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Topological transitions in dissipatively coupled Su-Schrieffer-Heeger models
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Non-Hermitian topological phenomena have gained much interest among physicists in recent years. In this
paper, we expound on the physics of dissipatively coupled Su-Schrieffer-Heeger (SSH) lattices, specifically in
systems with bosonic and electrical constituents. In the context of electrical circuits, we demonstrate that a series
of resistively coupled LCR circuits mimics the topology of a dissipatively coupled SSH model. In addition,
we propose a scheme to construct dissipatively coupled SSH lattices involving a set of noninteracting bosonic
oscillators weakly coupled to engineered reservoirs of modes possessing substantially small lifetimes when
compared to other system timescales. Further, by activating the coherent coupling between bosonic oscillators,
we elucidate the emergence of nonreciprocal dissipative coupling, which can be controlled by the phase of
the coherent interaction strength precipitating in phase-dependent topological transitions and skin effect. Our
analyses are generic, apropos of a large class of systems involving, for instance, optical and microwave settings,
while the circuit implementation represents the most straightforward of them.
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I. INTRODUCTION

One of the prime objectives of research in condensed mat-
ter physics is the characterization of matter phases earmarked
by the (spontaneous breaking of) symmetries of the system
under consideration. In this context, the discovery of the quan-
tum Hall effect marked a stark shift in the understanding of
phases by introducing the concept of topological order and
thereby spawning the field of topological insulators [1–3].
This was subsequently realized on a variety of different plat-
forms, including photonic [4], cold atomic systems [5], and
many more [6–8]. One of the key features of the topological
classification of phases is the bulk boundary correspondence
(BBC) and the emergence of edge and surface states that are
impervious to environmental loss and disorder with applica-
tions ranging from the realization of topological qubits [9–13]
to lasing [14–17] among others [18–25].

Until recently, the lion’s share of research on the physics
of topological systems involved Hermitian models. How-
ever, real physical systems interact with their environment
resulting in open quantum dynamics [26] and effective non-
Hermitian Hamiltonians. In the last few years, the topology
of non-Hermitian lattice systems has been a subject of in-
tense research activity [27,28], unraveling some exciting new
physics, for example, the breakdown of BBC and skin effect
[29–39]. A quintessential model in the study of topological
physics is the Su-Schrieffer-Heeger (SSH) model [40–44] and
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several non-Hermitian extensions of the model have been
considered in literature [45–49]. For instance, [47,48,50] con-
sidered PT -symmetric extensions of the SSH model, which
can be engineered by the incorporation gain into the system.
While lattice models with gain and loss have been studied
in Refs. [51–53], we note that non-Hermiticity can also be
introduced via introducing asymmetric left and right hopping
rates [31,32,34,54,55]. However, the physics of lattice models
with a purely dissipative form of coupling [56,57] between
the constituents is largely unplumbed. Dissipative coupling
between two otherwise noninteracting systems emanates from
their decay into common dissipative channels [58]. In an early
work [26] it was shown quite generally that many systems
interacting with a common bath exhibit both dissipative and
dispersive couplings [59]. In another study [60], a more gen-
eral form of dissipative coupling was derived for a system
interacting with a bath possessing phase-sensitive correlations
[61]. It is worth noting that dissipative couplings are more
prevalent in nature compared to their coherent counterparts.
Such couplings have been investigated both theoretically and
experimentally in a multitude of settings [59,61–66], for ex-
ample, involving magnonic and photonic subsystems [67–71].

In this work, we focus on the physics of dissipatively
coupled SSH models. In particular, we demonstrate two dis-
tinct experimentally realizable schemes involving bosonic and
electrical subsystems. We show that a system of resistively
coupled LCR resonators mimics the topology of dissipatively
coupled SSH (DSSH) models. Subsequently, we illustrate
that a lattice of otherwise noninteracting bosonic oscillators
interacting with engineered reservoirs of modes having sig-
nificantly large decay parameters compared to other system
parameters can be described by an effective non-Hermitian
Hamiltonian akin to the DSSH model. Furthermore, by
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FIG. 1. Schematic of the system described by Eqs. (1)–(2) and
Eq. (7) under open and periodic boundary conditions.

triggering the coherent coupling between the oscillators, we
outline the generation of nonreciprocal coupling in DSSH
models featuring topological transitions that can be controlled
by the phase of the coherent interaction strength. Note, en pas-
sant, the generality of our results grant an immediate experi-
mental realization of the protocols discussed in the subsequent
sections, especially in the microwave and optical domains.

