameters such as the lattice parameter, T_N , and θ_p . $\rho(300 \text{ K})$ for metallic Gd T_4X compounds is plotted in Fig. 8(a) against their lattice parameter. Note that GdCu₄In is not plotted in the figure, where the resistivity value of the semimetallic *R*Cu₄In series is much larger than that of other metallic compounds in this family [3]. As the lattice parameter increases, the value of $\rho(300 \text{ K})$ increases. This relationship has been observed in the *R*Cu₄In and *R*Cu₄Cd series, where a larger *R* results in a significant increase in resistivity values [3,20]. However, when *R* is varied from Gd to Tm in the *R*Ni₄Cd series, the resistivity value at 300 K does not show a significant change (Fig. 5), despite the series exhibiting a similar degree of lattice contraction.

In a simple model, the electrical resistivity value is inversely proportional to the carrier density *n*, which is proportional to the density of states $N(E_F)$ at the Fermi level. Therefore, variations of $\rho(300 \text{ K})$ can be used as an approximation for the relative change in $N(E_F)$ within this family of materials. Among this group, GdNi₄Cd exhibits the smallest resistivity value at 300 K, $\rho(300 \text{ K}) \sim 25 \ \mu\Omega \text{ cm}$, implying the largest $N(E_F)$. This result is supported by the observed values of electronic specific heat coefficient γ and susceptibility χ_0 in nonmagnetic compounds, as γ and χ_0 values are proportional to $N(E_F)$. The γ and χ_0 values are 14 mJ/(mol K²) and 1 × 10⁻³ emu/mol for YNi₄Cd [11] and 2.91 mJ/(mol K²) [3] and 2.7 × 10⁻⁵ emu/mol [21] for LuCu₄In, respectively. YNi₄Cd has the highest known χ_0 value among previously reported nonmagnetic RT_4X compounds. Thus, YNi₄Cd is considered a good metal with $\rho(300 \text{ K}) \sim 10 \ \mu\Omega \text{ cm}$, while LuCu₄In is a low-carrier-density semimetal with a very large $\rho(300 \text{ K}) \sim 1000 \ \mu\Omega \text{ cm}$.

The T_N and θ_p values of the metallic Gd T_4X compounds are displayed in Figs. 8(b) and 8(c), respectively, as a function of $\rho(300 \text{ K})$. It appears that both T_N and θ_p are approximately proportional to $\rho(300 \text{ K})$. For metallic Gd T_4X , the frustration parameter range is 0.5 < f < 2, as shown in Fig. 8(d). Compounds with large $|\theta_p|$, such as GdCu₄Cd and GdCu₄Mg, tend to have the frustration parameter between 1 and 2, while compounds with small $|\theta_p|$, such as GdNi₄Cd, GdNi₄In, and GdCu₄Ag, tend to have the frustration parameter less than 1. It has to be noted that the small value of f implies no magnetic frustration in metallic RT_4X compounds. The observed f suggests a variation in the strength of the RKKY interaction between the various Gd-Gd pairs responsible for T_N and θ_p . It seems that the lattice parameter plays a significant role in tuning $N(E_F)$ and T_N and θ_p for metallic Gd T_4X compounds.

It has been generally considered that the magnetic ordering temperature of 4f-based metallic systems is proportional to the square of the effective exchange interaction (j_{sf}^2) and $N(E_F)$ [3]: $T_N \propto j_{sf}^2 N(E_F)$. However, the metallic Gd T_4X compounds seem to follow the opposite direction where the larger $N(E_F)$ does not necessarily enhance T_N . According to Ref. [22], the variation and sign change of θ_p in Gd-based compounds can be explained by the RKKY mechanism. In the RKKY picture [13,23], θ_p for both AFM and FM interactions can be expressed by

$$\theta_p = \frac{2(g-1)^2 J (J+1) \mathcal{J}(\mathbf{Q}=0)}{3k_B},$$
 (1)

$$\mathcal{J}(\mathbf{Q}=0) = -\frac{9\pi n_0^2}{4k_B E_F} j_{sf}^2 \sum_i F(2k_F R_i),$$
(2)

where $\mathcal{J}(\mathbf{Q})$ is the effective exchange interaction between f-electron spins mediated by conduction electrons, $(g - 1)^2 J(J + 1)$ is the de Gennes factor (dG) for the angular momentum quantum number J, and n_0 is the average number of conduction electrons per unit cell. The RKKY sum varies between positive and negative values depending on a dimensionless quantity $k_F R_i$, leading to sign changes in θ_p . Hence, the observed behavior can be explained by considering the position and direction of the RKKY sum, where the increment of $k_F R_i$ leads to either an approach to or a departure from zero.

