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The Kitaev honeycomb model, which is exactly solvable by virtue of an extensive number of conserved
quantities, supports a gapless quantum spin liquid phase as well as gapped descendants relevant for fault-tolerant
quantum computation. We show that the anomalous edge modes of one-dimensional (1D) cluster-state-like
symmetry-protected topological (SPT) phases provide natural building blocks for a variant of the Kitaev model
that enjoys only a subextensive number of conserved quantities. The symmetry of our variant allows a single
additional nearest-neighbor perturbation, corresponding to an anisotropic version of the I' term studied in
the context of Kitaev materials. We determine the phase diagram of the model using exact diagonalization.
Additionally, we use the density matrix renormalization group to show that the underlying 1D SPT building
blocks can emerge from a ladder Hamiltonian exhibiting only two-spin interactions supplemented by a Zeeman
field. Our approach may provide a pathway toward realizing Kitaev honeycomb spin liquids in spin-orbit-coupled

Mott insulators.

DOLI: 10.1103/PhysRevB.108.184406

I. INTRODUCTION

Exactly solvable models play an essential part in the under-
standing of many strongly interacting, fractionalized phases
of matter (see, e.g., Refs. [1-6]). Typically, exact solvability
descends from an extensive set of conserved quantities—i.e.,
whose number scales with system size—exhibited by a mi-
croscopic Hamiltonian. Such extensive conserved quantities
can simultaneously quell competition from conventional or-
ders while enabling a minimalist description of exotic ground
states and the nontrivial emergent excitations that they host.
Experimental platforms, by contrast, generically exhibit vastly
fewer conserved quantities associated with a set of physi-
cal global symmetries that is independent of system size.
Nevertheless, exactly solvable models can inform searches
for materials governed by Hamiltonians that are sufficiently
“nearby” to realize the same universal properties.

As an important example, the exactly solvable Kitaev hon-
eycomb model [1] captures a family of quantum spin liquid
phases for spin-1/2 degrees of freedom arranged on a honey-
comb lattice. Here, special bond-dependent spin interactions
are incorporated such that the Hamiltonian preserves local,
mutually commuting multispin operators associated with each
hexagonal plaquette. The virtue of these conserved quanti-
ties manifests upon employing a Majorana representation of
the spins: the Hamiltonian then maps to Majorana fermions
coupled to a Z, gauge field whose flux, crucially, has no
dynamics. In any fixed flux sector, the Hamiltonian moreover
reduces to a free fermion problem, whose wave functions and
energies can be efficiently solved. The exact solution reveals
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a gapless Z, spin liquid phase hosting emergent massless
Dirac fermions born from a purely bosonic spin system. Addi-
tionally, the model supports toric code and non-Abelian spin
liquids—both of which are sought for fault-tolerant quantum
computation—as proximate descendants that arise upon gap-
ping the emergent fermions.

Seminal work by Jackeli and Khaliullin identified a
promising route to material realizations [7]. Specifically,
they predicted that a family of spin-orbit-coupled Mott
insulators—now dubbed “Kitaev materials”—exhibits pre-
cisely the bond-dependent spin interactions from the Kitaev
honeycomb model; however, perturbations inevitably exist
that spoil exact solvability, endow Z, fluxes with dynamics,
and promote competing orders. Indeed, at zero magnetic field
most Kitaev materials magnetically order at low tempera-
tures [8—14], indicating that such perturbations are sufficiently
severe to destabilize the gapless quantum spin liquid. Sig-
natures of fractionalization have, nevertheless, been reported
[13,15-21], though the experimental situation remains unset-
tled [22-27].

Devising alternative spin-anisotropic microscopic Hamil-
tonians that capture similar phenomenology to the Kitaev
honeycomb model could potentially expand the landscape
of candidate spin liquid materials [28—33]. To this end, we
propose consideration of models that lie intermediate be-
tween exactly solvable and generic, experimentally realistic
Hamiltonians, in the sense of enjoying a number of conserved
quantities that grows with system size, but only subexten-
sively. It is natural to anticipate that subextensive conserved
quantities, while insufficient for exact solvability, can still

©2023 American Physical Society


https://orcid.org/0000-0002-5965-0644
https://orcid.org/0000-0001-5295-2124
https://orcid.org/0000-0002-6585-1469
https://orcid.org/0000-0001-9979-3423
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.184406&domain=pdf&date_stamp=2023-11-08
https://doi.org/10.1103/PhysRevB.108.184406

YUE LIU et al.

PHYSICAL REVIEW B 108, 184406 (2023)

SPT

FIG. 1. Kitaev honeycomb model variant built from an array
of symmetry-protected topological (SPT) phases that correspond to
reflection-symmetric cousins of the one-dimensional cluster state.
Each SPT building block hosts anomalous spin-1/2 edge states,
and arises microscopically from a spin-1/2 ladder model that
enjoys separate spin-flip symmetries for each leg—collectively yield-
ing a subextensive number of conserved quantities for the array.
Symmetry-allowed interactions among anomalous edge spins con-
nected by green, blue, and red bonds generate the Kitaev honeycomb
model perturbed by a single anisotropic spin-exchange term

more efficiently suppress competing orders relative to generic
Hamiltonians—thus providing fertile ground for spin liquid
explorations.

We substantiate the expectation above by introducing
a microscopic spin liquid model with subextensive con-
served quantities associated with flipping all spins in any
given “row” of the lattice. Figure 1 sketches our con-
struction, which is based on an array of one-dimensional
(1D) symmetry-protected topological (SPT) phases. Each
SPT building block corresponds to a reflection-symmetric
counterpart of the “cluster state”—originally introduced in
the context of measurement-based quantum computation
[34,35]—and hosts anomalous spin-1/2 edge states. In our
setup the SPT phase arises microscopically from a spin-1/2
ladder Hamiltonian involving relatively simple one- and two-
spin interactions. When arrayed as in Fig. 1, the anomalous
edge spins hybridize along a honeycomb lattice as illustrated
by the green, blue, and red bonds. Remarkably, the subexten-
sive conserved quantities built into our Hamiltonian constrain
the interactions along these bonds to exactly the structure of
couplings in the Kitaev honeycomb model—up to a single
perturbation corresponding to a spatially anisotropic version
of the I' term present for Kitaev materials [36]. This single
perturbation mediates restricted dynamics for Z, fluxes in
which they can propagate along only one direction of the
lattice. The gapless Z; spin liquid generically survives a finite
threshold of these nontrivial flux processes, and we show
explicitly that our setup can reside below that threshold.

Although our construction reduces at low energies to a
variant of the Kitaev honeycomb model, we stress that the un-
derlying microscopic interactions are entirely different. This
observation raises the hope that similarly utilizing subex-
tensive conserved quantities may in the future unearth new,
realistic Hamiltonian targets for emulation in experiments.
Our paper also highlights nearer-term opportunities for exper-
imentally realizing individual SPT building blocks, given the
rather simple structure of the required Hamiltonian.
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FIG. 2. Schematic of the canonical cluster-state SPT phase on a
square ladder. The model contains ZXZ terms along the two types
of shaded triangles—which do not transform into one another under
interchain reflections.

We organize the remainder of the paper as follows. Sec-
tion Il reviews the canonical one-dimensional cluster state and
introduces our reflection-symmetric extension in the context
of effective spin-1 models. Section III then identifies a parent
Hamiltonian for the reflection-symmetric cluster state in a
more realistic spin-1/2 ladder setup. In Sec. IV we examine
the SPT array from Fig. 1 and establish the conditions for
realizing the gapless quantum spin liquid from the Kitaev
honeycomb model. A summary and discussion of our main
findings is given in Sec. V. Numerous appendices detail sup-
plementary results and background information.