This paper is organized as follows. In Sec. II, we revisit the
SSH model with coherent couplings followed by a discussion
of its dissipative counterpart in Sec. III. Subsequently, we de-
lineate two independent schemes comprised of electrical and
bosonic constituents for the realization of the DSSH model in
Sec. IV. In Sec. V, we feature a protocol for the realization
of DSSH model with nonreciprocal couplings through the
application of a coherent form interaction between bosonic
oscillators, translating into topological transitions and skin
effect. Finally, we conclude our results in Sec. VI.

II. KEY FEATURES OF THE SSH MODEL

We begin by revisiting the SSH model coherently coupled
unit cells. To this end, consider a one-dimensional (1D) lat-
tice of two different types of sites, A and B with staggered
nearest-neighbor couplings as depicted in Fig. 1. The inter-
action Hamiltonian of the system subject to open boundary
conditions (OBC) is given by

H =
N∑

i=1

t1|Ai〉〈Bi| +
N−1∑
i=1

t2|Ai+1〉〈Bi| + H.c., (1)

where N denotes the number of unit cells, |Ai〉, |Bi〉 charac-
terize the particle excitation at their respective location while
t1 and t2 ∈ R are the intra- and intercellular couplings, re-
spectively. Equivalently, we can write the SSH Hamiltonian
subject to periodic boundary conditions (PBC) as

H =
N∑

i=1

t1|Ai〉〈Bi| +
N∑

i=1

t2|A f (i)〉〈Bi| + H.c., (2)

where f (i) = i + 1 mod N . Invoking the Bloch theorem, the
Hamiltonian under PBC can be recast in the Fourier domain
in terms of the Bloch Hamiltonian provided by

Hk =
(

0 R(k)e−iφ(k)

R(k)eiφ(k) 0

)
, (3)

FIG. 2. (a) The eigenvalues of the Hermitian SSH model de-
scribed by Eqs. (1)–(2) under periodic (green) and open (blue)
boundary conditions. (b) The imaginary part of the eigenvalues of the
dissipative SSH model described by Eq. (7) under periodic (green)
and open (blue) boundary conditions and the number of unit cells
N = 25 and the effective damping �R = γ + �1 + �2 and γ = 3.

where k = 2πn
N , m ∈ {1, 2, . . . , N}, R(k) =√

t2
1 + t2

2 + 2t1t2 cos (k), the phase φ(k) = arctan( t2 sin k
t1+t2 cos k )

and we set the intercellular spacing a = 1. Note that
the Hermitian matrix Hk is chiral symmetric, that is
σzHkσz = −Hk precipitating in symmetric eigenvalues
E± = ±R(k) and corresponding eigenstates

|E±, k〉 = 1√
2

( ±1
eiφ(k)

)
. (4)

Palpably, the gap between the energy eigenvalues vanishes at
k = π and t1 = t2 as demonstrated in Fig. 2(a). In contrast,
the Hamiltonian under OBC described by Eq. (1) supports
two zero-energy eigenvalues in the large N limit for | t1

t2
| < 1,

eliciting the well-known edge modes of the SSH model, a
testament to the nontrivial topology of the system. In addi-
tion, one can define a topological invariant, viz, the winding
number ν± defined in terms of the Berry connection A±(k) =
i〈E±, k|∂k|E±, k〉 as

ν± = 1

π

∮
A±(k)dk. (5)

For instance, ν+ calculated from Eq. (4) and Eq. (5) satisfies

ν+ =
⎧⎨
⎩

1 if
∣∣∣ t1

t2

∣∣∣ < 1

0 if
∣∣∣ t1

t2

∣∣∣ > 1
. (6)

