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In this study, we investigate the finite-temperature properties of the spin-1/2 J1 − J2 Heisenberg model on
the kagome lattice using the orthogonalized finite-temperature Lanczos method. Under a zero magnetic field,
the specific heat exhibits a double-peak structure, as |J2| increases. Additionally, at approximately J2 = 0, the
magnetic entropy remains finite, even at low temperatures. The finite-temperature magnetization curve reveals
the asymmetric melting behavior of the 1/3 plateau around J2 = 0. As |J2| increases, the 1/3 plateau becomes
more stable, exhibiting symmetric melting behavior. Specifically, for J2 > 0, the Q = 0 up-up-down structure is
stabilized, whereas for J2 < 0, the

√
3 × √

3 up-up-down structure is stabilized.
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I. INTRODUCTION

The study of the spin-1/2 kagome Heisenberg model has
garnered significant attention in the fields of condensed mat-
ter physics and materials science owing to the prevalence of
novel quantum phenomena [1–3]. The ground state of this
model is expected to be either a gapped quantum spin liquid
(QSL) [4,5], a gapless QSL [6–9], or a valence bond crystal
(VBC) state [10–12] because of the synergy between frustra-
tion and quantum fluctuations. In a magnetic field at T = 0,
field-induced quantum phase transitions occur [13–18]. The
magnetization curve of this model exhibits multiple plateaus
at M/Msat = 0, 1/9, 1/3, 5/9, and 7/9, where M is the mag-
netization, and Msat is the saturation magnetization [15–17].

Even at finite temperatures, this model has been exten-
sively studied in recent years. The specific heat is predicted
to exhibit a distinctive multipeak structure [19–21]. The
high-temperature peak is attributed to a crossover from the
paramagnetic state to a short-range-ordered state. Notably,
the finite-temperature magnetization curve exhibits an asym-
metric melting behavior of the 1/3 plateau [21–23]. This
phenomenon arises because of the significantly higher density
of low-energy states in the regime with M/Msat < 1/3 com-
pared with the density of low-energy states in the regime with
M/Msat > 1/3. These features do not appear in the triangular
lattice model, which suggests that they are caused by the
strong frustration effect of the kagome lattice [22].

Several model compounds exist for S = 1/2 kagome
antiferromagnets [24–36]. In the model compounds, the
next-nearest-neighbor exchange interaction J2 always exists
regardless of whether it is large or small. The ground state
of the J1 − J2 kagome lattice has been studied theoretically
[37–41]. For J1 > 0 and J2 > 0 (where positive indicates
antiferromagnetic), the ground state exhibits a Q = 0, 120◦
structure, whereas for J2 < 0, the ground state exhibits a√

3 × √
3 120◦ structure. In addition, it is predicted that the
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ground state will undergo QSL or VBC in −0.1 � J2/J1

� 0.1 [38–41]. However, theoretical studies on the kagome
model with J2 have primarily focused on the case of T = 0,
and there have been few studies on its finite-temperature
properties.

In this study, we investigate the finite-temperature prop-
erties of the J1 − J2 kagome Heisenberg model using the
orthogonalized finite-temperature Lanczos method (OFTLM)
[42,43]. In this paper, J1 is set to 1 as the energy unit.
At J2 = 0, the specific heat exhibits a multipeak structure;
however, as |J2| increases, the multipeak structure transitions
into a double-peak structure. Furthermore, the position of the
low-temperature peak among the two peaks gradually shifts
to the high-temperature side as |J2| increases. For −0.05 <

J2 < 0.01, the magnetic entropy exhibits a finite value even
at low temperatures, indicating the presence of a QSL. In the
magnetization curve, similar to previous studies, we observe
the asymmetric melting of the 1/3 plateau at J2 = 0. In con-
trast, as |J2| increases, an apparent flattening of the 1/3 plateau
is observed, even at T = 0.1, and the 1/3 plateau melts
symmetrically as the temperature increases. This is because,
in the region of a larger |J2|, a semiclassical ground state
characterized by up-up-down (UUD) structures (see Fig. 10)
similar to the structure of the 1/3 plateau in the triangular
lattice emerges. For J2 > 0, the Q = 0 UUD state is stable,
whereas for J2 < 0, the