II. REFLECTION-SYMMETRIC 1D CLUSTER-STATE
SPT PHASE

A. Canonical cluster-state review

We begin by considering spin-1/2 degrees of freedom on a
square ladder (Fig. 2), governed by the Hamiltonian

N—1
Heuster = —J Z(Zj,lxj,zzj+l,1 +Zi2Xj1,1Zj+12). (1)
=1

Here N denotes the number of sites in each chain comprising
the ladder, X; , and Z; ,, are Pauli operators acting on site j in
chain y, and we assume J > 0. Equation (1) famously hosts
a Zy x Z, cluster-state SPT phase [34,35]. In particular, the
two Z, symmetries are generated by

G = l_[Xj,u Gy = HXj,Za 2
J J

and correspond to invariance of Hjyger under globally flipping
the spins in either chainy = 1 or 2.

All terms in Hyser commute with each other and square to
the identity; hence ground states must exhibit

Zi1Xj2Zjv1n = Zj2Xjr1,1Zj410 = +1 3)

for all j. These ground-state conditions can be combined to
define string order parameters characterizing the cluster-state
SPT phase:

J-1 j-1
Zja HXM Zia = HZk,lxk,zzk+1,1 =1 4)
k=j k=j

for arbitrary j* > j, and similarly

;
Z;> l_[ X1 | Zp2=1. 5

k=j+1
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Moreover, the operators

Xe=211, Vi=X,1Zi2 (6)
localized at the left edge and
Xr=2Zns, YVr=Xn2Zn, @)

localized at the right edge preserve the ground-state condi-
tions in Eq. (3). These operators define the anomalous edge
zero modes characteristic of the cluster-state SPT phase and
together span a fourfold ground-state degeneracy. Modulo
corrections that decay exponentially with system size, this
degeneracy is immune to arbitrary local perturbations that
preserve the two Z, symmetries protecting the SPT order.
(Note that in our definitions above X; and )y are odd under
G|, whereas ), and Xy are odd under G,. Throughout we
adopt similar conventions since they facilitate connection to
the Kitaev honeycomb model in Sec. IV.)

B. Reflection-symmetric extension

The canonical cluster-state Hamiltonian from Eq. (1) lacks
interchain reflection symmetry since the two sets of triangles
on which the ZXZ terms act do not transform into one an-
other upon swapping the two chains of the square ladder;
see Fig. 2. Here we wish to introduce a cluster-state variant
that preserves interchain reflections—yielding an additional
symmetry denoted ZX!. Including the Z, symmetries associ-
ated with global spin flips in each chain, the symmetry group
then extends to the dihedral group Dy = (Z, X Z;) X Zrzef.
The classification of 1D SPT phases protected by such a
group is given by H?(Dy, U(1)) = Z,. Moreover, the nontriv-
ial SPT phase here persists upon restricting the symmetry to
the Z, x Z, subgroup, and is in the same phase as the cluster
state. In principle, a commuting-projector model for which
the cluster-state SPT phase enjoys an additional interchain
reflection symmetry should therefore exist.

We instead follow a more illuminating route to the
reflection-symmetric cluster state that directly connects with
the realistic spin Hamiltonians that we simulate in Sec. III.
As an initial step we reduce the spin-1/2 ladder to a spin-1
chain by introducing a reflection-symmetric parent Hamilto-
nian whose dominant term is

Hyipler = —A Z(Xj,l +Xj2—X;1Xj2) ()
J

with A > 0. For the pair of sites on a rung labeled by j, let
us denote the X-basis eigenstates by |X;; =1,X;, =1) =
=, =), IX;1=1,X;, =—1) = |—, <), etc. Equation (8)
penalizes the |<«—, <—) configuration but leaves a triplet of
degenerate ground states that we group as

e, o) =i, <)

1 , 9
1) 7 )

0) = |—, —), (10)
1) = |«, =) +i|—, <) (11

V2

TABLE 1. Projection of select spin-1/2 operators onto the effec-
tive spin-1 problem defined in Sec. II1 B.

Spin-1/2 ladder operators Projection onto spin-1 chain

Zi S'JY
Zs S
YjiZjpor =Z;1Yjs 5
X, 257 -1
X, 2557 - 1
Xj1X2 1—28577
Zj)Zjr + Yj1Z2)/2 538
—Yja +iZ;2)/2 S3S;

We project onto the latter manifold and describe the resulting
low-energy sector with spin-1 operators defined by

0 1 0 0 -1 0
o 1] g=_t|t o-1]
10 V2l 1 o

—_—
—_

Y=
ﬁO
1 0
=10 O
0 0 -1

12)

under the basis (|1), |0), |—1)). In this spin-1 representation,
the two Z, symmetries from Eq. (2) map to global 7 spin
rotations about the $¥ and S* directions, i.e.,

G, =" 2SI, Gy =em2iS), (13)

while interchain reflection symmetry corresponds to a m rota-
tion about the diagonal between the $* and $” directions:

Grot = o Zj(S‘/‘»-ﬁ-S;)/«/E' (14)
[We dropped an unimportant factor of ¢ 2, on the right side
of Egs. (13) and (14).] For later use, Table I lists the projection
of various spin-1/2 ladder operators onto the effective spin-1
problem obtained above.

At this point the conceptually simplest way to access a
reflection-symmetric cluster-state SPT phase is to put the ef-
fective spin-1 degrees of freedom into the ground state of the
Affleck-Kennedy-Lieb-Tasaki (AKLT) Hamiltonian

HAKLT:Z[gj'ngrI+%(§j'§j+l)2:|a (15)
J
which clearly preserves both G, and interchain reflections
Gres. (See Appendix A for a brief review of the ground-state
and edge structure of Hakrr.) The AKLT model realizes an
SPT phase—also known as the Haldane phase—characterized
by string order parameters

j'—1
[T exp(imsy) ij,>;é0 (16)
k=j+1

OZKLT = <Sjl

for o« = x,y, z. Like the canonical cluster state reviewed in
Sec. IT A, the AKLT SPT phase also hosts anomalous edge
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TABLE II. Symmetry transformations of the edge zero mode
operators in the reflection-symmetric cluster state.

X Y3 Z X Vr Zg
G, —-XL YL —-Z Xr —Vr —Zx
G, AL -V —-Z —Xr Vr —Zg
Gret NY3 AL -Z Yr Xr — 2

zero modes that span a fourfold ground-state degeneracy on
an open chain. Reference [35] previously established a link
between the canonical cluster-state Hamiltonian [Eq. (1)] and
the AKLT chain. Our construction, by contrast, incorporates
an additional microscopic symmetry. In particular, the edge
zero mode operators now exhibit well-defined transformations
under interchain reflection. Equations (13) and (14) corre-
spond to elements of continuous spin rotation symmetry built
into Hagpr; consequently, one can back out the relevant edge
zero mode symmetry properties using the fact that the edge
spins transform projectively under global O(3) transforma-
tions:

eiy-[ Zj ﬁ'gj |AKLT) — ei%ﬁ-ﬁleﬁei%ﬁ'aﬂgh‘ |AKLT) s (17)

where |AKLT) belongs to the ground-state manifold and Gief
and Grgn denote Pauli matrices that act on the anomalous
edge spin 1/2s. Appendix A details the analysis, the results of
which are summarized in Table II. (Note again that, for ease
of connecting with the Kitaev honeycomb model later on, we
adopt a convention where &} and )V are odd under G; while
Xg and ), are odd under G5.)