A nonzero winding number ν± is a direct manifestation
of the nontrivial topology of the system demonstrating 2|ν±|
number of edge modes and t1 = t2, the point of vanishing gap
between bulk energy bands demarcates the boundary between
the two phases. This is known as the bulk boundary correspon-
dence (BBC) in Hermitian lattice systems. It is worth noting
that coherent coupling between systems emanates from the
spatial overlap between their respective modes. By contrast,
dissipatively coupled systems with a non-Hermitian form of
interaction are prevalent in nature. In essence, any two sys-
tems interacting with a common intermediary channel will
spawn a dissipative form coupling. In the following, we will
discuss the general properties of dissipatively coupled SSH
models.
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III. DISSIPATIVELY COUPLED SSH (DSSH) MODEL

Consider a 1D lattice of sites A and B coupled dissipatively
as depicted in Fig. 1. This is analogous to the Hermitian SSH
model, except for a notable difference in the off-diagonal
elements, wherein, the real couplings t1 and t2 are now re-
placed by purely imaginary numbers leading to an effective
non-Hermitian Hamiltonian given by

H = −
N∑

i=1

((	1 − i�R)|Ai〉〈Ai| + (	2 − i�R)|Bi〉〈Bi|)

+
N∑

i=1

i�1|Ai〉〈Bi| +
N−1∑
i=1

i�2|Ai+1〉〈Bi|

+
N∑

i=1

i�1|Bi〉〈Ai| +
N−1∑
i=1

i�2|Bi〉〈Ai+1|, (7)

where �R = γ + �1 + �2 denotes the effective damping con-
stant corresponding to Ai and Bi and we assume modes Ai and
Bi decay at the same rate γ . The emergence of an effective
Hamiltonian describing the above equation from considera-
tions of a real-space Hermitian system will be explicated in
subsequent sections. For simplicity, we set 	1 = 	2 = 0. The
effective Bloch Hamiltonian under PBC is provided by

H(k) =
(

−i�R i�1 + i�2e−ik

i�1 + i�2eik −i�R

)
, (8)

with eigenvalues E± = −i�R ± i
√

�2
1 + �2

2 + 2�1�2 cos k
where k = 2πn

N , the parameters � j , j ∈ {1, 2} are the absolute
value of the strength of dissipative coupling and we have
set the diagonal elements to be identical. Owing to the non-
Hermitian nature of the system, the right eigenvectors and
their dual left eigenvector basis of H(k) are, in general, not
identical. Let |R±, k〉 and |L±, k〉 be the biorthogonal right and
left eigenvectors, respectively, of H(k) defined by

H(k)|R±, k〉 = E±|R±, k〉
H†(k)|L±, k〉 = E∗

±|L±, k〉, (9)

such that 〈Lm, k|Rn, k〉 = δm,n where m, n ∈ {+,−} and δm,n

is the Kronecker delta. Interestingly, H(k) is anti-Hermitian,
i.e., H†(k) = −H(k). As a result, the biorthogonal eigenvec-
tors have the property

|R±, k〉 = |L±, k〉 = 1√
2

(
1

±ieiφ(k)

)
, (10)

where φ(k) = − arctan( �1+�2 cos k
�2 sin k ). Subsequently, one can

define the Berry connection involving the biorthogonal eigen-
vectors as A±(k) = i〈L±, k|∂k|R±, k〉 and analogous to the
Eq. (5) of coherently coupled SSH model, the system is
topological with ν+ = 1 for |�2| > |�1|. Note, en passant,
the constant diagonal decay is irrelevant for topological con-
siderations. An interesting consequence of non-Hermiticity
is the breakdown of BBC. In other words, the parameters
corresponding to the energy gap closing in a non-Hermitian
Bloch Hamiltonian do not, in general, signify the boundary
between topological and trivial phases. On the contrary, owing
to the anti-Hermitian nature of H(k), the dissipatively coupled

system described in Fig. 1 follows BBC. In Fig. 2(b), we
plot the eigenvalues of the system under PBC and OBC and
when |�1

�2
| < 1, it displays the conspicuous emergence of two

distinct eigenvalues corresponding to the edge modes flanked
on either side by the bulk modes. Not surprisingly, this is
exactly the point of the vanishing energy gap between the
Bloch modes corroborating BBC.

