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Ultrafast control of the crystal structure in a topological charge-density-wave material
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The optical control of crystal structures is a promising route to change physical properties including the
topological nature of a targeting material. Time-resolved x-ray diffraction measurements using an x-ray free-
electron laser are performed to study the ultrafast lattice dynamics of VTe2, which is known to possess a
unique charge-density-wave (CDW) ordering coupled to the topological surface states as a first-order phase
transition. A significant oscillation of the CDW amplitude mode is observed at a superlattice reflection as
well as Bragg reflections. The frequency of the oscillation is independent of the fluence of the pumping laser,
which is prominent in the CDW ordering of the first-order phase transition. Furthermore, the timescale of the
photoinduced 1T ′′ to 1T phase transition is not equal to the half period of the CDW amplitude mode, which is
typically the case for Peierls insulators.

DOI: 10.1103/PhysRevB.108.184305

I. INTRODUCTION

Engineering crystal structures is one of the direct ways
to change the electronic, optical, and mechanical properties
in solid state materials. Many techniques of structural con-
trol have been developed including strain [1], nanostructuring
[2], heterostructure layer stacking [3], and twistronics [4,5].
While these approaches are very powerful, investigations are
limited to equilibrium states, where all the degrees of freedom
are thermally balanced. On the other hand, a combination of
photoexcitation by ultrafast pulse lasers and various probing
techniques has enabled us to study nonequilibrium states,
where a specific subsystem is selectively excited, by which
many exotic phenomena have been reported [6]. Ultrafast
optical pulses have also served as powerful tools to engineer
crystal structures, by which a variety of phases, including su-
perconductivity [7,8], ferroelectricity [9,10], and magnetism
[11], have been found to emerge.

Recently, controlling the topological properties of a ma-
terial by light has attracted enormous interest because
a topological insulator has robust metallic surface states
against impurities or disorder [12,13], which is preferable
for optical switching. While many approaches to ultrafast
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topological control have been demonstrated by Floquet en-
gineering [14–17], controlling crystal structures with light
has also been employed to manipulate topological properties
[18,19]. This methodology is also applicable to charge-
density-wave (CDW) materials having topological properties.
A great advantage of using CDW materials is the feasibility
of flexibly tuning their properties by external stimuli such
as physical [20,21] or chemical pressure [22,23], and electric
[24–26] or magnetic fields [27].

For the optical control of CDW materials, many studies
have been reported mainly in the context of collective-
mode excitations or photoinduced phase transitions. Since
a CDW phase is a coupled phase between the charge and
lattice, multiple ultrafast probing techniques have been em-
ployed to track different degrees of freedom, including optical
pump-probe spectroscopy [28–30], time- and angle-resolved
photoemission spectroscopy (TARPES) [31–34], ultrafast
electron diffraction (UED) [35–38], and time-resolved x-ray
diffraction (TRXRD) [39–43]. These reports have highlighted
second-order CDW phase transition systems except for 1T -
TaS2. On the other hand, a specific phase is preserved against
the external turbulence within the threshold in a first-order
phase transition. Such a robustness of the phase is a great
advantage over a second-order phase transition, especially for
the application of ultrafast devices such as an optical switch or
memory medium. In terms of fundamental physics, the kinet-
ics of first-order photoinduced phase transitions shows many
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FIG. 1. (a) Crystal structure of VTe2. Above the phase transition
temperature of 480 K, VTe2 displays a 1T (P3m1) structure while
below 480 K it shows a 1T ′′ (C2/m) structure. The double-zigzag
bonds of the V atoms in the 1T ′′ phase are shown as dashed black
lines and a unit cell for each phase is shown as a solid blue box.
(b) Schematic illustration of the time-resolved x-ray diffraction mea-
surement. The delay time between the near-infrared (NIR) pump and
the hard x-ray probe is shown as �t . The diffracted signal is detected
by a multiport charge-coupled device (MPCCD).

attractive phenomena such as nucleation [44] or percolative
dynamics [45]. Thus, it is highly desired to study in detail the
dynamical features of a first-order photoinduced CDW phase
transition system having intriguing profiles.

In this paper, we report ultrafast lattice dynamics in VTe2,
which has a first-order CDW phase transition and the topolog-
ical surface states coupled to the CDW phase, by performing
the measurements of TRXRD using an x-ray free-electron
laser (XFEL). We directly observe the CDW amplitude mode
in VTe2 as a significant temporal oscillation, 1.5 THz in fre-
quency, of a superlattice reflection. We further study CDW
melting dynamics by the pump-fluence-dependent measure-
ments. Through the fitting analysis, we successfully reveal
the distinctive features of a first-order CDW phase transition.
They are quite different from many other CDW materials of
second-order phase transitions. Our findings provide detailed
guidelines for the crystal structure control of first-order CDW
materials and an important step towards the manipulation of
topological surface states.