The conceptual simplicity afforded by Eq. (15) comes with
a drawback: In the original spin language, realizing Hagyr
requires somewhat baroque four-spin terms (see Table I and
Appendix B). Thus we consider the alternative spin-1 model

Hypin1 = Z [J(SfoH + S?S}“H)
J

+ /(S350 +5)S00) +D(S5)°] ()
that also preserves G;, and Gys. Equation (18) features
first- and second-neighbor easy-plane interactions that we take
to be antiferromagnetic (J,J' > 0), together with single-ion
anisotropy that locally favors either the S3 = O state (for D >
0) or the S; = =£1 doublet (for D < 0). Notably, all of these
Hamiltonian terms can arise microscopically from one- and
two-spin interactions in the original spin-1/2 ladder; see again
Table I. References [37,38] numerically studied the phase di-
agram of Hgyir.. When J' = D = 0, a gapless Luttinger liquid
emerges. Starting from this point, turning on arbitrarily weak
J' > 0 stabilizes the gapped SPT phase captured by the AKLT
model, i.e., the reflection-symmetric cluster state in our con-
text. The SPT order persists until J'/J ~ 0.48, and moreover
withstands a finite range of single-ion anisotropy D by virtue
of the gap. Our own infinite density matrix renormalization
group (iDMRG) simulations support the structure of the phase
diagram identified in these early works; see Appendix C for
details.

y:1 \.t]T \JJZV U A A
XX —Z7

FIG. 3. Schematic of the spin-1/2 ladder model in Eq. (19),
which preserves separate spin-flip symmetries for each of the two
chains as well as interchain reflection symmetry.

II1. SIMPLIFIED PARENT HAMILTONIAN OF THE
REFLECTION-SYMMETRIC CLUSTER STATE

A. Model and phase diagram

Armed with the insights from Sec. II B, we now consider
the spin-1/2 ladder model

N—1 N-2 N
H = Z J; sz,yzﬁrl,y + J; Z ZiyZivay —h ZXJ»,V
y=1,2 j=1 j=1 j=1
N
+I Y XX (19)

j=1

that encodes a transverse field h, antiferromagnetic intra-
chain nearest-neighbor (J; > 0) and second-neighbor (JZ/ > 0)
ZZ-type Ising interactions, and antiferromagnetic interchain
X X -type Ising interactions (J, > 0); see Fig. 3. Equation (19)
preserves interchain reflection symmetry and—due to the
form of the interchain coupling J,—separately conserves the
two Z, symmetries G; and G,. The model thus potentially
supports a reflection-symmetric cluster-state SPT phase. One
can verify that such a state indeed appears in the phase di-
agram by examining the limit in which the bottom line of
Eq. (19) dominates, with & = J,. Here one can distill the
problem to an effective spin-1 model following exactly the
same logic presented below Eq. (8). In particular, with the aid
of Table I one finds that H maps (modulo a trivial constant)
onto Hgyiny from Eq. (18) with J =J;, J'=J,, and D =
2(h — J,). Numerical results from Refs. [37,38] then imply
that at “large” h, the reflection-symmetric cluster state appears
for a window of J, close to &, provided JZ’ is nonzero.

To track the reflection-symmetric cluster state in the
broader phase diagram—particularly the regime in which the
spin-1 mapping breaks down—we simulate the full spin-1/2
ladder model in Eq. (19) using iDMRG (bond dimension y =
300). Figure 4 displays the resulting (4, J,) phase diagram
obtained with J, = 1 and J, = 0.3. For relatively small inter-
chain coupling J, < 0.8, we find only the familiar disordered
and antiferromagnetically ordered phases that persist down
to the decoupled-chain limit. The disordered phase preserves
all symmetries and smoothly connects to a trivial product
state at & — oo. The ordered state exhibits (Z;,) # 0 for
y = 1, 2 and thus spontaneously breaks both the G| and G, Z»
symmetries. Notice that in the J, = 0 decoupled-chain limit,
the order-disorder phase transition occurs at 4 < 1 due to the
frustration-inducing nonzero J.

Two new phases emerge at larger J,: first a partially
ordered state with (Z;Z;,) # 0 but (Z;,) =0 eventually
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FIG. 4. Phase diagram of H in Eq. (19) obtained using iDMRG
(bond dimension 300) with fixed J. = 1 and J] = 0.3. The reflection-
symmetric cluster-state SPT phase appears in the region indicated
by red dots. Dashed lines represent rough phase boundaries inferred
from the simulated grid points shown.

supplants the conventional ordered phase. Intuitively, the large
X;,1X;, interchain term anticommutes with Z;, and thus
scrambles antiferromagnetic order in the individual chains,
but commutes with Z; 1Z; , and hence need not suppress the
composite order parameter. Second, we observe the reflection-
symmetric cluster-state SPT phase intervening between the
ordered/partially ordered states and the disordered phase. In
our simulations we identify the SPT phase through string
order parameters akin to Egs. (4) and (5):

i-1

0 = <Zj,1 l_[ Xi.2 Zj’,1>» (20)
k=j+1
j-1

0, =<z,-,2 [T X z,-,,2>. (21)
k=j+1

Observe that interchain reflection swaps O; <> O;. In the SPT
region of Fig. 4 we indeed find O = O, # 0 for |j — j'| —
oo—as required for the cluster state to preserve reflection
symmetry. The SPT phase resides near the diagonal in Fig. 4
where h & J,, consistent with expectations from the spin-1
mapping. We can further solidify the connection to the AKLT
chain [and its variant from Eq. (18)] by projecting the above
string order parameters into the spin-1 sector using Table I.
Remarkably, this projection yields, modulo an overall sign,
the x and y components of the AKLT-chain SPT order param-
eters from Eq. (16):

O] d O//V\KLT’ 02 — OyAKLT‘ (22)

We have also performed density matrix renormalization
group (DMRG) simulations at larger J, (see Appendix D).
We find that the minimum J, value required to stabilize the
reflection-symmetric cluster state decreases with J.. This ob-
servation suggests that the reflection-symmetric cluster state
should also be analytically accessible as an instability of

@  2-2 2-1 2 2j+1 D 7,
Oo—{0—0+—o0) > J
©—o—0—0 A

(b1) 'OWO- (b2) ' -t ----- . (b3) 't X -

o—o o & oo

FIG. 5. (a) Schematic illustration of the couplings in Eq. (24).
Each circle represents a Majorana fermion. (b) Possible mean-field
decouplings of the interchain J, term, leading to (bl) sponta-
neously broken interchain reflection symmetry, (b2) partial order
with (Z;Z;,) # 0, and (b3) the reflection-symmetric cluster-state
SPT phase.

coupled chains, far from the limit where the spin-1 mapping
holds. With this objective in mind we now revisit the ladder
model from the fermionized perspective.

B. Fermionized representation
We fermionize Eq. (19) via the Jordan-Wigner transforma-
tion
j-1
V2j—11 =Zj1 HXk,l, V21 = iXj1V2j-1.1,
k=1
j-1
Vj-12=G1Zj> HXk,z, V22 = iXj2Vv2j-1.2;
k=1

(23)

on the second line, the factor of G; ensures that Majorana
fermions y;; and y; , on different chains anticommute. We
then arrive at an equivalent fermion model that is local (due to
the separately conserved Z, symmetries for each chain):

"

+ I ((y2j3V2j+1.5) (V2423 V2j43.5)]

D ivajyajeny — ihyajo1va)y
y=1,2

+Jx(iJ/2j1,1J/2j,1)(i3/2j1,21/2,',2)}. (24)

Above we have been cavalier about limits on the sums to
simplify the presentation. Figure 5(a) illustrates the set of
fermion couplings encoded in Eq. (24).