For RCu_4X (X = Cd, In, Pd, Ag, and Au), the RKKY sum has been calculated assuming R and Cu atoms contribute three and one electron to the conduction band, respectively [3,6,22,24]. When the magnitude of θ_p is large, this picture qualitatively explains the variation of θ_p , with θ_p linearly scaling with dG. However, when the θ_p value is small and located near a sign change in the RKKY sum, the dG scaling breaks down. This has been observed for RCu_4X (X = Agand Au) and RNi_4Cd . For RCu_4X (X = Ag and Au), θ_p even shows a sign change when R is varied from Gd (dG = 15.8)

FIG. 9. θ_p of Gd T_4X compounds as a function of lattice parameter, obtained from Refs. [10] and [19]. Dotted and dashed lines are guides to the eye.

to Tm (dG = 1.2), which should not occur in the conventional RKKY mechanism. Therefore, constant conduction electrons or exchange interactions j_{sf} upon isoelectric substitution, assumed in the simple RKKY interaction, cannot be applied to real materials. Proper band structures must be considered to evaluate $\mathcal{J}(\mathbf{Q})$.

The observed θ_p values of isostructural Gd T_4X compounds are strongly dependent on the lattice parameter, implying a correlation with the interatomic spacing between the Gd ions. This relationship is demonstrated in Fig. 9, which plots θ_p as a function of their lattice parameters. Since the nearest-neighbor Gd–Gd distance in this crystal structure is $a/\sqrt{2}$, the variation of θ_p as a function of Gd–Gd distance is essentially the same as that shown in the figure. As seen in the figure, a decrease in the lattice parameter (i.e., a shorter Gd–Gd distance) leads to a shift of θ_p toward a positive direction. Note that for other rare-earth elements (R = Tb-Tm) that the lattice parameter of RT_4X closely follows the lanthanide contraction, regardless of R, T, and X, and θ_p indicates a similar trend as shown in Fig. 1.

We observe that the substitution of T and X in GdT_4X has two main effects: (i) a lattice effect due to the substitution of ions with different ionic sizes and (ii) an electronic effect due to the substitution of ions with different valence electrons [25]. Although the complete band structures are necessary to know the exact relationship between these two factors, we infer the dominant effect for the given substitutions from the experimental observations. Figure 8(a) suggests that the lattice contraction has a tendency to increase k_F , as $\rho(300K)$ is proportional to $1/N(E_F) \propto 1/k_F$. For the isoelectric substitution of Ag with Au in GdCu₄X, the change in θ_p is small due to the small lattice contraction. Similarly, substituting Cd with Mg in GdCu₄X results in insignificant variations of θ_p , possibly due to the negligible increase in $N(E_F)$ resulting from the small lattice expansion.

For $X = Cd \rightarrow Ag \rightarrow Pd$ substitution, both the lattice and electronic effects are needed to be considered. Since the exact