Role of real diagonal terms in DSSH. Consider now the
scenario 	1 = −	2 = 	. The Bloch Hamiltonian under PBC
modifies to

Hk =
(

	 − i�R h(k)
−h∗(k) −	 − i�R

)
, (11)

where h(k) = i�1 + i�2e−ik . Observe that the effective mo-
mentum space Hamiltonian is anti-PT symmetric, in other
words, (P̂T )Hk (P̂T ) = −Hk . We may rewrite h(k) = Bx −
iBy, where Bx = �2 sin(k) and By = −[�1 + �2 cos(k)] are
pseudomagnetic fields providing an analogy to spin-half par-
ticles interacting with magnetic fields. When discussing the
topological properties of the system, the constant diagonal
term −i�R is irrelevant. The eigenvalues of the system,
ignoring −i�R are given by E± = ±

√
	̄2 − (B2

x + B2
y ) for

|	̄| > |h(k)| and E± = ±i
√

B2
x + B2

y − 	̄2 for |	̄| < |h(k)|.
Here, we focus on the region where |	̄| < |h(k)| and use
the parametrization 	̄

R = sinh(θ ), Bx
R = cosh(θ ) cos(φ), By

R =
cosh(θ ) sin(φ), where R =

√
B2

x + B2
y − 	̄2 to obtain the

right and left eigenvectors of the eigenvalue λ+ as

|R+〉 = 1√
2[1 + i sinh(θ )]

(
−i cosh(θ )e−iφ

1 + i sinh(θ )

)
(12)

|L+〉 = 1√
2[1 + i sinh(θ )]

(
−i cosh(θ )e−iφ

1 − i sinh(θ )

)
. (13)

The Berry connection of the system is defined as A+(k) =
i〈L+|∂k|R+〉. Utilizing the parametrization discussed above,
we can recast the Berry connection as A(k) = (∂kφ)A(φ) +
(∂kθ )A(θ ). If we consider, for example, a trajectory in the
θ -φ space, wherein, ∂kθ = 0, the Berry connection is given
by A(k) = 1

2 (1 − i sinh(θ )∂kφ. Note, when θ = 0, the equa-
tion for winding number

ν+ = 1

π

∮
A+(k)dk, (14)

morphs into Eq. (5) and the system is topological with ν+ = 1
for |�2| > |�1|. More precisely, the anti-PT -symmetric sys-
tem demonstrates partial topological phases for trajectories
where ∂kθ = 0, wherein, the real part of the winding numbers
mimics the topology of a Hermitian SSH model. It is worth
noting that the Hamiltonian Hk is not chiral symmetric, in
other words σzHkσz �= −Hk . In the following section, we
provide two experimentally realizable protocols to engineer
DSSH model.

IV. REALIZATION OF THE DISSIPATIVE SSH MODEL

Circuit model. In this section, we provide a circuit model
to construct the DSSH model employing an electrical circuit
involving coupled amplifying LRC resonators connected in
parallel through a coupling resistor as depicted in Fig. 3. Upon
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FIG. 3. Circuit model consisting of resistively coupled LCR
resonators for the realization of dissipatively coupled SSH model
resulting in the dynamics described by Eq. (15).

solving for Kirchhoff’s equations of motion for voltages, we
obtain

V̈n + ω2
1Vn + (γ1 + �1 + �2)Vn = �1

˙̄Vn + �2
˙̄Vn−1

¨̄Vn + ω2
2V̄n + (γ2 + �1 + �2)V̄n = �1V̇n + �2V̇n+1. (15)

Here, ω1 = 1/
√

L1C1, ω2 = 1/
√

L2C2, �1 = 1
Rc1C1

, �2 =
1

Rc2C2
, γi = 1

RiCi
, and L1,2, Rc, C1,2 are, respectively, inductance,

the two coupling resistances, capacitance of the constituent
elements in the unit cell and we assume C1 = C2. Note,
en passant, the constants �1 and �2 represent the intra-
and intercellular couplings in the lattice. In the weak cou-
pling and small detunings regime, that is, when {�1, �2} �
{ω1, ω2} and |ω1 − ω2| � ω1+ω2

2 , we can reduce the above
equations by using the slowly varying envelope functions
vn(t ), v̄n(t ), such that

Vn(t ) = vn(t )e−iω0(t ) + c.c.

2

V̄n(t ) = v̄n(t )e−iω0(t ) + c.c.