Next, we will explore phases that interchain coupling pro-
motes by considering three possible mean-field decouplings
of the fermionized J, term above; see Figs. 5(b1)-5(b3). For
this exercise it will prove useful to express correlators indicat-
ing partial (Z; ;Z; ») order and SPT order in terms of Majorana
fermions as follows:

{(Zj1Zj2)(Zy 1 Zj 2))
V2j V241 Y2j-2
Y2j

: (25)

V2 -1
V2j+1 V2j -2 Y25 -1
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(a) 9 11 13 15 17 19 21 23
Y2i  V2j+1 V2j—2  V2j—1
on-|| e e
Vaj+i Vaj -2 6 8 10 12 14 16 18 20 22 24
V2j+1 V2j'—2
|Oy] = . 27
V2j  Y2j+1 V2ji—2  V2j—1

On the right sides, we indicate the Majorana operators that
are multiplied to give the order parameters on the left; the top
and bottom rows respectively correspond to operators living
on the upper and lower chains of the ladder. Absolute values
are included merely to avoid tracking factors of i.

The most trivial decomposition of the J, term, sketched in
Fig. 5(b1), follows from the replacement

Je(iv2j—1,1v2j,1)(¥2j-1,2Y25,2)
— 8h(iy2j—1,2Y2j2 — IV2j—1,1V2j,1)- (28)

Here 8h = J.(iy2j—11v2j1) = —Jeliy2j—12)2j2) represents
an opposite-sign shift in the transverse field for the two chains
(recall that we assume J, > 0). A state characterized by §h #
0 would spontaneously break interchain reflection symmetry
in a way that promotes order in one chain and disorder in the
other—which we do not observe in the phase diagram from
Fig. 4.

The remaining two J, decouplings generate different
patterns of spontaneous interchain fermion tunneling. Fig-
ure 5(b2) corresponds to the decoupling

Je(@y2j—1,1v2;,1)(i¥2j-1,2Y2),2)
— —11({V2j-1,1V2j-12 + V2j,1Y2j,2) (29)

with “vertical” hopping amplitude #;; = J,{iy;,1¥},2). From the
right side of Eq. (25), we see that the special limit with #;; = J;
yields the partially ordered (Z;Z;,) # 0 phase captured by
DMRG. [By contrast, the “dangling” y»;, y2;,—1 Majorana
operators in Eqs. (26) and (27) imply that the string order
parameters O; , vanish.] Twofold ground-state degeneracy of
the partially ordered phase is encoded in this representation
through the two (degenerate) choices for the sign of .
Finally, Fig. 5(b3) represents the decoupling

Je(@y2j—1,1v2;,1)(iy2j-1,2Y2)2)
— =t (iy2j—1,1V2j2 T iV2j-1,272).1), (30)

where 1, = J(iy2j-11Y2j.2) = Jeliy2j—12)2j,1) encodes a
“crossed” interchain fermion tunneling amplitude. The pattern
of interchain fermion hopping generated at ¢, # O flips the sit-
uation compared to Eq. (29): In the extreme limit where 7, =
Jy,at|j — j'| = oo Eq.(25) now vanishes while Egs. (26) and
(27) are nonzero—indicating reflection-symmetric cluster-
state SPT order. Ignoring the J, term for simplicity then yields
a minimal mean-field Hamiltonian

HMF - Z |: Z (iJzVZj,yVZjJrl,y - ihVijl,yVZj,y)

Jj Ly=12
—t(iy2j-1172j2 + iVZj—l,ZV2j,l):| 31

for the SPT.

C T IrrIriririri

FIG. 6. (a) Schematic representation of the two-chain Hamilto-
nian from Eq. (31) that provides a mean-field description of the
reflection-symmetric cluster-state SPT. (b) Equivalent unfolded rep-
resentation of panel (a) that reveals a connection to the Kitaev
honeycomb model. In particular, a Kitaev honeycomb strip on the
same geometry also realizes an SPT when the ground state resides
in the flux sector corresponding to Eq. (31). (c) Alternative Kitaev
honeycomb strip geometry studied in Refs. [41,42], which for com-
parison does not realize an SPT.

We stress that J] is crucial for energetically favoring the
decoupling used here, but is not essential for understanding
universal properties of the resulting phase. Note also that,
when writing Eq. (31), we neglected possible renormaliza-
tion of J, and A by J,. One can show (e.g., by studying the
spectrum of Hyg) that when ||J,| — |h]| < |t«]| < |J;| + |A],
the mean-field Hamiltonian hosts a single unpaired Majorana
zero mode on each end, similar to the topological phase of
a Kitaev chain [39]. The two edge Majorana modes together
with the arbitrary sign of 7, encode the fourfold degener-
acy characteristic of the reflection-symmetric cluster state
(as found in more accurate DMRG simulations that include
J. # 0). For a further consistency check, one can view the
ground state of Eq. (31) as a variational wave function for
the original Hamiltonian that includes J,. We find that the
variational energy is minimized with ¢, # 0 for a range of
J/, although this approach overestimates the range of the SPT
compared to DMRG. As an aside, the preceding analysis pro-
vides an explicit microscopic counterpart of the field-theoretic
coupled-critical-chain construction explored in the context of
Rydberg arrays in Ref. [40].

Interestingly, the form of Hyr already hints at a connec-
tion to the Kitaev honeycomb model. Figure 6(a) sketches
the couplings in Hyr for a system with a total of 24 Ma-
jorana fermions, labeled in a way that is convenient for the
present aim. Figure 6(b) presents an equivalent “unfolded”
version—which represents nearest-neighbor-hybridized Ma-
jorana fermions on a honeycomb strip wrapped into a cylinder.
Correspondingly, Hyr has an identical spectrum to the Kitaev
honeycomb model defined on the same cylindrical strip, in
the sector with w flux per plaquette [43]. It follows that
a spin-1/2 system on the strip in Fig. 6(a) with XX, YY,
and ZZ couplings on blue, green, and red bonds is also an
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FIG. 7. [(a), (c)] Low-lying energy levels and (b, d) correspond-
ing J./|I';| values for an N = 8 chain described by Eq. (19) (left
panels), and with an additional intrachain YY interaction from
Eg. (33) (right panels). In all panels we fix (J;,J],J,) = (1,0.3, 3)
and vary the transverse field & within the SPT regime; for the right
panels we take J, = 0.2. Red levels in panels (a) and (c) correspond
to the four lowest energies Ey ;  ;—emerging from SPT edge modes
that hybridize due to finite-size effects—measured relative to the
ground-state energy Eo; the thick red lines are doubly degenerate.
Note that in panel (c) the red curves are scaled by a factor of 5 for vis-
ibility. Black curves represent the next excited energy, i.e., the bulk
gap of the SPT phase. The pronounced dip in panel (d) corresponds
to a regime for which .7, dominates over I',.

SPT phase in the presence of perturbations that stabilize the
m-flux sector (see Appendix E for further discussion). We
should contrast this honeycomb strip geometry to the more
well-studied Kitaev strip in Fig. 6(c) [41,42]—which instead
realizes symmetry-breaking order in the analogous regime as
also discussed in Appendix E.

C. Finite-size hybridization of edge zero modes

The reflection-symmetric cluster-state SPT phase emerg-
ing from Eq. (19) exhibits a finite correlation length §.
Consequently, on any system of finite size L, the anomalous
edge spin 1/2s generically hybridize and move away from
zero energy (by an amount that becomes exponentially small
in L/& when L > &). The symmetries listed in Table II restrict
the residual interaction between edge modes localized on the
left and right ends of the ladder to the form

Hegoe = T (XL VR + Vi XR) + T 21 Zp.

The couplings I', and J. are nonuniversal and depend on
details of the microscopic Hamiltonian generating the SPT
phase. For a given set of microscopic parameters, one can
numerically extract I'; and J, by matching the eigenvalues
of Hege (given by {—7T,, =7, —2T"; + J;, 2T, + J.}) with
the four lowest energies extracted from simulations of the
microscopic two-chain model with open boundary conditions.