number of valence electrons contributing to the conduction band is unknown, we simply consider the electronic configurations of X atoms in $GdCu_4X$ (X = In, Cd, Ag, Pd): the outer electrons are progressively removed from [Kr] $4d^{10}5s^25p^1$ in In, followed by $[Kr]4d^{10}5s^2$ in Cd, $[Kr]4d^{10}5s^1$ in Ag, and $[Kr]4d^{10}$ in Pd. Note that Au has the electronic configuration of $[Kr]5d^{10}6s^1$, which is similar to Ag but with a higher energy level. Ag has one less 5s electron than Cd, contributing one less electron to the conduction band and decreasing k_F . When X is varied from Cd to Ag, θ_p shows a very large jump from -78 to -7 K, suggesting a large electronic effect. When X is substituted from Ag to Pd, θ_p changes from -7to +108 K. The degree of lattice contraction in the Ag \rightarrow Pd substitution is similar to that in the $Cd \rightarrow Ag$ substitution, implying the electronic effect has a greater impact on θ_p than the lattice effect. The removal of the outermost electrons in the s orbital in $GdCu_4X$ (Cd, Ag, Pd) makes the compound more ferromagnetic, as indicated by the sign change of θ_p . A similar transition from a strong AFM to strong FM exchange interactions between Gd moments has been observed in Gd monopnictides GdX_p ($X_p = Bi$, Sb, As, P, and N), which also form the fcc lattice by Gd moments. For GdX_p , the lattice parameter plays a crucial role in controlling θ_p [26–28]. When X_p is changed from Bi to N, which is an isoelectric substitution, the θ_p values change from -45 to +81 K as the lattice parameter decreases by 20%. The lattice contraction for GdX_p is much larger than that for the $GdCu_4X$ case (-1.5%). For GdX_p, the J_1 and J_2 model explains this transition, as the strong distance-dependent d - f mixing interactions result in a strong FM J_1 and weak AFM J_2 via lattice contraction [27,29].

For the case of In \rightarrow Cd substitution, the trend is reversed in GdCu₄X. When an electron from the 5*p* orbital of In is removed, contributing one less electron to the conduction band, the θ_p value is expected to be decreased by reduced k_F . However, θ_p becomes more AFM as X changes from In to Cd. The same behavior is also observed in GdNi₄X. The In \rightarrow Cd substitution involves *p*-orbital electrons contributing to the Fermi level, while the Cd \rightarrow Ag \rightarrow Pd substitution involves *s*-orbital electrons. It is plausible to conjecture that different types of electrons (*s*-like or *p*-like) have different effects on the conduction bands, leading to different exchange interactions. This observation suggests that the type of electrons contributing to the conduction band seems to determine θ_p .

The $T = \text{Cu} \rightarrow \text{Ni}$ substitution in $\text{Gd}T_4X$ has a relatively large lattice ($\Delta a/a \sim -3\%$) contraction, and it is expected to cause a shift of θ_p towards a large, positive value. However, the observed θ_p values for all Ni-based compounds are small. The Cu atom in these families has a closed *d* shell with electronic configuration of $[\text{Ar}]3d^{10}4s^1$, which is confirmed from YbCu₄X by Cu *K*-edge x-ray absorption spectroscopy experiments, and provides an electron from its *s* orbital to the conduction band [30]. It has been suggested that Cu and Ni atoms provide the same number of *s* electrons to the conduction band [31]. Since Ni has one less *d* electron than Cu and there are four more Ni atoms than Gd and *X* atoms in the unit cell, the number of *d* electrons contributing to the conduction band should be considered. It seems that unlike the case for removing *s* electrons, reducing the number of *d* electrons

FIG. 10. T_N as a function of $|\theta_p|$, obtained from Ref. [19]. Inset: The frustration parameter $f = |\theta_p|/T_N$ as a function of roomtemperature resistivity $\rho(300 \text{ K})$. $\rho(300 \text{ K})$ of GdCu₄In (purple star) is taken from Ref. [3]. Dotted and dashed lines are guides to the eye.

does not induce a drastic change of θ_p from large negative to large positive. This may be partly due to the electronic effect being partially offset by the lattice effect. Again, the type of electrons, d vs s, seems to be important to describe actual materials with the RKKY interaction.

We now examine how the observed T_N values for GdT_4X vary in relation to θ_p and carrier density upon substitution in T and X. In metallic RT_4X , the magnetic ordering temperature exhibits a strong correlation with θ_p ; higher θ_p values result in higher T_N values, as shown in Fig. 10. In antiferromagnets, the ordered state is characterized by a nonzero wave vector **Q**, where the magnetic ordering temperature is given by the equation $T_m = 2(g-1)^2 J(J+1) \mathcal{J}(\mathbf{Q})/3k_B$. Thus, it has often been observed that T_N is lower than $|\theta_p|$. Additionally, $T_N < |\theta_p|$ may be a sign of magnetic frustration. Note that the wave vector in ferromagnets is zero, $\mathbf{Q} = 0$, in the ordered state. The small f values ranging from 0.5 to 2 in metallic RT_4X suggest that the effect of the magnetic frustration is absent. Thus, the wave-vector-dependent exchange interaction is responsible for $T_N < |\theta_p|$ in metallic RT_4X compounds. However, the large value of $f \sim 10$ observed in the GdCu₄In case implies the magnetic frustration in a low-carrier-density, semimetallic state which results from the Fermi level lying on the quasigap in the density of states [32]. It has been suggested that the magnetic frustration in Gd moments arises from short-range superexchange interactions due to the insufficient carrier density, which prevents the formation of a long-range magnetic order. [3,16].

