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Bidirectional magnon-driven bimeron motion in ferromagnets
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As the in-plane magnetized counterparts of skyrmions in two dimensions, magnetic bimerons are swirling
topological spin textures consisting of two merons. Here we theoretically and numerically investigate the dy-
namics of a bimeron induced by the monochromatic spin wave in a ferromagnetic thin film. The micromagnetic
simulation results reveal that unlike the ferromagnetic skyrmion reported in previous studies, the bimeron can be
pushed away from (or pulled towards) the wave source at the low (high) spin wave frequency. These numerical
results are in line with the particle collision model formulating the interplay between the spin wave and magnetic
bimeron. Our findings provide guidelines for constructing future bimeron-based spintronic devices with ultralow
energy consumption.
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I. INTRODUCTION

The first experimental discovery of magnetic skyrmions in
2009 [1] fascinated many physicists and has promoted the
study and development of condensed matter physics and spin-
tronics. Skyrmions are topologically nontrivial out-of-plane
magnetized spin configurations with appealing properties
such as good stability and nanoscale size and have been
proposed as nonvolatile information carriers for the next gen-
eration of magnetic storage and computing devices [2–10].
Recently, one of their counterparts, bimerons, were discovered
in chiral magnets with in-plane anisotropy [11–18], opening a
new chapter in the physics of topological spin textures. The
spin structure of bimerons can be symmetric or asymmetric
depending on the type of the chiral Dzyaloshinskii-Moriya
interaction (DMI) [19,20]. In particular, asymmetric bimerons
enable some intriguing phenomena different from ordi-
nary skyrmions, such as the formation of bimeron clusters
[15] and nonreciprocal current-induced motion [16], which
provide additional functional designs for future spintronic
devices.

Progress in the field of topological spin textures demands
the development of effective methods for triggering mag-
netization dynamics. The spin-polarized current is the most
direct and popular way to manipulate spin textures [3,4,21–
26]. Considering the fact that the inevitable Joule heating will
be generated during the electron transport, however, there are
still some challenges for fabricating energy-efficient magnetic
devices based on spin currents. In this respect, intensive ef-
forts have been devoted to exploring alternative approaches
to control the magnetism, including the temperature gradient
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[27,28], gate-controlled anisotropy [29–31], and spin waves
(also called magnons when quantized) [32–46]. Among them,
spin waves show great potential for bringing spintronics closer
to real applications in terms of energy consumption and scal-
able fabrication. Typically, a magnon-based current can flow
through magnetic materials without the motion of electrons,
which results in low power consumption due to reduced Joule
heat losses [47–49]. In addition, spin waves are also allowed
in both magnetic metals and insulators [50,51], opening the
door for their use in various material systems. While previous
studies have reported the dynamics of skyrmions induced by
spin waves [34–36,38–44], the interaction between bimerons
and spin waves (magnons) remains yet to be elucidated.

In this work, we demonstrate that an asymmetrical bimeron
stabilized by the isotropic interfacial DMI in an in-plane fer-
romagnetic film can be pulled backward or pushed forward
by spin waves, depending on the spin wave frequency. This
bidirectional motion behavior of bimerons is different from
the case of skyrmions, in which a skyrmion always moves
towards the wave source in the absence of boundary effects
[34,38,41]. This crucial difference between skyrmions and
bimerons is attributed to the asymmetric spin configuration
of bimerons and the unique characteristics of the spin wave
scattering in this system.