The left panels of Fig. 7 illustrate (a) the low-lying level
structure and (b) the extracted 7,/|I";| values for an N = 8
chain described by Eq. (19) withJ, = 1,J, = 0.3, and J, = 3;
the horizontal axes cover an interval of the transverse field

(32)

h corresponding to the SPT phase in Fig. 4. For these mi-
croscopic parameters we obtain |7, | < |T;], i.e., the [, term
tends to dominate. To underscore the nonuniversality of this
result, Figs. 7(c) and 7(d) present the same quantities as
Figs. 7(a) and 7(b) but incorporating a new intrachain term:

N-1
6H = Jy Z ZYj,ijH,y

y=1,2 j=1

(33)

with J, = 0.2 (all other parameters are unchanged). The Y'Y
term preserves the Z, x Z, symmetry as well as interchain
reflection symmetry and thus need not disrupt the SPT phase;
in fact the bulk gap increases significantly in Fig. 7(c) relative
to Fig. 7(a), indicating that J, = 0.2 actually strengthens the
SPT phase. Moreover, Fig. 7(d) reveals a parameter regime
in which 7. /|T";| diverges—establishing proof of concept that
J. can dominate over I',. For rough intuition, one can view
the YY term above as enabling nontrivial 2kr oscillations
that modulate the overlap of Majorana end states described
at the mean-field level by Eq. (31). A finite-size SPT phase
with | 7| > |I";| will be of particular interest in the next
section because it can be used as a building block of a Kitaev
honeycomb quantum spin liquid.

IV. KITAEV HONEYCOMB MODEL VARIANT
FROM SPT ARRAYS

Once we know how to construct a reflection-symmetric
cluster state, we can use finite-sized SPT blocks to assem-
ble a variant of the Kitaev honeycomb model that exhibits
only subextensive conserved quantities. Consider the setup
in Fig. 1 that features A/ spin-1/2 chains (horizontal dashed
lines), each with a spin-flip Z, symmetry. We incorporate
intrachain and interchain couplings that form SPT blocks in
the pattern shown in the figure—yielding a new set of low-
energy degrees of freedom consisting of anomalous spin-1/2
boundary modes (gray circles with arrows) arranged on an
anisotropic honeycomb lattice.

Recalling the transformation properties from Table II, the
Z, symmetries associated with each chain heavily constrain
the allowed two-spin interactions between anomalous edge
spins in the array. A given pair of edge spins can indeed only
hybridize if the SPT phases to which they belong share at least
one chain. Further assuming that each edge spin only interacts
with its partner on the same SPT phase and its two nearest
neighbors from adjacent SPT phases, we obtain the pattern of
couplings illustrated by green, blue, and red bonds in Fig. 1.
Specifically, green bonds only allow X X-type interactions,
blue bonds only allow Y)Y -type interactions, and red bonds
allow couplings of the form in Eq. (32). These constraints ex-
ist as long as the Z, symmetry of each chain and the interchain
reflection symmetry hold.

More microscopically, we envision that each shaded block
in Fig. 1 is governed at high energies by Eq. (19) with param-
eters tuned to the SPT phase, and at low energies by Eq. (32).
Couplings between low-energy edge modes originating from
different SPT blocks emerge from physical microscopic spin-
spin interactions in a manner that can be understood from
symmetry considerations. For example, the microscopic spin
operator Z;,; at the upper left corner of an SPT block changes
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(a)
Xy, ~ 71 10—0——0 mz}%,l ~ YVr

Vi~ 21,5000 Os=0—07p2 ~ Xn

(b)

FIG. 8. (a) Correspondence between microscopic Z operators
and effective edge operators in a single SPT block. (b) Using panel
(a), microscopic Ising-type ZZ interactions linking adjacent SPT
blocks along the green and blue bonds respectively map to XX’ and
Y terms present in the Kitaev honeycomb model. Notice that the
ZZ interactions shown preserve the subsystem Z, symmetries that
flip all spins along a given shaded gray strip.

sign under G| but remains invariant under G,; these symmetry
properties imply that Z; ; maps at low energies onto the ef-
fective edge operator A7 from Table II. Analogous symmetry
considerations identify microscopic Z operators at the other
three corners of the SPT block with edge mode operators as
illustrated in Fig. 8(a). Thus symmetry-preserving ZZ-type
Ising interactions linking adjacent SPT blocks yield precisely
the desired XX and )Y couplings needed to emulate the
Kitaev honeycomb model; see Fig. 8(b). More specifically, the
following Hamiltonians generate the XX’ and )’} bonds:

Hxx = ZZL,Z(x)ZR,l(x +ay),

X

Hyy =Y Z11()Zro(x + a3),

X

where x labels the SPT blocks, each described by Eq. (19), and
a1, are honeycomb lattice vectors. The particular microscopic
origin highlighted above is by no means unique. Table III lists
the symmetry transformation properties and correspondences
between microscopic spin and effective edge operators. From
here one sees, e.g., that Y'Y -type spin couplings yield the same
pattern of coupling as for ZZ. The symmetry-based nature
of our construction thereby identifies a family of microscopic
Hamiltonians that generate our Kitaev honeycomb variant at
low energies.

(34)
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FIG. 9. Phase diagram of the SPT array model in Eq. (35) ob-
tained from exact diagonalization of the 20-site cluster shown in
the inset. Simulations assume periodic boundary conditions with
J = 1. The phase boundary of the spin liquid (SL) is determined
from maxima of —3%E,/3T"Z, where Ey is the ground-state energy.

To formally write down the low-energy model, let us de-
scribe the edge spin at position j with operators X, V),
and Z; and discard the now redundant L/R subscript used
previously to label the two ends of an SPT phase. The effective
Hamiltonian for the array then reads

Harray=j ZXij"i‘Zyjyj’

blue

+ Y [TZi2j + TV + VX,

red

green

(35)

where the colors indicate the j, j/ bonds summed over and
we assumed reflection symmetry that equates the XX and
Y couplings. Remarkably, downgrading the number of con-
served quantities from extensive to subextensive generates
only a single two-spin nearest-neighbor perturbation (I";) to
the exactly solvable Kitaev honeycomb model.

Previous numerical studies have explored the phase dia-
gram of the Kitaev honeycomb model perturbed by various
couplings including Heisenberg terms and off-diagonal ex-
change anisotropies [36,44-54]. Our array Hamiltonian,
however, includes a spatially anisotropic I'; term that has
not been simulated to our knowledge. We therefore obtain
the phase diagram of Eq. (35) using exact diagonalization
of the 20-site cluster shown in the inset of Fig. 9, assuming
periodic boundary conditions and fixing J = 1. As a baseline,
for I'; # 0 but J, = 0 the array realizes a trivial phase in
which the SPT blocks are completely disentangled from one
another. Conversely, for I', = 0 but J, # 0 the gapless spin

TABLE III. Symmetry transformations of the microscopic operators in the reflection-symmetric cluster state. The subscripts “L” and “R”
refer to the left and right edges of the SPT block. The last row indicates the low-energy edge operator to which different microscopic Pauli

operators map based on symmetries.