In the $J_1 - J_2$ model, the relative strength between nearestneighbor exchange interaction J_1 and next-nearest-neighbor exchange interaction J_2 gives rise to various magnetic structures in the fcc antiferromagnets, including type I ($\alpha = J_2/J_1 \leq 0$), type II ($1/2 \leq \alpha \leq \infty$), and type III ($0 \leq \alpha \leq$ 0.5) [33,34]. For the low-carrier-density systems, neutron diffraction experiments have confirmed that the magnetic structure of GdCu₄In and HoCu₄In is partially frustrated, where half of the rare-earth moments are frustrated and the other half are ordered below T_N [15,16]. This magnetic structure is intermediate between type I and type III, and is realized only when J_2 is zero. We suspect that the absence of J_2 may result from the low-carrier-density nature. Neutron diffraction experiments for the metallic case has shown that HoCu₄Cd has a type-II magnetic structure. It is not unreasonable to assume that GdCu₄Cd has the same type-II magnetic structure. In this assumption, as the concentration of Cd in GdCu₄(In_{1-x}Cd_x) increases, the magnetic structure is expected to evolve from the partially frustrated to type II. With this substitution, the lattice parameter changes a little, leading to a small change in θ_p . In contrast, there is a significant enhancement of T_N likely due to a significant increase in the carrier density and, consequently, greater contribution from J_2 . Although the carrier density is significantly increased, T_N remains near 5 K for the $Gd(Cu_{1-x}Ni_x)_4In$ case. Increasing x in Gd(Cu_{1-x}Ni_x)₄In causes a large variation of θ_p due to a large change of the lattice parameter. Although the recovered metallic carrier density induces a long-range RKKY interaction, T_N cannot exceed $|\theta_p|$ because it is bound by $|\theta_p|$. In these substitutions, the doping concentration x does not result in a continuous variation of θ_p , where θ_p changes abruptly at the critical concentration [3,9]. A similar behavior has been observed from the carrier density dependence of θ_p in semiconductors [35,36]. The steplike change of θ_p requires a modified RKKY model with a two-valence-band approximation and a finite mean free path for carriers [36]. Thus, more realistic models are necessary to explain the variation of θ_p in Gd T_4X .

The observation of small T_N values in GdNi_4X is not surprising because T_N is bounded by $|\theta_p|$. However, it is worth investigating what makes θ_p of Ni-based compounds small. According to the calculation of $\mathcal{J}(\mathbf{Q})$ for a fcc lattice [22], various magnetic structures are possible depending on k_F . The calculation shows that the FM structure is stabilized at low k_F and transitions into the type-II AFM structure as k_F increases. For GdCu₄X (X = Cd, Ag, and Pd) cases, the variation of θ_p from a large negative to large positive may be related to

the FM–AFM transition region in the $\mathcal{J}(\mathbf{Q})$ calculation. We conjecture for GdNi₄X (X = Cd, Mg, and In) cases that the strength of the exchange interactions between molecular fields produced by rare-earth planes (θ_p) is suppressed by lattice contraction. Further electronic band structure calculations are necessary to determine the potential connection between the incomplete *d* shell of Ni and the lack of strong ferromagnetism in GdNi₄X.