This paper is organized as follows. Section II is devoted
to the basic model for the interplay between spin waves and
magnetic bimeron in the Lagrangian framework. Specifically,
the wave dynamics of the spin wave is transformed to the
kinematics of magnons, and the complex interplay between
spin waves and bimerons is simplified to the collision scenario
between magnons and bimerons. In Sec. III, the numerical
results of spin wave scattering and the accompanying bimeron
motion are then presented, with detailed comparisons to the
particle collision calculations. A short conclusion is given in
Sec. IV.
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II. MODEL AND METHODS

A. Basic model

Consider a ferromagnetic film lying in the x-y plane, where
the easy-axis anisotropy is along the x axis and the interfacial
DMI arises due to the symmetry breaking in the z axis. The
direction and magnitude of the magnetization are denoted
by the unit vector m and the saturation magnetization Ms,
respectively. The system Lagrangian [33,35,41] is given by

L =
∫

LdV =
∫

[s�(m) · ṁ − u(m)]dV, (1)

where ṁ ≡ ∂t m, s = μ0Ms/γ is the spin density, μ0 is the
vacuum permeability, γ is the gyromagnetic ratio, and dV
is the infinitesimal volume for the integral. The first term in
Eq. (1) characterizes the Wess-Zumino action for the spin
precession dynamics, with �(m) being a vector potential of
a magnetic monopole that satisfies ∇m × �(m) = −m. The
second term of Eq. (1) is the micromagnetic energy density,
given by the following explicit form:

u(m) = A(∇m)2 + K[1 − (m · x̂)2]

− Dm · [(ẑ × ∇) × m], (2)

where A, K , and D are the Heisenberg exchange stiffness,
magnetic anisotropy coefficient, and DMI strength, respec-
tively. The dissipation is included in the Rayleigh function
R = (α/2)

∫
ṁ2dV , where α is the Gilbert damping constant.

Invoking the Euler-Lagrange approach, Eq. (1) then yields
the standard Landau-Lifshitz-Gilbert equation

ṁ = −γ m × Heff + αm × ṁ, (3)

where Heff = −(1/μ0Ms)δu(m)/δm is the effective field as-
sociated with various micromagnetic energies.

In this work, micromagnetic simulations are performed
by using the open-access code Object Oriented Micromag-
netic Framework (OOMMF) [52]. The following magnetic
material parameters are adopted in simulations [3]: Ms =
0.58 MA m−1, A = 15 pJ m−1, D = 3.5 mJ m−2, and K =
0.5 MJ m−3. The protocols of spin wave generation are sum-
marized in Appendix A. To remove abundant spin waves
reflected from the film edges, an absorbing boundary condi-
tion is introduced by setting a linearly increasing damping
coefficient α near the boundary region.

When time evolution is involved, the magnetization m in
the following discussion is naturally partitioned into a slow
magnetic configuration m0 and a fast spin wave fluctuation
m′, i.e., m = m0 + m′ [28,32]. In the small amplitude limit
|m′| � 1, the transverse condition m′ · m0 = 0 is guaranteed.
Therefore, the spin wave is generally described by m′ =
m2ê2 + m3ê3 or, in a complex field, ψ = m2 − im3, where ê2,3

are two directions orthogonal to the background magnetiza-
tion ê1 = m0. Based on such a partition scheme, we start with
investigations of the spin wave in a uniform domain and the
isolated magnetic bimeron before beginning studies on their
interplay.

B. Spin wave in a uniform domain

In a uniform domain, m0 = x̂, the spin wave Lagrangian
density is written as

L′ = is

2
ψ∗ψ̇ − Aψ∗(−i∇ + aD)2ψ − (

K − Aa2
D

)
ψ∗ψ, (4)

which is derived by expanding Eq. (1) to second order in the
spin wave fluctuation field ψ (see Appendix B for more details
on the derivation). Here aD = (D/2A)(ẑ × m0) = (D/2A)ŷ is
the vector potential caused by the DMI, and ẑ is the symmetry-
breaking direction (or the normal to the film surface).