√
3 × √

3 UUD state is stable. The
region around J2 = 0 is situated in the intermediate region
between these phases, leading to the instability of the 1/3
plateau. Consequently, the 1/3 plateau undergoes rapid melt-
ing, as the temperature increases. Contrary to the conventional
understanding that as the degeneracy of the classical ground
state increases, quantum effects become more pronounced,
leading to the emergence of a magnetization plateau, our
findings demonstrate that the 1/3 plateau stabilizes as the
degeneracy is reduced. By comparing our results with the
experimental results, we will be able to determine the value
of J2 for spin-1/2 J1 − J2 kagome compounds with antiferro-
magnetic J1. If a 1/3 plateau is not observed in the experiment,
this suggests that the kagome compounds possess a relatively
small |J2|.
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FIG. 1. Lattice structure of the J1 − J2 kagome lattice. The solid
and dashed lines represent J1 and J2, respectively. J1 is set to 1.
The green circles represent the sites with a spin. a and b represent
the primitive vectors of magnitude 1 (|a| = |b| = 1). The red and
blue quadrangles represent the clusters of N = 36 and N = 27 with
periodic boundary conditions, respectively, where N is the number
of sites.

II. MODEL

The Hamiltonian for the spin-1/2 J1 − J2 kagome lattice
shown in Fig. 1 in a magnetic field is defined as follows:

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j − h
∑

i

Sz
i , (1)

where Si is the spin-1/2 operator at the ith site, Sz
i is the z com-

ponent of Si, 〈i, j〉 and 〈〈i, j〉〉 run over the nearest-neighbor
and next-nearest-neighbor spin pairs of the kagome lattice,
respectively, and h represents the magnitude of the magnetic
field applied in the z direction. Here, J1 is set to 1 as the energy
unit. In this study, we consider both positive and negative
values of J2. In Heisenberg models, the operator

∑
i Sz

i is a
conserved quantity. Here, the eigenvalue of operator

∑
i Sz

i is
defined as Sz

tot. The vectors a and b shown in Fig. 1 represent
primitive vectors of magnitude one. Main calculations are
performed on a cluster consisting of 36 sites with periodic
boundary conditions (PBC) shown in Fig. 1. Calculations for
a cluster consisting of 27 sites with PBC are performed only
to check for finite-size effects.

III. METHOD

The finite-temperature Lanczos method (FTLM) has been
employed in studies on frustrated quantum lattice models be-
cause it does not have the sign problem [40,44–56], which is a
concern in quantum Monte Carlo simulations. The OFTLM is
a more accurate method than the standard FTLM, particularly
at low temperatures. Here, we provide a brief summary of the
OFTLM [43].

The partition function using the standard FTLM is as fol-
lows:

Z (T, h)FTL =
Msat∑

m=−Msat

N (m)
st

R

R∑
r=1

ML−1∑
j=0

e−βε
(r)
j,m (h)

∣∣〈Vr,m

∣∣ψ r
j,m

〉∣∣2
,

(2)

where R denotes the number of random samplings of the
FTLM, ML denotes the dimension of the Krylov subspace,
|Vr,m〉 is a normalized random initial vector with Sz

tot = m,

and |ψ r
j,m〉 [ε (r)

j,m(h)] are the eigenvectors (eigenvalues) in the
(ML )th Krylov subspace with Sz

tot = m. As
∑

i Sz
i is a con-

served quantity, ε
(r)
j,m(h) can be expressed as ε

(r)
j,m(h) = ε

(r)
j,m −

mh. We define the order of {ε (r)
j,m} as ε

(r)
0,m � ε

(r)
1,m � ε

(r)
2,m �

· · · � ε
(r)
ML−1,m. If ML is sufficiently large, ε

(r)
0,m becomes equal

to the exact ground-state energy E0,m. However, |〈Vr,m|ψ r
j,m〉|2

does not converge to the expected value, that is, dm/N (m)
st ,

where dm represents the degeneracy of the ground state in the
subspace with Sz

tot = m. Therefore, unless a sufficient number
of random samples are considered, the accuracy of Z (T, h)FTL

will not improve at low temperatures.
In the OFTLM, we first calculate several low-lying exact

eigenvectors |�i,m〉 with NV levels. We define the order {Ei,m}
as E0,m � E1,m � · · · � ENV −1,m. We then calculate the fol-
lowing modulated random vector:

|V ′
r,m〉 =

[
I −

NV −1∑
i=0

|�i,m〉〈�i,m|
]
|Vr,m〉, (3)

with normalization

|V ′
r,m〉 ⇒ |V ′

r,m〉√〈V ′
r,m|V ′

r,m〉 . (4)

The partition function of the OFTLM is obtained using |V ′
r,m〉

as the initial vector, as follows:

Z (T, h)OFTL =
Msat∑

m=−Msat

⎡
⎣N (m)

st − NV

R

R∑
r=1

ML−1∑
j=0

× e−βε
(r)
j,m (h)

∣∣〈V ′
r,m

∣∣ψ r
j,m

〉∣∣2 +
NV −1∑
i=0

e−βEi,m (h)

]
.