2
, (16)

where ω0 = ω1+ω2
2 . Employing Eq. (16), the dynamics of the

envelope functions are obtained as

v̇n = −i
	̄ − i(γ1 + �1 + �2)

2
vn + �1

2
v̄n + �2

2
v̄n−1

˙̄vn = i
	̄ + i(γ2 + �1 + �2)

2
v̄n + �1

2
vn + �2

2
vn+1, (17)

with 	̄ = ω1−ω2
2 . We assume propagating solutions for the

sublattice elements, that is,

vn =
∑

k

vk,ωei(kn−ωt ) + c.c.

v̄n =
∑

k

v̄k,ωei(kn−ωt ) + c.c., (18)

where k is the wave vector and the lattice constant is taken to
be unit. Substituting Eq. (18) into Eq. (17), we arrive at the
eigenvalue equation (Hk − ω)X = 0, where X T =[ vk,ω v̄k,ω]
and

Hk =
(

	̄ − i(γ1 + �1 + �2) i
(

�1
2 + �2

2 e−ik
)

i
(

�1
2 + �2

2 e−ik
) −	̄ − i(γ2 + �1 + �2)

)
.

(19)

FIG. 4. Schematic of the coupled oscillator system described
by the Hamiltonian in Eq. (20) comprising of a bath of oscillators
coupled with a system of otherwise noninteracting bosonic modes.
The red spheres of bath-1 (bath-2) denote the modes ai (di) beginning
on the left from a1 (d0). The green (blue) spheres represent the modes
bi (ci) beginning on the left from b1 (c1).

The Hamiltonian Hk is equivalent to Hk . In other words, the
circuit lattice is topologically equivalent to a dissipatively
coupled SSH model.

Photonic systems. We begin by considering the following
generic Hamiltonian comprising of a chain of coherently cou-
pled bosonic sublattice elements ai, bi, ci, and di under OBC
as depicted in Fig. 4.

H/h̄ =
N∑

i=1

ωb,ib
†
i bi +

N∑
i=1

ωc,ic
†
i ci +

N∑
i=1

ωa,ia
†
i ai

+
N∑

i=0

ωd,id
†
i di +

N∑
i=1

[g1b†
i (ai + di−1) + h.c]

+
N∑

i=1

[g2c†
i (ai + di ) + H.c.] (20)

Here, ωx,i characterizes the resonance frequencies of the
modes xi, where x ∈ {a, b, c, d} and g1, g2 ∈ R are the
strength of dispersive coupling between the modes. We as-
sume that all the modes bi and ci decay at approximately
the same rate γ whereas the modes ai and di decay at rates
κ1 and κ2, respectively. Further, we set 	b,i = 	1 = ωb,1 −
ωa,1, 	c,i = 	2 = ωc,1 − ωa,1, ωa,i = ωd,i = ωa,1, and κ1 >

κ2. In the weak coupling domain, that is, when the leakage
rates κi strongly dominates the dynamics of the system, in
other words, {g1, g2, γ ,	b,1,	c,1} � {κ1, κ2}, we can adi-
abatically eliminate the ai and di modes resulting in the
effective momentum space Hamiltonian of the system un-
der PBC (d0 = dN ) in the frame rotating at (	1 + 	2)/2 as
(Appendix B)

Hk =
(

	̄ − i�R h(k)
−h∗(k) −	̄ − i�R

)
, (21)

where we set g1 = −g2 = g, 	̄ = (	1 − 	2)/2, �R = γ +
�1 + �2, h(k) = i�1 + i�2e−ik , and k is the lattice constant
equivalent to Eq. (11) and �i = g2

κi
. Note that the pair of modes

bi and ci form a unit cell with intra- and intercell couplings i g2

κ1

and i g2

κ2
, respectively, equivalent to the system in Fig. 1 under

dissipative settings with �i replaced by g2

κi
.
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V. NONRECIPROCITY, PHASE-DEPENDENT
TOPOLOGICAL TRANSITIONS, AND SKIN EFFECT

In the previous section, we briefly mentioned the break-
down of BBC in non-Hermitian systems. In particular,
nonreciprocal (chiral) coupling between sublattice elements
under OBC culminates in the skin effect, which is the ex-
ponential localization of right and left eigenvectors at the
lattice boundaries without any distinction between bulk and
edge modes. In addition, the points in the parametric space
corresponding to the closing of energy gap under PBC do not
indicate the emergence of eigenmodes with eigenvalues −i�R

under OBC requiring a biorthogonal modification of the BBC.
In the following, we discuss the construction of nonreciprocal
[53] couplings in DSSH lattice leading to phase-dependent
topological transitions and skin effect.