The variational differentiation of Eq. (4) about ψ∗ yields
the following Schrodinger-like equation [33,40]:

iψ̇ = 2

s

[
A(−i∇ + aD)2 + K − Aa2

D

]
ψ. (5)

The corresponding spin wave dispersion is given by

ω = 2

s

[
A

(
k + D

2A
ŷ
)2

+ K − D2

4A

]
, (6)

where ω and k are the angular frequency and the wave vector,
respectively. As a result, the group velocity is v = ∂ω/∂k =
(2/s)(2Ak + Dŷ), where the first term is the normal velocity
and the second term denotes the additional velocity caused by
the DMI. This is different from the case of out-of-plane easy-
axis magnets, in which the DMI does not participate in the
dispersion relation of spin waves excited in uniform domains
[53].

The isofrequency circle determined by Eq. (6) is depicted
in Fig. 1(a), where the circle’s center is shifted from the origin
O downward to point O′ by D/(2A) [37]. The directions of the
wave vector k and the group velocity v are then extended from
O and O′ to a point on the isofrequency circle, respectively,
and thus are generally noncollinear with each other. When
k ‖ x̂ (kx �= 0 and ky = 0), the dispersion relation is symmet-
ric with respect to the wave vector, while the group velocity is
titled upward, as shown in Fig. 1(b). On the contrary, when k ‖
ŷ (kx = 0 and ky �= 0), the spin wave propagation direction is
collinear with the wave vector, but the magnitudes of wave
vectors with opposite directions (k+

y and k−
y ) are different,

as seen in Fig. 1(c). These findings are consistent with other
works in which an external in-plane field is applied to force
the magnetization to lie in the film plane [54,55].

Alternatively, consider the spin wave excitation in wave
packet form �, which maintains a relatively fixed shape dur-
ing propagation and can thus be described by its centroid r,
�(t ) = �[r(t )] [41]. The spin wave Lagrangian is rewritten
from Eq. (4) to (see Appendix B)

L′ = n
(msw

2
ṙ2 − h̄ṙ · aD

)
, (7)

where n = (s/2h̄)
∫

��∗dV is the number of magnons con-
tained in the spin wave packet, msw = h̄∂k/∂v = h̄s/4A is the
effective mass, and the constant terms in the Lagrangian are
omitted. In this regard, the spatiotemporal evolutions of spin
waves in Eq. (4) are converted to the kinematics of magnons
in Eq. (7).
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FIG. 1. Spin wave in a uniform ferromagnetic domain. (a) The isofrequency contour of the spin waves in a uniform domain m0 = +x̂.
Points O and O′ are the origin in k space and the center of the isofrequency circle, respectively. The red (green) arrows starting from point
O (O′) and ending at a point on the isofrequency circle represent the wave vector k (the direction of group velocity v). (b) and (c) The spin
wave beam generated by a vertical (horizontal) antenna, where k±

x and k±
y are the corresponding wave vectors denoted in (a).

C. Isolated magnetic bimeron

For a moderate DMI, a magnetic bimeron with a whirling
magnetic structure may arise in the homogeneous domain,
whose typical magnetic profile is depicted in Fig. 2(a). Similar
to magnetic skyrmions, the bimeron also has a nontrivial
topological structure characterized by the nonzero topolog-
ical charge Q = ±1. Although the magnetic bimeron and
skyrmion are topologically equivalent, the bimeron is highly
asymmetric in the considered system with in-plane easy axis.
This may lead to some interesting phenomena that are distinct
from those of symmetric skyrmions, such as the formation
of bimeron clusters and nonreciprocal current-induced motion
[15,16].

According to Eq. (1), the Lagrangian of a magnetic
bimeron reads

L0 =
∫

[s�(m0) · ṁ0 − u(m0)]dV . (8)

Since the magnetic bimeron tends to remain intact due to the
topological protection and can be regarded as a rigid body,
its slow motion is captured by the evolution of the bimeron
centroid R [56], m0(t ) = m0[R(t )]. In this rigid-body approx-
imation, the Lagrangian of the bimeron is then transformed
from Eq. (8) into

L0 = sA0 · Ṙ − U0, (9)

where A0 = − ∫
�(m0) · ∇m0dV is the vector potential ac-

companying bimeron motion and U0 = ∫
u(m0)dV is the total

magnetic energy of the bimeron [35,41].