(5)
If NV � dm, Z (T, h)OFTL reaches its exact value at low tem-
peratures. Therefore, it is recommended that NV be greater
than or equal to dm. Similarly, in the OFTLM, the energy
E (T )OFTL, magnetic specific heat C(T )OFTL, magnetic en-
tropy Sm(T )OFTL at h = 0, and magnetization M(T, h)OFTL are
obtained as follows:

E (T )OFTL = 1

Z (T, 0)OFTL

Msat∑
m=−Msat

[
N (m)

st − NV

R

×
R∑

r=1

ML−1∑
j=0

ε
(r)
j,me−βε

(r)
j,m

∣∣〈V ′
r,m

∣∣ψ r
j,m

〉∣∣2

+
NV −1∑
i=0

Ei,me−βEi,m

]
, (6)

C(T )OFTL = 1

T 2Z (T, 0)OFTL

Msat∑
m=−Msat

[
N (m)

st − NV

R

×
R∑

r=1

ML−1∑
j=0

ε
(r)
j,m

2
e−βε

(r)
j,m

∣∣〈V ′
r,m|ψ r

j,m

〉∣∣2

+
NV −1∑
i=0

E2
i,me−βEi,m

]
− E (T )2

OFTL

T 2
, (7)
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TABLE I. Conditions for the calculation at N = 36.

m N (m)
st method R ML NV

18 1 Exact – – –
17 36 FullED – – –
16 630 FullED – – –
15 7140 FullED – – –
14 58905 FullED – – –
13 376992 OFTLM 10 160 5
12 1947792 OFTLM 10 160 5
11 8347680 OFTLM 10 160 5
10 30260340 OFTLM 10 160 5
9 94143280 OFTLM 10 160 5
8 254186856 OFTLM 10 160 5
7 600805296 OFTLM 10 160 5
6 1251677700 OFTLM 10 160 5
5 2310789600 OFTLM 10 160 5
4 3796297200 OFTLM 10 160 5
3 5567902560 OFTLM 10 160 5
2 7307872110 OFTLM 10 160 5
1 8597496600 OFTLM 10 160 5
0 9075135300 OFTLM 10 160 5

Sm(T )OFTL = E (T )OFTL

T
− ln Z (T, 0)OFTL. (8)

M(T, h)OFTL = 1

Z (T, h)OFTL

Msat∑
m=−Msat

[
N (m)

st − NV

R

×
R∑

r=1

ML−1∑
j=0

me−βε
(r)
j,m (h)

∣∣〈V ′
r,m

∣∣ψ r
j,m

〉∣∣2

+
NV −1∑
i=0

me−βEi,m (h)

]
,

(9)

Since Eqs. (5), (6), (7), (8), and (9) include the exact values
Ei,m, they are more accurate than those obtained using the
standard FTLM, particularly at low temperatures. The con-
ditions for the calculation of the OFTLM are listed in Table I.
Here, FullED in Table I represents the full exact diagonaliza-
tion method. Note that it is possible to set values of R, ML,
and NV depending on m in the OFTLM, but we maintain
them constant in the present study. In the J1 − J2 kagome
lattice, when J2 < 0, the ground state exhibits a

√
3 × √

3
structure. Therefore, it is desirable for the lattice size N to be
a multiple of 9. Accordingly, in this study, we mainly perform
calculations for the N = 36 cluster.

Before delving into the main part of the calculations, we
confirm the presence of finite-size effects. Figure 2 presents
a comparison of the magnetization curves for N = 27 and
N = 36. The two curves closely coincide, indicating that there
are almost no finite-size effects for T � 0.1. Figure 3 presents
the calculation results of the specific heat. The results of the
27-site and 36-site clusters exhibit a remarkable agreement
for T � 0.1. Furthermore, for T > 0.4, our results are in
excellent alignment with the result of the high-temperature
series expansion combined with the [7,8] Padé approximant
[19]. From these results, it is evident that our calculations for

FIG. 2. Magnetization curve of the J1 − J2 kagome lattice at T =
0.1 for J2 = 0.2 with N = 27 (blue solid line) and N = 36 (red solid
line). This calculation was performed to confirm the finite-size effect.

the 36-site cluster accurately determine physical quantities for
T � 0.1 in the thermodynamic limit.