Consider now a one-dimensional lattice of bosonic modes
b, c coupled with auxiliary modes a as depicted in Fig. 4
where we have now switched on the coherent coupling be-
tween bi and ci modes. The system is characterized by the
Hamiltonian

H̃/h̄ = H/h̄ +
N∑

i=1

[Gb†
i ci + H.c.], (22)

where H is given by Eq. (20) and G = |G|eiα . Once again,
in the weak coupling domain, that is, when {g1, g2, |G|, γ }
are significantly less than the cavity leakage κi and setting
	b,i = 	1 = ωb,1 − ωa,1, 	c,i = 	2 = ωc,1 − ωa,1, ωa,i =
ωb,i = ωa,1, κ1 > κ2, and g1 = −g2 = g, we can obtain an
effective system between modes bi and ci. The system under
PBC translates into the following Bloch Hamiltonian in the
frame rotating at (	1 + 	2)/2:

Hk =
(

	̄ − i�R i�− + i�2e−ik

i�+ + i�2eik −	̄ − i�R

)
, (23)

where �± = �1 ∓ |G| sin α − i|G| cos α, 	̄ = (	1 − 	2)/2,
and �R = γ + �1 + �2.

Note that the non-Hermitian system described by the afore-
mentioned Hamiltonian does not follow BBC. To elucidate
this in detail, let us begin by considering the system under
OBC. Before expounding the analysis of the full system, it
is worthwhile to explicate the properties of the system in the
absence of cN and to simplify the analysis, we set 	̄ = 0
for the remaining part of this section. When the lattice ter-
minates in bN , the (2N − 1)-dimensional Hamiltonian of the
system Hb

broken supports biorthogonal eigenstates with eigen-
value −i�R of the form [32,72]

|R〉b = Nb
R

N−1∑
n=0

(
− �2

�+

)N−n

b†
n+1|0〉

|L〉b = Nb
L

N−1∑
n=0

(
− �2

�∗−

)N−n

b†
n+1|0〉, (24)

where NR, NL are normalization constants such that 〈L|R〉 = 1

provided by Nb∗
L Nb

R = ZN+1 (Z−1−1)
1−ZN , Z = �−�+

�2
2

, and

Hb
broken

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−i�R i�− 0 0 . . . 0
i�+ −i�R i�2 0 . . . 0

0 i�2 −i�R i�− . . . 0
0 0 i�+ −i�R . . . 0
0 0 . . . . . . . . . i�2

0 0 . . . . . . i�2 −i�R

⎤
⎥⎥⎥⎥⎥⎥⎦

2N−1

.

(25)

This is due to destructive interference at ci sites and observe
that |R〉b and |L〉b can be written as a column matrix, for
instance,

|R〉b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
− �2

�+

)N

0(
− �2

�+

)N−1

...

0
− �2

�+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2N−1

, (26)

and clearly Hb
broken|R〉b = −i�R|R〉b. Notice that when α =

π/2, Eq. (24) morphs into

|R〉b = Nb
R

N−1∑
n=0

(
− �2

�1 + |G|
)N−n

b†
n+1|0〉

|L〉b = Nb
L

N−1∑
n=0

(
− �2

�1 − |G|
)N−n

b†
n+1|0〉, (27)

which is, identical to the results for a coherently coupled SSH
model with nonreciprocal intracell couplings. By the same
token, one can construct eigenstates of complex energy −i�R

of the Hamiltonian Hc
broken of the lattice which is broken at the

other end, i.e., when the lattice ends on either side with ci sites
as

|R〉c = Nc
R

N∑
n=1

(
− �2

�−

)N

c†
n|0〉

|L〉c = Nc
L

N∑
n=1

(
− �2

�∗+

)N

c†
n|0〉, (28)

where Nc∗
L Nc

R = Nb∗
L Nb

R = ZN+1 (Z−1−1)
1−ZN .