Left edge Right edge
Upper chain Lower chain Upper chain Lower chain
X Yia 71 X2 Yo Z1> Xr1 Yri Zr1 Xr2 Yro Zr2
G, Xr1 =Y —ZL1 Xr2 Yio Zio Xr.1 —Yr1 —Zr1 Xr2 Yro2 Zr2
G, Xra Y. Zra X2 =Y —Z12 Xr.1 Yri ZR1 Xr2 —Yr2 —Zr2
Edge operator 1 AL XL 1L Vi NY3 1z Yr Vr 1z Xr Xr
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liquid phase of the Kitaev honeycomb model emerges. We
determine the stability of the spin liquid at finite I'; by ex-
amining extrema of the second derivative of the ground-state
energy—yielding the phase diagram in Fig. 9. For nonzero 7,
the spin liquid persists over a finite window in I';, with anti-
ferromagnetic .7, offering more resilience than ferromagnetic
J. (similar to trends observed in other studies [36,50,51,53]).
The key takeaway is that in the regime | 7| > |I",|—which
can be satisfied, e.g., by adding YY terms to the model in
Eq. (19)—the SPT array indeed realizes a gapless Kitaev spin
liquid.

V. DISCUSSION

We introduced microscopic realizations of a cluster-state-
like SPT phase for a spin-1/2 ladder enjoying interchain
reflection symmetry along with a pair of subsystem Z,
symmetries associated with globally flipping all spins on a
given chain. Reflection symmetry in particular distinguishes
this phase from the canonical cluster state described by the
commuting-projector Hamiltonian in Eq. (1). As a conceptu-
ally simple microscopic route, we first considered the limit
wherein the spin-1/2 ladder reduces to a single spin-1 chain,
due to a fine-tuned interplay between transverse-field and in-
terchain coupling terms [Eq. (8)] that energetically favor three
out of the four available states for a given rung. We leveraged
the frustration-free AKLT Hamiltonian to establish that the
reflection-symmetric cluster-state SPT phase for the spin-1/2
ladder corresponds to the Haldane phase for the effective spin-
1 chain. Guided by numerical results on an alternative spin-1
model [Eq. (18)], we further established via DMRG that the
reflection-symmetric cluster state persists in relatively simple
spin-1/2 ladder models—well away from the limit where the
spin-1 mapping applies—that invoke only one- and two-spin
interactions; see Eqgs. (19) and (33).

The hallmark anomalous edge spin 1/2s for the reflection-
symmetric cluster state furnish very natural degrees of
freedom for constructing a minimally perturbed Kitaev hon-
eycomb model. One can usefully associate the X and )
components of the anomalous edge spins with opposite chains
in the ladder, in the following sense: X’ changes sign under the
spin-flip symmetry for one chain, while ) changes sign under
the spin-flip symmetry for the other chain (recall Table II). It
follows that in the SPT array from Fig. 1, the only symmetry-
allowed interactions among anomalous edge spins connected
by the green and blue bonds correspond precisely to the X' X’
and )Y interactions built into the Kitaev honeycomb model.
Moreover, symmetry under reflections about any of the red
bonds in Fig. 1 constrains the XX and )} couplings to be
equal. Interactions among the anomalous edge spins within
a given SPT block are, however, less constrained: Along the
red bonds, symmetry allows the ZZ interactions that com-
plete the Kitaev honeycomb model, along with an additional
off-diagonal exchange anisotropy [I"; term in Eq. (35)]. The
I', term mediates restrictive dynamics for Z, fluxes that are
completely static in the pure Kitaev limit; namely, fluxes can
tunnel in the vertical direction of Fig. 1, but not the “diagonal”
directions, which is the price paid for invoking subextensive
conserved quantities. We showed explicitly that the gapless
spin liquid phase survives a finite threshold of I";, and demon-

strated that a concrete spin-1/2 ladder model can indeed give
rise to I', values well below that threshold.

These results highlight the potential power of exploring
Hamiltonians designed to emulate exotic ground states of
exactly solvable models, but with only a subextensive number
of conserved quantities. Indeed, as proof of concept, our con-
struction rigorously establishes that Kitaev honeycomb model
phenomenology can arise from an entirely different micro-
scopic framework built upon interactions needed to stabilize
a two-chain SPT phase. We do not expect that the array from
Fig. 1, given the large unit cell, will find direct experimental
relevance in solid-state systems. Nevertheless, we hope that
our paper will motivate the development of related models that
do expand the landscape of candidate spin liquid materials.

Perhaps the most immediate experimentally relevant impli-
cation of our paper concerns the reflection-symmetric cluster
state for a single two-chain system. Throughout we en-
forced three Z, symmetries—interchain reflection, plus a pair
of spin-flip symmetries. These symmetries are essential for
maintaining the structure of our perturbed Kitaev honeycomb
model in the SPT array; however, only two Z,s are strictly
required to maintain a nontrivial SPT phase for an elementary
two-chain block. In particular, it suffices to retain interchain
reflection while relaxing the subsystem spin-flip symmetries
into a more generic global spin-flip symmetry. Inspection of
Table II reveals that the edge spin 1/2s indeed remain pro-
tected zero energy degrees of freedom when enforcing only
Gt and G| x G,. Finding experimental realizations for the
reflection-symmetric cluster state with these realistic symme-
tries poses an interesting challenge for future research.
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APPENDIX A: AKLT MODEL AND ITS EDGE MODES

In this Appendix we review the spin-1 AKLT model and
discuss the transformation of its edge operators under differ-
ent symmetries. The AKLT Hamiltonian,

oo 1 - =
Haxir = Z |:Sj “Sjy1+ g(Sj 'Sj+1)21|, (A1)

J

represents a sum of projection operators of neighboring spin
Is to the total spin-2 sector. Therefore, for a given nearest-
neighbor pair, states in the total spin-2 sector uniquely incur
an energy penalty, so that the energy is minimized when every
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@ P5Q 54 &4 o4 9

FIG. 10. Illustration of the AKLT model ground state. Spin-1
degrees of freedom, depicted by ovals, are decomposed into left (/)
and right () spin 1/2s. The spin 1/2s connected by solid lines form
a singlet state 1t f‘” , while the two spin 1/2s in each oval are
projected into the triplet subspace formed by [11), | ), w
Dangling spin 1/2s at the left and right edges form anomalous edge
states for the spin-1 chain.

such pair resides in the sector with total spin O or 1. One
can efficiently satisfy this condition by first decomposing the
spin 1 on site j into two spin 1/2s denoted by |s§s;) with
s =1, |, then putting the “r” spin 1/2 from site j and “/”
spin 1/2 from site j + 1 into a singlet, and finally projecting
all sites into the physical spin-1 subspace; see Fig. 10 for an
illustration. Neglecting edge effects for now, the ground state
so constructed takes the valence bond form

[YakLT) = l_[P l_[ |T %H |¢ T]H) (A2)

where
v+l

= [1,)(1}45] +10,) 7

15
(A3)

imposes spin-1 projection.

For an open chain in the thermodynamic limit, the leftmost
and rightmost dangling spin 1/2s in Fig. 10 decouple and can
orient in any direction without changing the system’s energy,
giving rise to fourfold degeneracy. The ground states can be
labeled by the edge spin-1/2 configurations:

N N—1 ral
HPI s [ i ¢j+1>\/§‘¢jTj+l)|sR>,

j=lI

(A4)

where s g =1, | denote the state of the left and right edge
modes. We define edge operators Oy g that act on the edge
spin s g as

Orlsy---sg) = [(Ors) - - - sr),

sz - - - (Orsgr)),

with O = X, Y, Z denoting various Pauli operators. As an ex-
ample, X [1--- 1) = |{ -+ 1), Xel? -~ 1) =ilt -+ ), etc.

To understand the transformation of edge operators under
symmetries—specifically Eqgs. (13) and (14)—we first write
down an important property of the projection operator:

ORrlsp -+ -sg) = (AS)

—e"SiP; = Pi(ii - 61) ® (7 - 5)). (A6)
Here §j = (87, Si.', S7) is the spin-1 operator for site j, 8;*’ =
X }”, YJ.[”, ZJ].”) is the Pauli operator acting on the left (right)
spin 1/2 on site j, and 7 = (ny, ny, n;) is any unit vector
satisfying n} 4 n} + n2 = 1. Equation (A6) links the rotation
of a spin 1 to simultaneous rotation of two spin 1/2s in the
spin-1/2 representation.