IV. RESULTS

A. Specific heat and entropy

Figure 4(a) and 4(b) show the specific heat results for
−0.28 � J2 � 0 and 0 � J2 � 0.28, respectively. At J2 = 0,
the specific heat exhibits multiple peaks, which is consis-
tent with a previous study [20,21]. As |J2| increases, the
low-temperature peak shifts to higher temperatures, and the
specific heat tends to exhibit a double-peak structure. At J2 =
0, the specific heat remains finite even at T = 0.01. This sug-
gests that the entropy remains finite, even at low temperatures
at approximately J2 = 0. Therefore, entropy calculations are
also performed.

The results of entropy calculations are shown in Fig. 5.
The entropy remains finite, even at low temperatures for
−0.05 < J2 < 0.01. Beyond this region, the temperature in-
creases rapidly under conditions of low and constant entropy.
These results suggest that the QSL state is realized in the
region of −0.05 < J2 < 0.01. In a classical spin system, at

FIG. 3. Specific heat of the kagome lattice (J2 = 0) with N = 27
(blue solid line) and N = 36 (red solid line). The result of the
high-temperature series expansion combined with the [7,8] Padé ap-
proximant [19] is also included for comparison (black dashed line).
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FIG. 4. Temperature dependence of the specific heat per site for
the J1 − J2 kagome lattice with N = 36 at h = 0 for (a) J2 � 0 and
(b) J2 � 0.

J2 > 0, the ground state is the Q = 0, 120◦ structure, whereas
at J2 < 0, it is the

√
3 × √

3 120◦ structure. Furthermore, at
J2 = 0, the ground state is infinitely degenerate. Hence, even
in the quantum spin system, the entropy remains finite even at
low temperatures at approximately J2 = 0.

To investigate the cause of the changes in the spe-
cific heat and entropy depending on J2, we calculate
the static spin structure factor Sz

q at T = 0, where Sz
q =

FIG. 5. Color plot of the magnetic entropy Sm per site for the
J1 − J2 kagome lattice with N = 36. The calculation of the entropy
dependent on T and J2 was performed at 3001 points for T and 31
points for J2.

FIG. 6. Static spin structure factor Sz
q at T = 0 and M/Msat = 0

for the J1 − J2 kagome lattice with N = 36. The figures on the left
and right show the schematics of the

√
3 × √

3 120◦ and Q = 0, 120◦

structures, respectively.

1
N

∑
j

∑
k eiq·(r j−rk )Sz

r j
Sz

rk
with the position vector r j and rk .

If 〈Sz
q〉 is maximal at q = (2π, 2π/

√
3), the ground state

is expected to have the Q = 0 structure, whereas if 〈Sz
q〉 is

maximal at q = (8π/3, 0), the ground state is expected to
have the

√
3 × √

3 structure. The calculation results for 〈Sz
q〉

are presented in Fig. 6. For J2 > 0, 〈Sz
q〉 at q = (2π, 2π/

√
3)

increases as J2 increases, whereas for J2 < 0, 〈Sz
q〉 at q =

(8π/3, 0) increases as J2 decreases. Thus, the system is
expected to exhibit the Q = 0, 120◦ order for J2 > 0 and
the

√
3 × √

3 120◦ order for J2 < 0. This finding is con-
sistent with previous studies [37–41]. Schematic views of
these magnetic structures are presented in Fig. 6. At ap-
proximately J2 = 0, both values are similarly small, which
suggests the existence of a QSL state. These results are con-
sistent with the behavior in which the entropy remains finite
even at low temperatures for −0.05 < J2 < 0.01, as shown
in Fig. 5.

B. Magnetization curve and 1/3 plateau

Figure 7 shows the magnetization curves at T = 0.1 for
−0.3 � J2 � 0.3. These results exhibit almost no finite-size
effects as shown in Fig. 2. No apparent plateau is observed
around J2 = 0. As |J2| increases, an evident 1/3 plateau began
to appear. This indicates that the magnetic properties change
around J2 = 0, which is similar to the behavior at h = 0. In
a classical spin system, even in a magnetic field, the ground
state is the Q = 0 structure for J2 > 0, and the

√
3 × √

3
structure for J2 < 0. At J2 = 0, the ground state is infinitely
degenerate. In the quantum spin system, a decrease in the
degeneracy leads to the stabilization of the 1/3 plateau, as
shown in Fig. 7. A 1/3 plateau also appears in the triangular
lattice, which is stabilized by the UUD structure arising from
quantum fluctuations and frustration effects. In contrast, in
the J1 − J2 kagome lattice, the 1/3 plateau became unstable
when the ground state in the classical limit is infinitely de-
generate, that is, at J2 = 0. Thus, if an evident 1/3 plateau is
not observed in the experimental measurements of spin-1/2
J1 − J2 kagome compounds with antiferromagnetic J1, it can
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FIG. 7. Magnetization curves of the J1 − J2 kagome lattice with
N = 36 for −0.3 � J2 � 0.3 at T = 0.1. The origin of the vertical
axis is shifted by 0.05 for every 0.02 decrease in J2 for better visi-
bility. The green lines present the results for J2 > 0, the blue line for
J2 = 0, and the red lines for J2 < 0.

be expected that the magnitude of J2 in that compound is
small.