D. Interplay between the spin wave and magnetic bimeron

When the spin wave travels upon a magnetic bimeron, the
nonuniform magnetization of the bimeron modifies the vector
potential experienced by the spin wave in two distinct aspects:
(i) The original vector potential aD is no longer uniform in the
presence of a bimeron, and (ii) a new type of vector poten-
tial a0 = −�(m0) · ∇m0 emerges that contains topological
information about the magnetic configuration of the bimeron.
After incorporating the above two ingredients into the isolated
Lagrangians in Eqs. (7) and (9), the leading-order Lagrangian
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FIG. 2. Spin wave scattering by a magnetic bimeron. (a) Mag-
netization profile of a magnetic bimeron. The background color
encodes the out-of-plane magnetization mz, and the arrows depict
the in-plane magnetization (mx, my ). (b) The pseudomagnetic field b
induced by the magnetic bimeron. (c)–(f) The scattering of the spin
wave beam generated by an antenna at one of four boundaries. The
background color encodes the out-of-plane magnetization mz, and the
green lines depict the calculated magnon trajectories deflected by the
pseudomagnetic field in (b).
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of the system with a magnetic bimeron and spin waves (or
a set of magnons) is given by (see Appendix B for detailed
derivations)

L = sA0 · Ṙ +
∑

j

(
msw

2
ṙ2

j − h̄ṙ j · a
)

, (10)

where a = a0 + aD is the overall vector potential mediating
the interaction between the bimeron and magnons arising
from the magnetic topology of the bimeron and the DMI
[40,41,43]. Here r j denotes the center position of the jth
magnon, and the summation denotes the discretized magnons
contained in the spin waves.

Application of the variational calculations to Eq. (10),
i.e., ∂t (∂L/∂Ṙ) = ∂L/∂R and ∂t (∂L/∂ ṙ) = ∂L/∂r, yields the
kinematic equations for the bimeron and the magnon, respec-
tively [41],

sṘ × G = −
∑

j

q0(ṙ j × b), (11a)

mswr̈ j = −q0ṙ j × b. (11b)

Here the first term in Eq. (11a) is the well-known Magnus
force exerted on the bimeron, with G = ∇R × A0 being the
gyrocoupling vector, b = (h̄/q0)∇ × a is the pseudofield ex-
perienced by the magnon, and q0 is the elementary charge.
Equation (11b) indicates that the scattering process of a
magnon across a bimeron is similar to the motion of a massive
and charged particle in a magnetic field.

In the magnetic film of interest here, ∂zm0 = 0, and
thus, the pseudomagnetic field reduces to b = bẑ, with b =
(h̄/q0)(b0 + bD) taking the following explicit form:

b0 = m0 ·
(

∂m0

∂x
× ∂m0

∂y

)
, (12a)

bD = D

2A
∇ · m0, (12b)

and G = (
∫

b0dV )ẑ = 4πQtzẑ is related to the topological
charge of the magnetic bimeron, with tz being the thickness
of the considered ferromagnetic film. As seen in Fig. 2(b),
the total pseudomagnetic field b exhibits a highly asymmetric
landscape due to the rotational asymmetry of the bimeron
magnetization.

Integrating Eqs. (11a) and (11b) in time leads to

4πQstzẑ × 
R = −msw

∑
j


v j, (13)

where v j ≡ ṙ j is the magnon velocity. Equation (13) is
actually an alternative form of the momentum conserva-
tion, after we note that the linear momenta of the bimeron
and magnon are given by P = 4πQstz(ẑ × R) and p =
(mswv − h̄a) [34,35,46]. Furthermore, for the case of continu-
ous spin waves, the magnons emitted by an antenna in the time
interval 
t are proportional to vx
t , and thus, the bimeron
velocity is described by

V ≡ 
R

t

∝ mswvx

4πQstz

∑
j∈W

ẑ × 
v j, (14)

where W denotes the wave front parallel to the antenna.