II. EXPERIMENTAL METHODS

Figure 1(a) shows the crystal structure of VTe2 in the 1T
(P3m1, No. 164 trigonal) metallic and 1T ′′ (C2/m, No. 12
monoclinic) CDW phases, where a unit cell for each phase is
shown as a solid blue box. With lowering temperature, VTe2

displays the CDW phase transition at 480 K, accompanied by
the formation of a 3 × 1 × 3 superstructure characterized by
the double-zigzag chain structure for the V atoms along the
b direction, shown as dashed black lines in Fig. 1(a) [46].

One of the most striking signatures is the significantly large
contraction of the V-V bonds (∼9.1% [46]), which is larger
than the Ta-Ta bonds in the well-known CDW material 1T -
TaS2 (∼7.0% [47]). The hysteresis of resistivity in VTe2 [48]
also confirms that this CDW transition in VTe2 is of first order.
Furthermore, a recent study of angle-resolved photoemission
spectroscopy revealed an intimate relationship between the
topological surface states and CDW order [49], where two of
three Dirac surface states at the boundary of the first Brillouin
zone in the 1T metallic phase were found to disappear in
the 1T ′′ CDW phase. For the CDW melting dynamics, UED
measurements were performed to directly observe the lattice
dynamics and acoustic phonons of VTe2 [50,51]. However,
due to the limitation of the time resolution of ∼2 ps, the initial
dynamics of the CDW melting has remained uncovered. The
optical pump-probe measurements with a sufficient time res-
olution were performed to observe multiple coherent phonons
[52,53] while direct insight into the lattice dynamics is still
missing.

To directly track the lattice dynamics with a high tem-
poral resolution, we perform the measurements of TRXRD
at BL3 of the XFEL facility, SPring-8 Angstrom Compact
free-electron LAser (SACLA) [54] as schematically shown
in Fig. 1(b). The details of the experimental setup and bulk
sample preparation are given in the Supplemental Material
[55]. To minimize the penetration-length mismatch between
the NIR pump and x-ray probe (23 nm [52] and ∼10 µm,
respectively, for VTe2), we prepared the samples with a thick-
ness of ∼40 nm using mechanical exfoliation by transparent
adhesive tape and dry transfer onto a Si3N4 membrane [55].
The thickness of the sample was measured by both atomic
force microscopy and acoustic wave measurements [55]. The
integrated intensity of the diffracted image Ihkl is given by
the structure factor Fhkl as expressed by Ihkl ∝ |Fhkl |2, and the
structure factor is determined by atomic positions in a unit cell
as

Fhkl =
∑

n

fn exp (iGhkl · rn), (1)

where hkl is the Bragg reflection index, fn is the atomic form
factor of the nth atom, Ghkl is the reciprocal vector, and rn is
the atomic position of the nth atom. For the Bragg reflection
indices in the main text, we use a practical monoclinic lat-
tice [51,55]. The changes in the diffraction angle of Bragg
reflections reflect the changes in the lattice constants [62]
while the changes in the diffraction intensity reflect the atomic
displacements inside the unit cell.

III. RESULTS AND DISCUSSIONS

Figure 2(a) shows the time dependence of the superlattice
reflection intensity I 2

3 0 11
3

obtained with a low pump fluence

of 0.8 mJ/cm2. One can clearly see a significant oscillation.
The superlattice reflection only manifests in the 1T ′′ phase
and is structurally forbidden in the 1T phase, and thus its
structure factor is determined by the extent of the Peierls
distortion x. More specifically, the leading term of F2

3 0 11
3

is
proportional to x [63], and that of I 2

3 0 11
3

is proportional to

|x|2. Therefore, the modulation of the superlattice reflection
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FIG. 2. (a)–(c) Time-dependent I 2
3 0 11

3
, I205, and I004, at pump flu-

ences of 0.8, 1.2, and 1.0 mJ/cm2, respectively. The data are shown
as marks and the smoothing lines (smth) are shown as solid black
lines. (d) Oscillatory components of (a)–(c) deduced by subtracting
smoothing lines from data. (e) Power spectra of the oscillatory com-
ponents (d).

intensity can be attributed to the excitation of the CDW
amplitude mode. Several previous studies using TRXRD on
other CDW materials also linked the oscillation of superlat-
tice reflections to the CDW amplitude modes [40,42,43]. To
further confirm this assignment, we also measure the Bragg
reflection intensities of I205 and I004 as shown in Figs. 2(b)
and 2(c). For both reflections, oscillations can be recognized.
To deduce the oscillatory components, we subtract the back-
grounds given by the smoothed lines shown as the solid black
lines in Figs. 2(a)–2(c). The subtracted data are shown in
Fig. 2(d). Interestingly, the oscillation phases of the Bragg
reflections are opposite to that of the superlattice reflection,
i.e., while the I 2

3 0 11
3

decreases in the first quarter cycle, the I205

and I004 increase. Fourier transforms are performed for the
subtracted data and the power spectra are shown in Fig. 2(e).
One can find a single-peak structure at 1.5 THz in all the
diffraction intensities. This frequency corresponds to fAM in
Eq. (3) discussed later.