To investigate the stabilization of the 1/3 magnetization
plateau and the asymmetric melting phenomenon in the J1 −
J2 kagome lattice, we calculate the magnetization curves at
various temperatures for J2 = −0.3, 0, and 0.3. Figure 8(a)
shows the calculated results for the magnetization curves at
J2 = −0.3; Fig. 8(b), at J2 = 0; and Fig. 8(c), at J2 = 0.3.
A 1/3 plateau can be observed at J2 = 0.3 and J2 = −0.3;
however, there is no apparent 1/3 plateau at J2 = 0. The cal-
culation results down to T = 0.05 do not reveal the presence
of plateaus other than the 1/3 plateau. Further calculations
at lower temperatures are required to confirm the presence
of the other plateaus. However, owing to finite-size effects,
the magnetization curve at the thermodynamic limit remains
unclear at lower temperatures.

Figures 9(a), 9(b), and 9(c) show enlarged views of the
finite-temperature magnetization curves around M/Msat =
1/3. At J2 = ±0.3, the 1/3 plateau gradually melts in a nearly
symmetric manner as the temperature increases. However, at
J2 = 0, the deviation of the magnetization from 1/3 starts on
the left side of the 1/3 plateau, which indicates an asymmet-
ric melting behavior. This result is consistent with previous
studies [21–23]. Hence, it is evident that the phenomenon of
asymmetric melting occurs only around J2 = 0. Instead of a
plateau, a ramp appears at M/Msat = 1/3 and thus the slope
is different to the left and right. Consequently, one anticipates
a difference in the density of states on each side. While in
the cases where a plateau exists, the slope remains relatively
consistent at both ends of the plateau, implying a comparable

FIG. 8. Finite-temperature magnetization curves of the J1 − J2

kagome lattice with N = 36.

density of states on either side. This conjecture is later con-
firmed through numerical calculations

To investigate the singularity around J2 = 0, we examine
the magnetic structure of the 1/3 plateau at T = 0 by cal-
culating 〈Sz

q〉 at M/Msat = 1/3. The calculation results for
〈Sz

q〉 are presented in Fig. 10. For J2 > 0, as J2 increases the
Q = 0 UUD structure stabilizes, whereas for J2 < 0, as |J2|
increases, the

√
3 × √

3 UUD structure stabilizes. Schematics
of these magnetic structures are shown in Fig. 10. Both these
structures are semiclassical magnetic structures with UUD
structures similar to the 1/3 plateau of the triangular lattice.
Therefore, when |J2| is large, the 1/3 plateau melts symmet-
rically, similar to the triangular lattice. In Fig. 10, a phase
transition occurs at J2 ∼ 0.015. The 1/3 plateau becomes
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FIG. 9. Finite-temperature magnetization curves of the J1 − J2

kagome lattice with N = 36 around M/Msat = 1/3.

unstable at approximately J2 = 0 because of its proximity to
the phase transition point.

At J2 = 0, 〈Sz
q〉 reaches its highest value at q = (8π/3, 0).

This result does not negate previous studies that the 1/3
plateau exhibits a VBC structure [15,16]. Although this study
does not provide conclusive evidence, we anticipate a phase
transition between the

√
3 × √

3 UUD phase and the VBC
phase to occur at a certain value of J2 in the thermodynamic
limit, because the ground state is expected to be the

√
3 × √

3
UUD state when J2 is sufficiently negative.

We calculate low-energy excitation spectra to investigate
further the reasons for the asymmetric melting of the 1/3
plateau at J2 = 0 and the symmetric melting at J2 = ±0.3
as shown in Fig. 9. Figure 11 shows the low-energy excita-
tion spectra for states with Sz

tot = 5, 6, and 7 at J2 = 0 and
J2 = −0.3. Here, Sz

tot = 6 corresponds to M/Msat = 1/3. At
J2 = 0, for Sz

tot = 7, all the excitation energies are �E > 0.1,

FIG. 10. Static spin structure factor Sz
q at T = 0 and M/Msat =

1/3 for the J1 − J2 kagome lattice with N = 36. The figures on the
left and right show the schematics of the