V. SUMMARY

We have successfully grown single crystals of RNi₄Cd (R = Y, Ce, Nd, Sm, and Gd-Tm), confirmed all samples to crystallize into the MgCu₄Sn-type structure, and characterized their physical properties. Ce and Ni ions are nonmagnetic, with Ce being a 4+ valence state. The other magnetic rare-earth ions are in a 3+ valence state, and the magnetic behavior of these heavy rare-earth compounds is well described by Hund's rule ground state J. We observed that the Curie-Weiss temperature θ_p of isostructural compounds RT_4X (R = Gd-Tm, T = Cu and Ni, and X = Cd, In, Mg, Ag,and Au) changes towards a positive direction as the lattice parameter decreases, except for RCu₄Pd. This behavior can be qualitatively explained by RKKY theory. We have also investigated the parameters and conditions affecting θ_p and T_N in Gd T_4X . The substitution of T and X in Gd T_4X has both lattice and electronic effects, with the dominant effect deduced from experimental observations. Lattice contraction tends to increase k_F , while removing the outermost electrons in the s orbital in $GdCu_4X$ results in a stronger ferromagnetic interaction. In contrast, θ_p of GdNi₄X compounds approaches zero as the lattice parameter decreases. Further investigation is necessary to understand this relationship to θ_p and T_N .

ACKNOWLEDGMENTS

This work was supported by the Canada Research Chairs, Natural Sciences and Engineering Research Council of Canada, and Canada Foundation for Innovation program.

- F. Tappe, C. Schwickert, and R. Pöttgen, Ternary ordered Laves phases *RENi*₄Cd, Intermetallics 24, 33 (2012).
- [2] S. Linsinger, M. Eul, C. Schwickert, R. Decourt, B. Chevalier, U. C. Rodewald, J. L. Bobet, and R. Pöttgen, Structure, homogeneity ranges, magnetic, and electrical properties of the ordered Laves phases *RENi*₄Mg with MgCu₄Sn type structure, Intermetallics **19**, 1579 (2011).
- [3] V. Fritsch, J. D. Thompson, J. L. Sarrao, H.-A. Krug von Nidda, R. M. Eremina, and A. Loidl, Correlation between magnetic frustration and electrical conductivity in *R*InCu₄ compounds (*R* = Gd–Tm), Phys. Rev. B **73**, 094413 (2006).
- [4] S. Stein, L. Heletta, T. Block, and R. Pöttgen, Rare earthcopper-magnesium intermetallics: Crystal structure of Ce-CuMg, magnetocaloric effect of GdCuMg and physical properties of the Laves phases *RE*Cu₄Mg (*RE* = Sm, Gd, Tb, Tm), Z. Naturforsch. B **73**, 987 (2018).
- [5] S. Abe, H. Nakazawa, T. Kaneko, H. Yoshida, K. Kamigaki, Y. Nakagawa, and S. Miura, Magnetic properties of cubic

intermetallic compounds RCu_4Pd (R = Gd, Tb, Dy, Ho and Er), J. Phys. Soc. Jpn. **58**, 3328 (1989).

- [6] T. Takeshita, S. K. Malik, A. A. ElAtttar, and W. E. Wallace, Crystal structure and magnetic properties of RCu_4Ag (R =Rare Earth) intermetallic compounds, AIP Conf. Proc. **34**, 230 (1976).
- [7] T. Kaneko, S. Arai, S. Abe, and K. Kamigaki, Magnetic properties of cubic $RAuCu_4$ (R = Gd, Tb, Dy, Ho and Er) intermetallic compounds, J. Phys. Soc. Jpn. 55, 4441 (1986).
- [8] V. Fritsch, J. D. Thompson, and J. L. Sarrao, Spin and orbital frustration in RInCu₄ (R = Gd, Dy, Ho, and Er), Phys. Rev. B **71**, 132401 (2005).
- [9] S. G. Mercena, E. C. Mendona, C. T. Meneses, L. S. Silva, J. G. S. Duque, C. B. R. Jesus, J. C. Souza, and P. G. Pagliuso, Complex magnetic behavior along the GdIn(Ni_xCu_{1-x})₄ (0.00 $\leq x \leq 1.00$) series of compounds, J. Appl. Phys. **125**, 063903 (2019).