III. RESULTS AND DISCUSSION

A. Spin wave scattering by magnetic bimerons

The scattering patterns of a spin wave beam across a
magnetic bimeron are depicted in Figs. 2(c)–2(f), where the
excitation antenna is deposited near one of the four film
boundaries. The wave vectors of the spin wave thus take
the four vectors, k+

x , k−
x , k+

y , and k−
y in Fig. 1(a), where the

propagation directions are tilted upward in Figs. 2(c) and
2(d) and the wavelength increases (decreases) in Fig. 2(e) and
[Fig. 2(f)], as already elaborated in Fig. 1.

For the four scenarios shown in Figs. 2(c)–2(f), a single
incident beam produces multiple scattered subbeams,
revealing the complex scattering phenomena within the
asymmetric bimeron. Despite the complexity, these spin wave
subbeams are well reproduced by the deflection trajectories
of magnons in the pseudomagnetic field, as described by
Eq. (11b). In all cases, the magnons impinging directly onto
the bimeron core experience the most significant deflection
and give rise to the side beams that are almost perpendicular
to the incident beam, while the magnons slightly deviating
from the bimeron core are subject to much weaker deflection
and form the main beam penetrating the bimeron. The
spatially dependent deflection behaviors in Figs. 2(c)–2(f) can
be attributed to the asymmetric profile of the pseudomagnetic
field induced by the bimeron, as shown in Fig. 2(b). In
addition, these scattering trajectories typically exhibit a
counterclockwise bending since the pseudomagnetic field is
predominately pointing upward therein.

B. Spin wave driven bimeron motion

To drive the bimeron more efficiently, the spin wave beam
is replaced by the plane spin wave (see Appendix A) to allow
more magnons to participate in the driving scenario. Here
we focus on the situation in which the antenna is located on
the left side of the bimeron; hence, the spin waves interact-
ing with the bimeron propagate to the upper right direction.
Figures 3(a) and 3(e) are snapshots of spin waves interacting
with a magnetic bimeron at two selected frequencies, ω/2π =
300 GHz and ω/2π = 100 GHz, respectively. For detailed
comparisons and analyses, the corresponding trajectories of
magnons penetrating across the pseudomagnetic fields are
plotted side by side in Figs. 3(b) and 3(f).

At both frequencies in Figs. 3(a) and 3(e), a region with
extremely low saturation develops on the right side of the
bimeron; some bright beams with high-contrast red and blue
stripes (which are traced by the yellow dashed line) accumu-
late above this region, and some backscattering beams arise on
the left side. These scattering patterns are well reproduced by
the trajectories of magnons under the pseudomagnetic field in
Figs. 3(b) and 3(f), where a blank area with merely no trajec-
tories forms and two regions featuring intersecting trajectories
arise on the two sides of the bimeron.

Since the x component of the magnon velocity is pro-
portional to the spin wave frequency while the y component
remains constant for a fixed DMI, the titling angle of incident
magnons in Fig. 3(b) is smaller than that in Fig. 3(f). Consid-
ering that the fast magnons spend less penetration time in the
area of pseudomagnetic field, the deflection strength of fast
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FIG. 3. Bimeron motion driven by planar spin waves with high frequency ω/2π = 300 GHz in (a)–(d) and low frequency ω/2π =
100 GHz in (e)–(h). (a) and (e) Snapshots of the scattering of planar spin waves by a magnetic bimeron. The background color denotes
the out-of-plane magnetization mz, the yellow dashed lines indicate the traces of bright spin wave beams, the dashed circle denotes the bimeron
initial position, and the black bars depict the antennas. (b) and (f) Trajectories of magnons deflected by the pseduomagnetic field induced
by a bimeron. The green lines are trajectories of each magnon, and the purple lines are the averaged trajectory of all magnons interacting
with the bimeron. (c) and (g) Schematics of magnon and bimeron velocities. The green (purple) arrows denote the averaged velocities of
incident (outgoing) magnons, with the red dashed arrow depicting the velocity difference between them, while the thick blue arrow represents
the bimeron velocity evaluated with Eq. (14). (d) and (h) The time evolution of the velocity of the bimeron in (a) and (e), respectively. The
symbols are simulation results, and the black lines are analytical calculations based on Eq. (15).