√
3 × √

3 UUD and Q = 0
UUD structures, respectively.

whereas for Sz
tot = 5, there are 76 states in �E � 0.06. This

indicates that the states with Sz
tot = 5 are entropically favored

over those with Sz
tot = 7. Therefore, these energy spectra lead

to the asymmetric melting of the 1/3 plateau. In contrast, at
J2 = −0.3, similar energy spectra are observed regardless of
Sz

tot = 5, 6, and 7. They all exhibit pseudo-triple-degeneracy
corresponding to the

√
3 × √

3 structure, and the excitation
energies are �E > 0.2. These energy spectra are different
from those at J2 = 0. Hence, the 1/3 plateau at J2 = −0.3
melts symmetrically.

FIG. 11. Low-energy excitation spectra of the J1 − J2 kagome
lattice with N = 36 for the states with Sz

tot = 5, 6, and 7 at (a) J2 = 0
and (b) J2 = −0.3. The horizontal bars indicate the energy gap �E .
The number of filled red circles represents the degeneracy. Note that
the vertical scales are different between (a) and (b).
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V. SUMMARY

Inspired by recent studies on the finite-temperature prop-
erties of the kagome lattice, we investigated the finite-
temperature properties of the spin-1/2 J1 − J2 kagome lattice
using OFTLM. At J2 = 0, the specific heat exhibited a mul-
tipeak structure, but as |J2| increased, the multipeak structure
transitioned into a double-peak structure. For −0.05 < J2 <

0.01, the magnetic entropy exhibited a finite value even at
low temperatures, indicating the presence of a QSL. This
range of −0.05 < J2 < 0.01 is slightly narrower than the
range of −0.1 � J2 � 0.1 in the previous studies [38–41]. In
the magnetization curve, we observed an asymmetric melting
phenomenon with a 1/3 plateau around J2 = 0. In contrast,
as |J2| increased, the 1/3 plateau melted symmetrically, ex-
hibiting apparent flatness. In the 1/3 plateau, the Q = 0 UUD
state was stabilized for J2 > 0, whereas the

√
3 × √

3 UUD
state was stabilized for J2 < 0. Contrary to the conventional

understanding that as the degeneracy of the classical ground
state increases, quantum effects become more pronounced,
leading to the emergence of a magnetization plateau, our
findings demonstrated that the 1/3 plateau stabilizes as the
degeneracy is reduced. In the future, by comparing our re-
sults with experimental data, we will be able to determine
the magnitude of J2 in spin-1/2 J1 − J2 kagome compounds
with antiferromagnetic J1. We believe that our results con-
tribute to a deeper understanding of the physics of kagome
lattices.

ACKNOWLEDGMENTS

We thank Y. Ishii, H. Yoshida, and Y. Fukumoto for useful
discussions. We also thank the Supercomputer Center, the
Institute for Solid State Physics, the University of Tokyo for
the use of the facilities.

[1] P. Lecheminant, B. Bernu, C. Lhuillier, L. Pierre, and P.
Sindzingre, Phys. Rev. B 56, 2521 (1997).

[2] C. Waldtmann, H.-U. Everts, B. Bernu, C. Lhuillier, P.
Sindzingre, P. Lechminant, and L. Pierre, Eur. Phys. J. B 2, 501
(1998).

[3] L. Balents, Nature (London) 464, 199 (2010).
[4] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
[5] S. Depenbrock, I. P. McCulloch, and U. Schollwock, Phys. Rev.

Lett. 109, 067201 (2012).
[6] Y. Ran, M. Hermele, P. A. Lee, and X. G. Wen, Phys. Rev. Lett.

98, 117205 (2007).
[7] Y. Iqbal, F. Becca, and D. Poilblanc, Phys. Rev. B 83,

100404(R) (2011).
[8] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev. B

87, 060405(R) (2013).
[9] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Phys.

Rev. X 7, 031020 (2017).
[10] J. B. Marston and C. Zeng, J. Appl. Phys. 69, 5962 (1991).
[11] R. R. P. Singh and D. A. Huse, Phys. Rev. B 76, 180407(R)

(2007).
[12] K. Hwang, Y. B. Kim, J. Yu, and K. Park, Phys. Rev. B 84,

205133 (2011).
[13] A. Honecker, J. Schulenburg, and J. Richter, J. Phys.: Condens.

Matter 16, S749 (2004).
[14] H. Nakano and T. Sakai, J. Phys. Soc. Jpn. 79, 053707 (2010).
[15] S. Capponi, O. Derzhko, A. Honecker, A. M. Lauchli, and J.