- [10] The lattice parameter and Curie-Weiss temperature are taken from previous reports: GdNi₄Cd (polycrystalline) [1], *R*Ni₄Mg [2], *R*Cu₄Cd [3], *R*Cu₄In [8], *R*Cu₄Mg [4], *R*Cu₄Pd [5], *R*Cu₄Ag [6], and *R*Cu₄Au [7].
- [11] J. Lee, H. Park, N. R. Lee-Hone, D. M. Broun, and E. Mun, Thermodynamic and transport properties of YbNi₄Cd, Phys. Rev. B 97, 195144 (2018).
- [12] K. Kadir, D. Noreus, and I. Yamashita, Structural determination of AMgNi₄ (where A = Ca, La, Ce, Pr, Nd and Y) in the AuBe₅ type structure, J. Alloys Compd. **345**, 140 (2002).
- [13] P. G. De Gennes, Indirect interactions between 4f shells in rare earth metals, J. phys. Radium 23, 510 (1962).
- [14] M. Bouvier, P. Lethuillier, and D. Schmitt, Specific heat in some gadolinium compounds. I. Experimental, Phys. Rev. B 43, 13137 (1991).
- [15] O. Stockert, J. U. Hoffmann, M. Mühlbauer, A. Senyshyn, M. M. Koza, A. A. Tsirlin, F. M. Wolf, S. Bachus, P. Gegenwart, R. Movshovich, S. Bobev, and V. Fritsch, Magnetic frustration in a metallic fcc lattice, Phys. Rev. Res. 2, 013183 (2020).
- [16] H. Nakamura, N. Kim, M. Shiga, R. Kmiec, K. Tomala, E. Ressouche, J. P. Sanchez, and B. Malaman, The partially disordered state of the frustrated face-centred cubic antiferromagnet GdInCu₄, J. Condens. Matter Phys. **11**, 1095 (1999).
- [17] J. S. Smart, *Effective Field Theories of Magnetism* (Saunders, Philadelphia, 1966).
- [18] S. Mugiraneza and A. M. Hallas, Tutorial: A beginner's guide to interpreting magnetic susceptibility data with the Curie-Weiss law, Commun. Phys. 5, 95 (2022).
- [19] The $\rho(300 \text{ K})$ values are taken from the following: GdNi₄Cd (this work), GdCu₄Cd [3], GdCu₄In [3], GdCu₄Pd [38], and GdCu₄Au [39]. Because $\rho(300 \text{ K})$ data for some Gd-based compounds are not available, $\rho(300 \text{ K})$ is inferred from its analog compound that differs by only *R*: GdNi₄In averaged $\rho(300 \text{ K})$ value of YbNi₄In and NdNi₄In [37]; GdCu₄Mg obtained from SmCu₄Mg [4]; GdCu₄Ag obtained from NdCu₄Ag [40]. *T_N* and θ_p are taken from the following: GdNi₄Cd (this work), GdNi₄Mg [2], GdCu₄Mg [4], GdCu₄Pd [5], GdCu₄Ag [6], GdCu₄Au [7], GdCu₄(In_{1-x}Cd_x) [3], and Gd(Cu_{1-x}Ni_x)₄In [9].
- [20] H. Nakamura, A. Uenishi, K. Ito, M. Shiga, T. Kuwai, and J. Sakurai, Transport properties of *R*InCu₄ with C15b-type structure, J. Magn. Magn. Mater. **140**, 923 (1995).
- [21] P. G. Pagliuso, C. Rettori, S. B. Oseroff, J. Sarrao, Z. Fisk, A. Cornelius, and M. F. Hundley, ESR of Gd³⁺ in LuInCu₄ intermetallic compound, Solid State Commun. **104**, 223 (1997).
- [22] J. Sakurai, Y. Kubo, T. Kondo, J. Pierre, and E. F. Bertaut, Relations between the Ruderman-Kittel-Kasuya-Yosida interaction electron concentration and crystal structure, J. Phys. Chem. Solids 34, 1305 (1973).
- [23] M. A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96, 99 (1954); T. Kasuya, A theory of metallic ferro- and antiferromagnetism on zener's model, Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Magnetic properties of Cu-Mn alloys, Phys. Rev. 106, 893 (1957).
- [24] S. Abe, Y. Atsumi, T. Kaneko, and H. Yoshida, Magnetic properties of RCu_4In (R = Gd-Er) intermetallic compounds, J. Magn. Magn. Mater. **104-107**, 1397 (1992).