magnons is much weaker. A large fraction of fast magnons is
thus able to penetrate the asymmetric landscape of the pseu-
domagnetic field and experience less backscattering, while
the slow magnons suffer strong deflections and are mostly
scattered backward. This contrasting deflection behavior at
the selected frequencies is revealed by the average magnon
trajectory that accounts for all magnons interacting with the
magnetic bimeron, as indicated by the thick purple line point-
ing in the right (left) upward direction in Fig. 3(b) [Fig. 3(f)].

Following Figs. 3(a), 3(b), 3(e), and 3(f) as well as
Eq. (14), the average velocity v̄i(o) of the incident and outgoing
magnons, along with the velocity difference of the magnons

v̄ and the bimeron velocity V, is schematically shown in
Figs. 3(c) and 3(g). For the cases with ω/2π = 300 GHz and
ω/2π = 100 GHz, the magnons acquire a negative velocity in
the x direction, 
v̄x < 0, and thus, the bimeron always gains
a negative velocity in the y direction, Vy < 0, according to
Eq. (14). For high (low) frequency, the y component of the
magnon velocity increases (decreases), i.e., 
v̄y > 0 (
v̄y <

0); hence, the bimeron acquires a negative (positive) velocity
in the x direction, Vx < 0 (Vx > 0). The opposite signs of

v̄y at ω/2π = 300 GHz and ω/2π = 100 GHz are attributed
to different fates of fast and slow magnons traversing the
pseudomagnetic field.

As the bimeron approaches (departs from) the spin wave
source, the spin wave undergoes less (more) decay before

touching the bimeron, giving rise to an increase (decrease)
in the bimeron velocity. More explicitly, the spin wave inten-
sity at the bimeron center is described by ρ = ρs exp[−(X −
xs)/�] [46,54], where ρs is the spin wave intensity at the
source, � = 2Ak/sαω is the spin wave attenuation length,
and X and xs are the horizontal positions of the bimeron and
the wave source, respectively. The variation of the spin wave
intensity is then described by ρ̇/ρ = −Vx/�, which together
with Eq. (14) leads to V̇x/Vx = V̇y/Vy = −Vx/�. Therefore,
the time evolution of the bimeron velocity is described by [57]

Vx(y) = V 0
x(y)

1 + V 0
x t/�

, (15)

where V 0
x(y) is the x (y) component of the initial bimeron ve-

locity. Here the decay length is estimated as � = 274 nm for
spin wave frequency ω/2π = 100 GHz and � = 201 nm for
ω/2π = 300 GHz. Hence, for a relatively short time interval

t = 30 ns and a small initial bimeron velocity |V 0

x | ≈ 2 m/s,
the evolution of the bimeron velocity then reduces to the linear
relation Vx(y) = V 0

x(y)(1 − V 0
x t/�), as verified by the mono-

tonic variation of bimeron velocities in Figs. 3(d) and 3(h).
The velocity of bimerons driven by plane spin waves in the

frequency range of ω/2π ∈ [100, 500] GHz is summarized
in Fig. 4(a). For an intermediate spin wave frequency, the
bimeron velocity also interpolates between the cases with high
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FIG. 4. (a) Spin wave driven bimeron velocity as a function of
the spin wave frequency. The symbols are extracted from micromag-
netic simulations, and the lines are to guide the eye. (b) The velocity
angle of the bimeron as a function of the spin wave frequency.
The dots show micromagnetic simulations, and the sold line shows
theoretical calculations via Eq. (16). The red star marks the specific
frequency ω/2π ≈ 130 GHz at which the bimeron moves parallel
with the wave source.