Thus, we have

N -
[T=€™")ls. -+ sg)
j=1

P iss 1—[ 1) - |¢ il

1
:]2

~.
Il
=

I
—]=
lumm!
s
—~

S
Q
=

®
—

S

57)]isu)

~.
Il
-

T ) = Vi)
X ’+1 aa |sg)

1—[ ) - |¢ M)

N
H [Gi - 61)ls.)]

X [(7 - Gr)Isr)]
= (="M Gr)sp - (i - Gr)sw)- (A7)
From the third to fourth line, we used the fact that (i -

’) Q@(G-6 +1) gives a factor of (—1) when acting on the

] ral
singlet state M and 6, g denotes the Pauli op-

erator on the left or right edge spin 1/2. Therefore the
overall rotation of the spin-1 chain, [—[?]:1 €™ is equivalent
to applying corresponding Pauli operator 7i - & to the edge
modes in the spin-1/2 representation. As an example, we have
Golsp -+ sg) = (DN N(Xpsy) - - - (Xgsr)), etc. We can then
read off the transformation of edge operators under symme-
tries:

G X .r = — XL rG1,
Go X1 .r = XL rG2,
GrefXL,R - YL,RGref»

GYLr =Y rGH,
GYpr = =YL rGa,

GrefYL,R = XL,RGref~ (A8)

To arrive at the edge operators used in the main text, one
swaps the definition of X and Y operators on the right edge,
Xr <> Yg, so that Yy is odd under G; while X is odd under
G», and then invokes calligraphic fonts via X — X', Y —
Y,Z — Z. In this way one arrives at the transformation of
edge operators given in Table II.

APPENDIX B: GENERATING THE AKLT MODEL FROM A
SPIN-1/2 LADDER

The AKLT model can be realized by projecting a spin-1/2
ladder to a spin-1 chain using Eq. (8) and then adding appro-
priate interactions. Specifically, we find that under projection

1 1 5
hi= ) e XXy T Yis¥inry + = ZivZjrry
y=1,2

1
+ E[(Xj,l —DXjr12 =D+ Xj2 — DXjp11 — D]

1
+ gzj,lzj,2zj+1,lzj+l,2
( Yii1Zj12+Z;1Y;

2Zj+1.1Y+12) (BD)
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(a) D = 0:
Haldane Chiral
¢ »r ,
0 ~0.48 J')J
(b) J'/J = 0.3:
Néel :  Haldane Large-D
144 0.30 D/J

FIG. 11. Phase diagrams of Hy,.; in Eq. (18) determined using
iDMRG with bond dimension x = 300 and (a) D = O and (b)J'/J =
0.3.

maps (up to a constant) to the AKLT Hamiltonian term § IE
Sis1+ 58, - Sj41)% Thus, Hyipier + Y h; realizes exactly

mapping from spin-1/2 ladder to spin-1 chain is many to one,
i.e., there exist other spin-1/2 ladder Hamiltonians that map to
the AKLT model. In general, however, four-spin terms appear
inevitable.

APPENDIX C: iDMRG SIMULATIONS OF EQ. (18)

We justify that the Hamiltonian in Eq. (18) realizes a
Haldane SPT phase using infinite-size DMRG with bond di-
mension x = 300. Figures 11(a) and 11(b) respectively show
our numerically determined phase diagrams at D = 0 and
J'/J =0.3. In Fig. 11(a), the J/ = D = 0 point is gapless;
turning on J' > 0 stabilizes the Haldane phase, diagnosed
by nonzero string order parameters defined in Eq. (16). For
J'JJ Z 0.48, the system enters a chiral phase characterized by
(kjkj) # 0for|j— j'| = oo where

QXY Y QX
the AKLT model when A — oo in Eq. (8). Note that the kj S]SJ+1 SJ Jj+1 (€D
J' =0.3 J =0.35
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FIG. 12. Phase diagrams of Eq. (19) with J, = 1 for different J/. The ordered phase is labeled by blue crosses; the disordered phase is
labeled by black squares; the partially ordered (Z;;Z;,) # O phase is labeled by pink triangles; the red dots represent the SPT phase; and the
green asterisks represent the chiral phase. Note that the range of J, and /4 is [0, 1], which differs from Fig. 4. Data were obtained by iDMRG
with bond dimension x = 300. For J/ 2 0.45, DMRG simulations become more difficult to converge and may require larger bond dimension.
Since in the main text we focus on the existence of the SPT phase, we leave determination of accurate phase diagrams at J, 2 0.45 for future

work.
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defines a chiral order parameter. The phase transition near
J'/J =~ 0.48 is studied in Ref. [38], which reports that when
J'/J > 0.490 there is a gapless chiral phase whereas within
the narrow region 0.473 < J'/J < 0.490 the system is in a
gapped phase with coexisting chiral order and string order.
In this paper we make use of only the Haldane phase and
hence do not include the detailed structure near the transition
point. In Fig. 11(b), the Haldane phase also has a finite width
and resides between the Néel phase and the large-D phase—
consistent with the phase diagram in Ref. [37] obtained by
exact diagonalization.

APPENDIX D: NUMERICAL RESULTS FOR DIFFERENT J;

Here we investigate the phase diagram of the two-chain
model in Eq. (19) with different J, values, thus extending the
main-text results from Fig. 4. We fix J, = 1 throughout this
Appendix. At the decoupled-chain limit (J, = 0), each chain
realizes an axial next-nearest-neighbor Ising (ANNNI) model
[55,56] in a transverse field 4. When i = 0, the ground state of
the ANNNI model is ordered for J; < 0.5 and has a period of
4 (antiphase) for J. > 0.5. At J. = 0.5, the ground state is ex-
ponentially degenerate with degeneracy ~¢", where N is the
system size and ¢ = 5+ 1)/2 ~ 1.618 is the golden ratio.
The phase diagram of the ANNNI model under a transverse
field has been studied with various methods (see, e.g., Chap. 4
of Ref. [56]). Our goal is to explore the evolution of the phase
diagram when the chains couple via J, # 0, focusing on the
regime J, < 0.5.

Figure 12 plots the phase diagrams for J =
{0.3,0.35,0.4,0.43} obtained using infinite-size DMRG
with bond dimension x = 300. Five different phases appear:
(1) an ordered phase with long range ZZ correlation

(ZjyZjpy) #0, ye{l,2}, |j—jI— oo (D1)
(2) a disordered phase with
7
<1‘[Xk,y> #0, ye{l,2}, [j—jl—>o00;  (D2)
k=j
(3) a partially ordered phase with
(Zj1) =(Zj2) =0,but (Z;1Zj») #0, Vj; (D3)
(4) a SPT phase with string order parameter
012, i) #0, 1j—Jj1— oo, (D4)

where O, takes the form in Egs. (20) and (21); and (5) a
gapless chiral phase with

(k) #0, |j—Jj1— oo, (D5)

where

Ki=Zj1Zix1p—Zj2Zjy1,1. (D6)

A plot of different order parameters along the [J,, J\] =
[0.5, 0.43] line is shown in Fig. 13, which justifies the ex-
istence of different phases and the sufficiency of choosing
x = 300.