Richter, Phys. Rev. B 88, 144416 (2013).
[16] S. Nishimoto, N. Shibata, and C. Hotta, Nature Commun. 4,

2287 (2013).
[17] T. Picot, M. Ziegler, R. Orus, and D. Poilblanc, Phys. Rev. B

93, 060407(R) (2016).
[18] H. Nakano and T. Sakai, J. Phys. Soc. Jpn. 87, 063706 (2018).
[19] N. Elstner and A. P. Young, Phys. Rev. B 50, 6871 (1994).
[20] T. Shimokawa and H. Kawamura, J. Phys. Soc. Jpn. 85, 113702

(2016).
[21] J. Schnack, J. Schulenburg, and J. Richter, Phys. Rev. B 98,

094423 (2018).
[22] T. Misawa, Y. Motoyama, and Y. Yamaji, Phys. Rev. B 102,

094419 (2020).

[23] H. Schlüter, J. Richter, and J. Schnack, J. Phys. Soc. Jpn. 91,
094711 (2022).

[24] M. P. Shores, E. A. Nytko, B. M. Bartlett, and D. G. Nocera, J.
Am. Chem. Soc. 127, 13462 (2005).

[25] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-
Rivera, C. Broholm, and Y. S. Lee, Nature (London) 492, 406
(2012).

[26] K. Morita, M. Yano, T. Ono, H. Tanaka, K. Fujii, H. Uekusa, Y.
Narumi, and K. Kindo, J. Phys. Soc. Jpn. 77, 043707 (2008).

[27] T. Ono, K. Morita, M. Yano, H. Tanaka, K. Fujii, H. Uekusa, Y.
Narumi, and K. Kindo, Phys. Rev. B 79, 174407 (2009).

[28] K. Matan, T. Ono, G. Gitgeatpong, K. de Roos, P. Miao, S. Torii,
T. Kamiyama, A. Miyata, A. Matsuo, K. Kindo, S. Takeyama,
Y. Nambu, P. Piyawongwatthana, T. J. Sato, and H. Tanaka,
Phys. Rev. B 99, 224404 (2019).

[29] M. Goto, H. Ueda, C. Michioka, A. Matsuo, K. Kindo, and K.
Yoshimura, Phys. Rev. B 94, 104432 (2016).

[30] R. Shirakami, H. Ueda, H. O. Jeschke, H. Nakano, S.
Kobayashi, A. Matsuo, T. Sakai, N. Katayama, H. Sawa, K.
Kindo, C. Michioka, and K. Yoshimura, Phys. Rev. B 100,
174401 (2019).

[31] W. Sun, Y.-X. Huang, S. Nokhrin, Y. Pan, and J.-X. Mi, J. Mater.
Chem. C 4, 8772 (2016).

[32] R. Okuma, T. Yajima, D. Nishio-Hamane, T. Okubo, and Z.
Hiroi, Phys. Rev. B 95, 094427 (2017).

[33] H. Yoshida, N. Noguchi, Y. Matsushita, Y. Ishii, Y. Ihara, M.
Oda, H. Okabe, S. Yamashita, Y. Nakazawa, A. Takata, T. Kida,
Y. Narumi, and M. Hagiwara, J. Phys. Soc. Jpn. 86, 033704
(2017).

[34] R. Okuma, D. Nakamura, T. Okubo, A. Miyake, A. Matsuo,
K. Kindo, M. Tokunaga, N. Kawashima, S. Takeyama, and Z.
Hiroi, Nature Commun. 10, 1229 (2019).

[35] L. M. Volkova and D. V. Marinin, J. Phys.: Condens. Matter 33,
415801 (2021).

[36] H. K. Yoshida, J. Phys. Soc. Jpn. 91, 101003 (2022).
[37] R. Suttner, C. Platt, J. Reuther, and R. Thomale, Phys. Rev. B

89, 020408(R) (2014).
[38] S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, Phys. Rev. B

91, 075112 (2015).