and low frequencies due to the synergy of a moderate magnon
deflection and an intermediate magnon emission rate, accord-
ing to Eq. (14). Because of the crossover between positive
and negative values of lateral velocity Vx, there is a specific
frequency ω/2π ≈ 130 GHz for which the bimeron moves
parallel to the wave source. Such a uniaxial motion behavior
(Vx = 0,Vy �= 0) holds promise for bimeron-based spintronic
devices since the spin wave attenuation from the wave source
is the same along the wave front and thus the bimeron velocity
remains unaltered at different times. Meanwhile, we note that
the magnitude of the bimeron velocity decreases as the spin
wave frequency increases, which is attributed to the decrease
in attenuation length � and, furthermore, the reduction in
the number of magnons participating in the bimeron-magnon
scattering.

The bidirectional motion feature, as illustrated in Fig. 3 by
the strong (mild) deflection at low (high) frequency, is further
quantitatively characterized by the angle


 = arctan

(
Vy

Vx

)
= −

∑

vx

j∑

v

y
j

, (16)

where the connection to magnon velocity follows Eq. (14).
As seen in Fig. 4(b), the angle extracted from micromagnetic

simulations is in exact agreement with the calculations based
on the magnon-bimeron collision model, again highlighting
the crucial roles of the bimeron asymmetric profile and the
nonreciprocal propagation of the spin wave (magnon) in their
interplay.

IV. CONCLUSION

In conclusion, we investigated the spin wave driven motion
of a ferromagnetic bimeron using both the micromagnetic
simulation and the simplified particle collision model. Micro-
magnetic simulations showed that the motion direction of the
bimeron can be regulated by tuning the frequency of incident
spin waves. And the particle collision model demonstrated
that the bidirectional motion, i.e., the motion away from or
toward the wave source, is due to the contrasting deflection
angles of magnons with different incident velocities. Our re-
sults provide an energy-efficient and controllable means to
manipulate magnetic bimerons.
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APPENDIX A: SPIN WAVE GENERATION IN PLANAR
AND BEAM FORMS

While the spin wave of frequency ω in a uniform domain
m0 = x̂ is simply generated by an external magnetic field
in time h(t ) = hsin(ωt )ẑ, the spatial distribution of the spin
wave is controlled by the spatial profile of the excitation field.
Here we consider a rectangle antenna of length la and width
wa, with la � wa and the transverse (longitudinal) direction
lying in the x′ (y′) axis. Hence, the magnetic field mainly
varies in the transverse direction and is considered uniform
in the longitudinal direction,

To generate the plane spin wave, the excitation magnetic
field is spatially uniform in the whole antenna,

h = h0
H

(
la
2

− |x′ − x′
c|
)


H

(
wa

2
− |y′ − y′

c|
)

, (A1)

where h0 is the amplitude of the excitation field, (x′
c, y′

c) is
the central point of the antenna, and 
H is the Heaviside step
function. Meanwhile, to generate a spin wave beam, the mag-
netic field takes a Gaussian-type profile along the transverse
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direction of the antenna [55,58],

h = h0 exp

[
− (x′ − x′

c)2

2σ 2

]

H

(
la
2

− |x′ − x′
c|
)

× 
H

(wa

2
− |y′ − y′

c|
)
, (A2)

where σ characterizes the Gauss distribution width.

APPENDIX B: DERIVATIONS OF THE KINEMATIC
EQUATIONS

In the linear spin wave regime, the total magnetization
m can be divided into a slow magnetic texture (bimeron)
m0 and a fast spin wave fluctuation m′, m = m0 + m′. Fol-
lowing the transverse condition m0 · m′ = 0, the local spin
always precesses about its original equilibrium orientation
with a small amplitude. Hence, defining local coordinates
{e1, e2, e3}, with e1 = m0, the total magnetization is given
by m = m0 + m2e2 + m3e3, with m2,3 � 1. For convenience,
the spin wave can be alternatively written in a complex field,
ψ = m2 − im3.