- [25] P. Monachesi and A. Continenza, Electronic and volumetric effects in ternary compounds of ytterbium, Phys. Rev. B 54, 13558 (1996).
- [26] T. R. McGuire, R. J. Gambino, S. J. Pickart, and H. A. Alperin, Magnetic structure and exchange interactions in cubic gadolinium compounds, J. Appl. Phys. 40, 1009 (1969).
- [27] D. X. Li, Y. Haga, H. Shida, T. Suzuki, Y. S. Kwon, and G. Kido, Magnetic properties of stoichiometric Gd monopnictides, J. Phys.: Condens. Matter 9, 10777 (1997).
- [28] C. G. Duan, R. F. Sabiryanov, W. N. Mei, P. A. Dowben, S. S. Jaswal, and E. Y. Tsymbal, Magnetic ordering in Gd monopnictides: Indirect exchange versus superexchange interaction, Appl. Phys. Lett. 88, 182505 (2006).
- [29] T. Kasuya and D. X. Li, Mechanism of strong ferromagnetism in GdN, J. Magn. Magn. Mater. 167, L1 (1997); Anomalous exchange mechanism in Gd monopnictides, Phys. B: Condens. Matter 230-232, 472 (1997).
- [30] H. Anzai, S. Ishihara, H. Shiono, K. Morikawa, T. Iwazumi, H. Sato, T. Zhuang, K. T. Matsumoto, and K. Hiraoka, Mixedvalence state of the rare-earth compounds YbXCu₄ (X = Mg, Cd, In, and Sn): Magnetic susceptibility, x-ray diffraction, and x-ray absorption spectroscopy investigations, Phys. Rev. B 100, 245124 (2019).
- [31] P. G. Pagliuso, C. Rettori, J. L. Sarrao, A. Cornelius, M. F. Hundley, Z. Fisk, and S. B. Oseroff, Electron spin resonance of Gd^{3+} and Nd^{3+} in LuIn A_4 (A = Cu, Ni), Phys. Rev. B 60, 13515 (1999).
- [32] E. Figueroa, J. M. Lawrence, J. L. Sarrao, Z. Fisk, M. F. Hundley, and J. D. Thompson, Hall effect in YbXCu₄ and the role of carrier density in the YbInCu₄ valence transition, Solid State Commun. **106**, 347 (1998).
- [33] N. N. Sun and H. Y. Wang, The $J_1 J_2$ model on the facecentered-cubic lattices, J. Magn. Magn. Mater. **454**, 176 (2018).
- [34] M. E. Lines, Antiferromagnetism in the face-centered cubic lattice. I. The random-phase green's function approximation, Phys. Rev. 139, A1304 (1965).
- [35] T. Story, G. Karczewski, L. Świerkowski, and R. R. Gałazka, Magnetism and band structure of the semimagnetic semiconductor Pb-Sn-Mn-Te, Phys. Rev. B 42, 10477 (1990).
- [36] H. J. M. Swagten, W. J. M. de Jonge, R. R. Gałazka, P. Warmenbol, and J. T. Devreese, Hole density and composition dependence of ferromagnetic ordering in Pb-Sn-Mn-Te, Phys. Rev. B 37, 9907 (1988).
- [37] M. D. Koterlin, B. S. Morokhivskii, I. D. Shcherba, and Y. M. Kalychak, Transport and magnetic properties of the compounds YbNi₄In and YbNiIn₄ with valence-unstable Yb, Phys. Solid State **41**, 1759 (1999).
- [38] S. Abe, H. Nakazawa, T. Kaneko, H. Yoshida, and K. Kamigaki, Magnetic and electric properties of intermetallic compounds RCu_4Pd (R = Gd, Tb, Dy, Ho AND Er), J. Phys. Colloq. 49, C8-385 (1988).
- [39] A. K. Bashir, M. B. T. Tchokonté, D. Britz, B. M. Sondezi, and A. M. Strydom, Magnetic and thermodynamic properties of GdCu₄Au, J. Phys.: Conf. Ser. **592**, 012050 (2015).
- [40] T. Tayama, Y. Takayama, Y. Miura, S. Zhang, and Y. Isikawa, Low-temperature magnetization of antiferromagnet NdCu₄Ag, J. Phys. Soc. Jpn. 80, SA074 (2011).