In stark contrast to Hermitian systems where the absolute
value square of the coefficient of the column matrix in Eq. (26)
would represent the probability of finding the excitation at the
nth unit cell, non-Hermitian systems necessitate a biorthog-
onally defined projection to the nth unit cell. Subsequently,
one can define a biorthogonal projection operator Pn to the nth
unit cell of the lattice as Pn = |b, n〉〈b, n| + |c, n〉〈c, n| where
|b, n〉 = b†

n|0〉 and |c, n〉 = c†
n|0〉. For example, projecting the

states in Eq. (24) on to the nth unit cell provides

〈L|bPn|R〉b = Zn+1(Z−1 − 1)

1 − ZN
. (29)
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It is therefore apparent that for |Z| < 1, the excitation is ex-
ponentially localized at the left edge (n = 1) whereas |Z| > 1
localizes the state at the right edge n = N . Similarly, when
the lattice terminates with a ci mode on either side (b1 is
absent), one can obtain analogous results with the excitation

localized at the right (left) edge for |Z| < 1(|Z| > 1) due to
mirror symmetry.

The results of the broken chain system can now be used to
extract the physics of the full system in the thermodynamic
limit (large N). Consider the Hamiltonian of the full system

Hfull =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i�R i�− 0 0 . . . 0 0
i�+ −i�R i�2 0 . . . 0 0

0 i�2 −i�R i�− . . . 0 0
0 0 i�+ −i�R . . . 0 0
0 0 . . . . . . . . . i�2 0
0 0 . . . . . . i�2 −i�R i�−
0 0 . . . . . . 0 i�+ −i�R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2N

, (30)

and states

|ψ〉±R = 1√
2

{[|R〉b

0

]
±

[
0

|R〉c

]}

|ψ〉±L = 1√
2

{[|L〉b

0

]
±

[
0

|L〉c

]}
. (31)

Clearly, 〈ψ |±L |ψ〉±R = 1 and 〈ψ |∓L |ψ〉±R = 0 and it is straight-
forward to obtain

Hfull|ψ〉±R =

⎡
⎢⎢⎢⎢⎣

∓i�2Nc
R

0
...

0
−i�2Nb

R

⎤
⎥⎥⎥⎥⎦

2N

− i�R|ψ〉±R

H†
full|ψ〉±L =

⎡
⎢⎢⎢⎢⎣

±i�2Nc
L

0
...

0
i�2Nb

L

⎤
⎥⎥⎥⎥⎦

2N

+ i�R|ψ〉±L , (32)

where we have defined Nb
R = Nc

R = ( ZN+1(Z−1−1)
1−ZN )

1/2
and Nb

L =
Nc

L = Nb∗
R . It is conspicuous from the above expression that

|ψ〉±R,L represent biorthogonal eigenstates of Hfull with com-
plex energy −i�R for large N for Nb

R → 0, viz, if |Z| < 1 (and
not for |Z| � 1) as the normalization factors in the first part of
the right-hand side (RHS) of Eq. (32) approach zero. In other
words, the states in Eq. (31) are the eigenstates of Hfull with
eigenvalue −i�R (�R modes) for√

(�2
1 − |G|2)2 + 4|G|2�2

1 cos2 α < �2
2 . (33)

It is worth noting that for α = π/2, the condition for biorthog-
onal edge modes modifies to �2

1 − |G|2 < �2
2 . The Eq. (33)

may be rewritten as (�2
1 − A+)(�2

1 − A−) < 0, where

A± = −|G|2 cos (2α) ±
√

�4
2 − |G|4 sin2 (2α) (34)

for real values of the RHS of Eq. (34). Therefore, the �R

modes of the system under OBC occur in the region where
�2

1 < A+ and �2
1 > A−. It is worth noting that the system does

not incur �R modes for �4
2 − |G|4 sin2 (2α) < 0. In Fig. 5, we

plot the absolute value of eigenvalues of the full system under
OBC and PBC for different values of α and |G| for �2 = 2
where we have defined x± = √

A± for non-negative values of
A±. In Figs. 5(a)–5(b), for |G| = 1, we observe that A+ > 0
and A− < 0 lending �R modes for |�1| < x+ depicted by the
two isolated blue lines. In stark contrast, for |G| = 3 and
α = π/4, �4