All states except for the chiral phase appear already in
Fig. 4. The chiral phase sets in when J] 2 0.4; note that the
characteristic chiral order defined in Eq. (D6) reduces to the

., J'] = [0.5,0.43]

_ X =300, 100
1.2 > — (Zj1Z;2Z5175 )

H{":J Xky>
Zja (Hi:ﬂl XM) ZJ’.,1>

0.8

06 B <Zj,1Zjv2> ?é 0

0.4

Disorder

0.2

FIG. 13. Different order parameters for the two-chain system
described by Eq. (19) with fixed [J,, J/] = [0.5, 0.43] as a function
h. We evaluate the order parameters using |j — j’| = 600. The solid
lines were obtained by iDMRG with bond dimension x = 100, while
the markers were obtained using x = 300. Excellent agreement be-
tween the data for the two bond dimensions indicates that y = 300 is
sufficiently large to identify the phases and locate the phase bound-
aries to the accuracy presented in the phase diagrams from Fig. 12.

chiral order for the spin-1 chain [Eq. (C1)] under the map-
ping in Table I. The nonzero «;, and vanishing of (Z; ;) and
(Zj.1Z;7), are consistent with a phase that breaks interchain
reflection symmetry but preserves a Zs subgroup generated
by ] ;Xj1 followed by interchain reflection. This symmetry
is compatible with the twofold degeneracy that we observe
(associated with opposite signs for ;). Moreover, we observe
power-law decay among various operators—indicative of a
gapless phase—with entanglement entropy revealing a central
charge of ¢ = 1. Figure 14 presents DMRG results (correla-
tion functions, entanglement entropy, and energy gap) for an
open two-chain system in the chiral phase with [/, h, J]] =
[0.45, 0.5, 0.43] and system size N = 100.

Returning to Fig. 12, the minimum value of interchain cou-
pling J, at which the SPT phase can form, mingpr J,, clearly
varies with J/. As J. approaches 0.5, the minimum value
becomes rather small, e.g., mingpr J, =~ 0.2 for JZ’ = 0.43. Ex-
trapolating mingpr J, with J suggests that the SPT phase may
set in at arbitrarily weak J; at J, ~ 0.5—though competition
from the chiral phase poses a subtlety. The asymptotic fate of
the SPT phase at J, — 0.5 would be interesting to address in
future work.

APPENDIX E: KITAEV STRIP

Consider spin-1/2 degrees of freedom on the strip geome-
try shown in Fig. 15 with Hamiltonian

Hyip = ZXj,ij’,y’ + Z Y Yy + sz,yzj’y- (ED

blue green red

For simplicity we have assigned equal strength for different
types of bonds. This problem closely relates to the Kitaev hon-
eycomb model via the unfolding process sketched in Figs. 6(a)
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FIG. 14. [(a)~(c)] DMRG results for an open two-chain system described by Eq. (19) with [J;, h, J] =[0.45, 0.5, 0.43], system size
N = 100, and bond dimension x = 300. Panels (al)—(a3) show various (connected) correlators involving X operators, while panels (b1)—(b3)
show various Z correlators; all of these data indicate power-law decay. Panel (c) plots the entanglement entropy S; as a function of subsystem
size j. A fit of the formula S; = ¢ log[% sin(%j)] + const implies that the central charge c is 1. (d) DMRG results for the energy gap Eg,, of
a periodic two-chain system with [J,, &, JZ’] = [0.45, 0.5, 0.43] as a function of system size Nppc, again with x = 300. We find Egyp ~ 1/Npsc,
which further indicates gaplessness of the chiral phase. Note that the ground-state degeneracy is 2, and that we compute the energy gap above

the ground-state manifold.

and 6(b). Notice that in Fig. 15 we assume an even number 2N
of sites per chain, which facilitates connection to the mean-
field description of the SPT phase discussed in Sec. III B and
Fig. 6.

Like the two-dimensional (2D) Kitaev honeycomb model,
the strip Hamiltonian enjoys local, mutually commuting
conserved quantities. One can check that the following op-
erators (for any j) commute with themselves and with the
Hamiltonian:

i 111 121212,
Y2; 11221 %2111 Y2j1222041,2X2) 2. (E2)

1 2j—1 25 25+125+4+2 IN — 12N
y:

y=2

FIG. 15. Kitaev strip geometry described by Eq. (E1). Note the
close relationship to the ladder from Figs. 6(a) and 6(b).

The six-spin operator in the second line acts like the plaquette
operators in the 2D honeycomb model, which one can directly
see from the unfolding process in Fig. 6. The four-spin oper-
ator in the first line is conserved because the geometry of the
strip enables a new type of loop in the honeycomb lattice, e.g.,
loopl - 3 — 2 — 4 — 1inFig. 6(b). Additionally, the sys-
tem preserves two Z, symmetries generated by ]_[Zﬁl Zi1 and

]_[illl Zi 2, one of which is independent of the local conserved
quantities above.

The Kitaev strip can be solved analytically by perform-
ing a Jordan-Wigner transformation to Majorana fermion
operators

Vej-ty = GZiylay - Zaj-2yY2j-1ys

ity =G ZiyZoy - Zoj—2yXoj 1y,

Vojy = GyZiyZloy - Zoj1,yXajy,

iy =G Z1y2oy - Zoj_1 V), (E3)
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where G,— =1 and Gy, = [[}", Z.1 ensure proper anti-
commutation relations. In this representation —iys;_1,,¥2;y
acts along the x links (blue links in Fig. 15); iy2j 241,y
acts along the y links (green links in Fig. 15); and
V2j—1172j—1,1V2j.2¥2j,2 and y2j192;.1Y2j—1,2V2j—1,2 act along
the z links (red links in Fig. 15). The terms i}»;_1 1922
and i,;_1 %1 commute with the Hamiltonian and define
a Z, gauge field. The mean-field description of the two-
chain model in Sec. III B corresponds to the -flux sector in
this gauge theory, wherein Y5;_11Y2;1Y2j_12Y5j_1,, = —1 for
all j.

For an open system with length 2N, we find using
exact diagonalization that the ground states are 2Nfold
degenerate and satisfy Yz 1Y2j1Y2j-12Y2j—12 = +1 for
all j. (One can understand the degeneracy by observ-
ing that for each j, either l')~/2j_1‘1)~/2jyz or i)~/2j—1,2)~/2j,1
equals —1; the minus signs can be tiled in exponentially
many ways.) Therefore the m-flux sector is not accessi-
ble in the ground-state manifold of the pure model in
Eq. (E1). However, the m-flux sector can be stabilized by
addlng a term 8ZjY2j—1,1Y2j.lY2j—].2Y2j—l,2 to Eq (El)
with § > 0 exceeding some threshold. Upon including such
a term, we find a fourfold ground-state degeneracy with

the ground states satisfying if»;_1 192j2 = i¥2j—12¥2j,1 and
Y5i_11Y21Y2j-12Y2j—1,, = —1. One can also check that with
periodic boundary conditions the ground state becomes
unique, suggesting that the degeneracy with open boundary
conditions comes from edge modes. Given the connection
to the mean-field description of the two-chain SPT phase in
Sec. III B, we conclude that the ground state of this Kitaev
strip perturbed by the § term above realizes a Z, x Z, SPT
phase.

An alternative type of Kitaev ladder system shown in
Fig. 6(c) emerges from imposing periodic boundary condi-
tions on the honeycomb lattice in a distinct way, and has
been discussed, e.g., in Refs. [41,42]. The system forms a
string of squares that lead to loop operators of the form
Xj,lXjJrl’le’ijJrl’z and Yjﬁle+1,1Xj,2Xj+1’2 that commute
with the Hamiltonian. This type of Kitaev ladder, when simi-
larly described by Eq. (E1) but with the new pattern of colored
bonds, does not host an SPT phase. Instead, our DMRG
simulations capture a symmetry-breaking phase with order
parameter X; Y;>» — X;,Y;1 # 0. We indeed find twofold
ground-state degeneracy for both open and periodic boundary
conditions, indicating that this kind of Kitaev ladder does not
support nontrivial edge modes.
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