184405-7

https://doi.org/10.1103/PhysRevB.56.2521
https://doi.org/10.1007/s100510050274
https://doi.org/10.1038/nature08917
https://doi.org/10.1126/science.1201080
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.98.117205
https://doi.org/10.1103/PhysRevB.83.100404
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1063/1.347830
https://doi.org/10.1103/PhysRevB.76.180407
https://doi.org/10.1103/PhysRevB.84.205133
https://doi.org/10.1088/0953-8984/16/11/025
https://doi.org/10.1143/JPSJ.79.053707
https://doi.org/10.1103/PhysRevB.88.144416
https://doi.org/10.1038/ncomms3287
https://doi.org/10.1103/PhysRevB.93.060407
https://doi.org/10.7566/JPSJ.87.063706
https://doi.org/10.1103/PhysRevB.50.6871
https://doi.org/10.7566/JPSJ.85.113702
https://doi.org/10.1103/PhysRevB.98.094423
https://doi.org/10.1103/PhysRevB.102.094419
https://doi.org/10.7566/JPSJ.91.094711
https://doi.org/10.1021/ja053891p
https://doi.org/10.1038/nature11659
https://doi.org/10.1143/JPSJ.77.043707
https://doi.org/10.1103/PhysRevB.79.174407
https://doi.org/10.1103/PhysRevB.99.224404
https://doi.org/10.1103/PhysRevB.94.104432
https://doi.org/10.1103/PhysRevB.100.174401
https://doi.org/10.1039/C6TC02399A
https://doi.org/10.1103/PhysRevB.95.094427
https://doi.org/10.7566/JPSJ.86.033704
https://doi.org/10.1038/s41467-019-09063-7
https://doi.org/10.1088/1361-648X/ac145e
https://doi.org/10.7566/JPSJ.91.101003
https://doi.org/10.1103/PhysRevB.89.020408
https://doi.org/10.1103/PhysRevB.91.075112


KATSUHIRO MORITA PHYSICAL REVIEW B 108, 184405 (2023)

[39] F. Kolley, S. Depenbrock, I. P. McCulloch, U. Schollwock, and
V. Alba, Phys. Rev. B 91, 104418 (2015).

[40] P. Prelovšek, K. Morita, T. Tohyama, and J. Herbrych, Phys.
Rev. Res. 2, 023024 (2020).

[41] Y. Iqbal, F. Ferrari, A. Chauhan, A. Parola, D. Poilblanc, and F.
Becca, Phys. Rev. B 104, 144406 (2021).

[42] K. Morita and T. Tohyama, Phys. Rev. Res. 2, 013205 (2020).
[43] K. Morita, Phys. Rev. B 105, 064428 (2022).
[44] Y. Shibata, T. Tohyama, and S. Maekawa, Phys. Rev. B 64,

054519 (2001).
[45] N. Shannon, B. Schmidt, K. Penc, and P. Thalmeier, Eur. Phys.

J. B 38, 599 (2004).
[46] I. Zerec, B. Schmidt, and P. Thalmeier, Phys. Rev. B 73, 245108

(2006).

[47] B. Schmidt, P. Thalmeier, and N. Shannon, Phys. Rev. B 76,
125113 (2007).

[48] J. Schnack and O. Wendland, Eur. Phys. J. B 78, 535 (2010).
[49] J. Schnack and C. Heesing, Eur. Phys. J. B 86, 46 (2013).
[50] O. Hanebaum and J. Schnack, Eur. Phys. J. B 87, 194 (2014).
[51] T. Munehisa, World J. Condens. Matter Phys. 7, 11 (2017).
[52] J. Schnack, J. Richter, and R. Steinigeweg, Phys. Rev. Res. 2,

013186 (2020).
[53] K. Seki and S. Yunoki, Phys. Rev. B 101, 235115 (2020).
[54] J. Schnack, J. Schulenburg, A. Honecker, and J. Richter, Phys.

Rev. Lett. 125, 117207 (2020).
[55] J. Richter, O. Derzhko, and J. Schnack, Phys. Rev. B 105,

144427 (2022).
[56] J. Richter and J. Schnack, Phys. Rev. B 107, 245115 (2023).

184405-8

https://doi.org/10.1103/PhysRevB.91.104418
https://doi.org/10.1103/PhysRevResearch.2.023024
https://doi.org/10.1103/PhysRevB.104.144406
https://doi.org/10.1103/PhysRevResearch.2.013205
https://doi.org/10.1103/PhysRevB.105.064428
https://doi.org/10.1103/PhysRevB.64.054519
https://doi.org/10.1140/epjb/e2004-00156-3
https://doi.org/10.1103/PhysRevB.73.245108
https://doi.org/10.1103/PhysRevB.76.125113
https://doi.org/10.1140/epjb/e2010-10713-8
https://doi.org/10.1140/epjb/e2012-30546-7
https://doi.org/10.1140/epjb/e2014-50360-5
https://doi.org/10.4236/wjcmp.2017.71002
https://doi.org/10.1103/PhysRevResearch.2.013186
https://doi.org/10.1103/PhysRevB.101.235115
https://doi.org/10.1103/PhysRevLett.125.117207
https://doi.org/10.1103/PhysRevB.105.144427
https://doi.org/10.1103/PhysRevB.107.245115