Making use of the above partition scheme, the magnetic
energy in Eq. (2) is expanded as

uA = A(∇m0)2 + A(∇ψ∗ · ∇ψ )

− iA[(ψ∇ψ∗ − ψ∗∇ψ ) · ∇]m0 · �(m0), (B1)

uK = K[1 − (m0 · x̂)2] + Kψ∗ψ, (B2)

uD = − Dm0 · [(ẑ × ∇) × m0]

− (iD/2)(ψ∇ψ∗ − ψ∗∇ψ ) · (m0 × ẑ), (B3)

where only zeroth- and second-order terms in spin wave fluc-
tuation are kept. Similarly, the Lagrangian density in Eq. (1)
is then divided into the following two parts [41]:

L =L0 + L′ = [s�(m0) · ṁ0 − u(m0)]

+
[

is

2
ψ∗ψ̇ − A∇ψ∗ · ∇ψ

− Kψ∗ψ − iA(ψ∇ψ∗ − ψ∗∇ψ ) · a

]
, (B4)

where L0 and L′ are the Lagrangian densities of the mag-
netic bimeron and spin waves. As seen in Eq. (B4), the
interaction between the magnetic texture and spin waves is
mediated by the minimal coupling between the spin wave
flux ψ∇ψ∗ − ψ∗∇ψ and the vector potential a, originating

from the second expansion of the magnetic energy in Eq. (2).
Here the vector potential a = a0 + aD consists of two parts,
which are a0 = −�(m0) · ∇m0 from the magnetic topology
and aD = (D/2A)(ẑ × m0) from the DMI.

The slow motion of a magnetic texture is captured by the
evolution of its central position R; thus, m0(t ) ≡ m0[R(t )].
By virtue of the relation ṁ0 = −(Ṙ · ∇)m0, the magnetic
texture Lagrangian is then transformed to

L0 =
∫

[−s�(m0) · (Ṙ · ∇)m0 − u(m0)]dV

= sA0 · Ṙ − U0, (B5)

where A0 = − ∫
�(m0) · ∇m0dV and U0 = ∫

u(m0)dV are
the vector and scalar potentials for the magnetic texture.

Meanwhile, it is instructive to construct a spin wave
packet � that narrowly spans both real and reciprocal
spaces and evolves solely in parametric space {r, k}, with
r and k being the central position and wave vector, i.e.,
�(t ) ≡ �[r(t ), k(t )]. Following the eikonal equation in optics
[59,60], as well as the semiclassical approach in quantum
mechanics [61], the spin wave Lagrangian induced by one
spin wave packet is transformed into [41]

L′ =
∫ [

s

2
k · ṙ − (Ak2 + K + 2Ak · a)

]
�∗�dV

= 2h̄n

s

[
s

2
(q − a) · ṙ − (Aq2 + K − Aa2)

]
, (B6)

where q = k + a is the canonical momentum and n is the
magnon number of the localized spin wave packet with n =
(s/2h̄)

∫
�∗�dV . The functional variation about q leads to

ṙ = (4A/s)q or h̄q = mswṙ, with msw = h̄s/4A. Substituting
q back into Eq. (B6) then yields Eq. (7) in the main text. Fur-
thermore, considering the simultaneous presence of multiple
spin wave packets each with a single magnon n = 1, the spin
wave Lagrangian is then transformed into

L′ =
∑

j

(
msw

2
ṙ2

j − h̄ṙ j · a
)

, (B7)

where r j is the position of the jth magnon (spin wave packet)
and the terms that do not change with time are neglected.

Combining the magnetic texture Lagrangian in Eq. (B5)
and the spin wave Lagrangian in Eq. (B7), the system La-
grangian is then recast from Eq. (B4) into Eq. (10) in the
main text, which describes the kinematics of bimerons and
magnons.
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