To understand the opposite oscillation phase between the
superlattice and Bragg reflections, we consider the origin of
the intensity modulation of the Bragg reflections in terms of
the structure factors. While it is assumed that the photoin-
duced phase cannot be simply expressed using the structures
of 1T and 1T ′′ phases, here we approximate the structure
factor in the photoinduced phase as the superposition of F1T

and F1T ′′ . F205 and F004 are calculated from Eq. (1) for both
the 1T and 1T ′′ phases [55], and shown in Table I. Both |F205|
and |F004| for the 1T phase are larger than those for the 1T ′′
phase. This is consistent with the increasing behavior in the
first quarter cycle and further supports the assignment of the
CDW amplitude mode. We note that the 1.5 THz coherent

TABLE I. Structure factors of VTe2 for 1T and 1T ′′ phases.

F1T ′′ F1T I1T /I1T ′′

205 282 + 39i 410 + 58i 2.12
004 363 + 45i 516 + 65i 2.02

phonon was also confirmed by a previous optical pump-probe
measurement [52].

In order to investigate the CDW melting dynamics in VTe2,
we perform the measurements with a higher pump fluence.
Figure 3(a) shows the fluence-dependent dynamics of I 2

3 0 11
3

.
While the CDW amplitude mode is clearly observed at low
fluences, it becomes strikingly suppressed with increasing
fluence. Furthermore, the intensity drops immediately after
the pump excitation increases, to one-tenth of the initial value
at the highest fluence, which corresponds to the modulation
from a structure of the 1T ′′ CDW phase to that close to the
1T metallic phase. Figure 3(b) schematically shows these
observations in terms of lattice dynamics in real space. Un-
der low fluences, the V atoms smoothly oscillate with small
displacements to new stable positions, the same mechanism
as the displacive excitation of coherent phonons (DECP) [64].
Under high fluences, on the other hand, the V atoms are
largely displaced from their original positions while the damp-
ing is strong enough to prevent multicycle oscillations. At a
large delay time of 3–4 ps, the intensity decreases with pump
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FIG. 3. (a) Fluence-dependent dynamics of I 2
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3
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are indicated in each panel. The data are shown as markers and the
total fits are shown as solid black lines. The fits are composed of I1(t )
and I2(t ), and they are shown as dashed gray and dotted gray lines, re-
spectively. (b) Schematic illustration of the fluence-dependent CDW
amplitude mode. (c) Averaged intensity at �t = 3–4 ps, ISlow, as a
function of pump fluence F .
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FIG. 4. (a) Schematic picture of the energy potential and dy-
namics after photoexcitation in a first-order phase transition system.
(b) Schematic illustration of the two-component distribution of the
excitation along the depth direction. Regions 1 and 2 are the pho-
toinduced metallic and CDW phases, respectively. (c) Summary of
the fitting parameters as a function of pump fluence. The dashed lines
are linear fits at low and high fluences.

fluence and does not recover to the original value. To show this
behavior more clearly, we plot the corresponding values of
the intensity as a function of pump fluence in Fig. 3(c). Here,
ISlow represents the averaged intensity during �t = 3–4 ps.
ISlow decreases almost monotonically but slightly nonlinearly
with pump fluence. To highlight this behavior, we linearly fit
the data at the low (<1.5 mJ/cm2) and high fluences (�2.5
mJ/cm2) and these lines are found to cross each other at 1.9
mJ/cm2. This value implies the threshold fluence of the CDW
melting, and we intensively discuss the melting dynamics in
the following.

As we mentioned, VTe2 is a first-order CDW phase transi-
tion material as 1T -TaS2. The photoinduced phase transition,
then, can be pictured by the Landau potential for the first-order
phase transition shown in Fig. 4(a) [65]. Furthermore, the
boundary between the 1T ′′ CDW and 1T metallic phases is
rather well separated by a so-called phase boundary, so thus
we assume the superlattice reflections during the photoin-
duced phase transition can be approximated as two spatially
separate components. Due to the attenuation of pump excita-
tion, the photoinduced 1T phase is triggered in a shallower
region from the surface (region 1) while the CDW phase
remains in a deeper region from the surface (region 2).
Figure 4(b) schematically shows this situation, where the in-
cident pump fluence at the surface is denoted as F0 and the
threshold pump fluence for the CDW melting is denoted as

Fth, which is estimated to be 1.9 mJ/cm2 from Fig. 3(c). This
value nearly agrees with the previous study of 1.21 mJ/cm2

[52]. In general, photoinduced states are not necessarily the
same as the equilibrium states as shown in previous stud-
ies [66]. These states are sometimes called “hidden” states.
However, our data obtained by time-resolved x-ray diffraction
measurements can be mostly explained by the superposition
of equilibrium states. The residuals of the fits are due to the
limitation of our treatments.

We use the phenomenological two-component model com-
posed of I1(t ) and I2(t ) for the intensity of superlattice
reflections from regions 1 and 2, respectively, shown below,
in the same manner as previous work on 1T -TaS2 [41],

I1(t ) = 1

2

(
1 + cos

πt

Ts

)
, 0 < t < Ts, (2)

I2(t ) = (1 + Ad [cos(2π fAMt )e−t/τAM − e−t/τd ])2. (3)

I1(t ) is a sigmoid-shaped function, where Ts is the CDW
melting time. I2(t ) stands for the square of the atomic dis-
placement for DECP dynamics. Ad , fAM, and τAM are the
amplitude, frequency, and decay constant for the CDW am-
plitude modes, respectively, τd is the relaxation time back
to the initial potential for region 2. We fit our experimental
data by ITotal(t ) = rI1(t ) + (1 − r)I2(t ), where r is the volume
fraction of region 1.

The total fitting results are shown as solid black lines in
Fig. 3(a), where I1(t ) and I2(t ) are shown as dashed and dotted
gray lines, respectively. Figure 4(c) shows the results of the fit-
ting parameters. As for the parameters for I2(t ), Ad increases,
and τAM decreases with increasing fluence, corresponding to
the large displacement and stronger damping schematically
shown in Fig. 3(b). The relaxation time τd does not change
noticeably. The small change of fAM is a quite remarkable
behavior and a stark difference from the CDW materials of
the second-order phase transitions [30,34,40,42,43], where
significant changes in fAM as a function of pump fluence have
been reported such as the dynamical slowing-down [67] or
the overshooting behavior [40]. These observations have been
explained in terms of dynamics on the “Mexican-hat” poten-
tial in second-order phase transitions. Thus our observation of
fAM clearly marks the robust curvature of potential below the
threshold in the first-order case [Fig. 4(a)].

As for the parameters for I1(t ), Ts decreases with fluence,
and is not equal to the half period (∼0.3 ps) of the CDW
amplitude mode of 1.5 THz. This is in stark contrast to the
previous UED work on a Peierls insulator, where the periodic
lattice distortion is suppressed on a timescale comparable to
half the period of the corresponding collective mode [35].
Afterwords, Hellmann et al. performed TARPES measure-
ments on a Peierls insulator and reported that the melting
time for the insulating gap was half the period of the CDW
amplitude mode [33]. On the other hand, more recent work on
1T -TaS2 reported that the CDW melting time is not equal to
half the period of the CDW amplitude mode [41], which is the
same conclusion as our current work. With further increasing
the fluence to 4.9 mJ/cm2, Ts significantly decreases. This
behavior is intuitively understood by considering the steeper
gradient of the potential with the higher fluence shown in
Fig. 4(a). Although the microscopic mechanism determining
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the CDW melting time is still elusive, we can stress that
it is not simply determined by the CDW amplitude mode.
Further considerations of dynamical electron-electron and
electron-phonon interactions should be crucial for a deeper
understanding, because these intertwined interactions are ex-
pected to play an important role especially for materials such
as 1T -TaS2 and VTe2. Lastly, the volume fraction of region
1, r, increases with pump fluence and shows a threshold-
like behavior at 1.8 mJ/cm2 from the linear fits at the low
(<1 mJ/cm2) and high fluences (�2.5 mJ/cm2) shown as
dashed lines in Fig. 4(c), in close agreement with the value
estimated in Fig. 3(c). We show the results at full scale with
the errors in Fig. S8 [55]. Much larger values of Ts in the low
fluence regime than those in the high fluence regime indicate
that the photoinduced phase transition does not completely
occur below the threshold fluence.

IV. SUMMARY

In summary, we investigated the CDW amplitude-mode
excitations and melting dynamics in VTe2. The characteristic
behaviors of the first-order phase transition were revealed and
our work provides valuable insight into the dynamical con-
trol of first-order CDW materials. Moreover, the topological
surface states controlled via the CDW phase in VTe2 can be
potentially implemented as an ultrafast surface state switching
mechanism in technological applications.
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