2 − |G|4 sin2 (2α) < 0, leading to the conspicu-
ous absence of �R modes as depicted in Fig. 5(c). However,
α = π/2, |G| = 3 [Fig. 5(d)] renders A± > 0, which affords
�R-modes on either in the region x− < �1 < x+, demonstrat-
ing phase dependent nature of topological transitions. Note
that the green curves in Fig. 5 correspond to the absolute
value of energy under OBC. Clearly, the points where the
blue curves approach −i�R do not match with that of the
green curves as a consequence of the breakdown of BBC. In
Fig. 6, we plot the phase (not to be confused with α) diagram

FIG. 5. The absolute value of eigenvalues of Hfull under OBC
(blue) and PBC (green) for different values of α and |G| with
�2 = 2, γ = 3, the number of units cells N = 25. The vertical lines
represent the points x± obtained from Eq. (34) as x± = √

A± for
non-negative values of A±. The two states with complex energy
−i�R = −i(γ + �1 + �2) appear in the region �1 < x− and �1 < x+
as isolated blue lines in the middle in (a), (b), whereas they appear in
the region x− < �1 < x+ in (d).
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FIG. 6. The phase diagram of the system as a function of α

and |G| for �2 = 2 characterized by the real positive values of A±
demarcating the topological boundaries. In particular, the region in
red depicts the topologically trivial parametric domain.

of the system as a function of α and |G| depending on the
real positive values of A±, clearly demarcating the topological
boundaries. For the region depicted in yellow, we have only
the A+ � 0, begetting �R modes for |�1| <

√
A+ as displayed

in Figs. 5(a)–5(b). The region in blue, however, provides
A± � 0, lending �R modes when �2

1 < A+ and �2
1 > A− as

demonstrated in Fig. 5(d). In contrast, the region in red pro-
hibits real positive values for A± and therefore does not lend
itself to a topological description evident from Fig. 5(c).

To provide more substance to the above discussion, we
plot, in Figs. 7(a)–7(b) the absolute value of N compo-
nents (equally spaced between 0 and 1) of the vector V i =[
π i

1 π i
2, . . . , π

i
N ] for two different regions of Fig. 5(d) with

i ∈ {1, 2, . . . , N} and

π i
n =

〈
Lfull

i

∣∣Pn

∣∣Rfull
i

〉
〈
Lfull

i

∣∣Rfull
i

〉 , (35)

where |Rfull
i 〉, |Lfull

i 〉 are the right and left eigenvectors of
Hfull, respectively. The Fig. 7(a) corresponds to a point in the
topologically trivial region A of Fig. 5(d), that is, for α = π/2,
�1 = 0.5, |G| = 3 hallmarked by the absence of edge modes.
In contrast, Fig. 7(b) depicts the absolute value of the pro-
jection for α = π/2, �1 = 2.7, |G| = 3, a point in the region
B of Fig. 5(d). Not surprisingly, edge states (in red) springs
into existence and they correspond to Eq. (31) matching the
two isolated central modes of Fig. 5(d) possessing complex
energy −i�R. To be precise, the two edge modes in Fig. 7
(b) correspond to V i where |Rfull

i 〉, |Lfull
i 〉 are replaced, respec-

tively, by the states |ψ〉±R and |ψ〉±L . At this point, it is worth
noting that any type of disorder in the system would translate
into perturbations in the (off-)diagonal elements of the matrix
in Eq. (30). For instance, let us consider the topological edge
states in Fig. 7(b) for �1 = 2.7. In Fig. 7(c), we plot the
edge states for two different values of �1 around �1 = 2.7
and α = π/2, |G| = 3. It is apparent from the figure that
the population is predominantly localized at the edges of the
system testifying to its robustness against external perturba-
tions. On the contrary, the absolute value of the components
of eigenvectors |Rfull

i 〉 and |Lfull
i 〉 would provide starkly

dissimilar results with all the eigenstates concentrated at the

FIG. 7. (a) The absolute value of N components (equally spaced
between 0 and 1) of the vector V i for i = 1–5; (b) absolute value
of N components of V i for i = 1–N . Note that the red curves in
(b) represent the two topological edge-modes of the system (concen-
trated at both the right and left edges) and we have set the number
of unit cells N = 25, �2 = 2, γ = 3; (c) edge modes of the system
for �1 = 2.7 (|G| = 3, α = π/2) and for two other values of �1

around 2.7 demonstrating the robust nature of localization against
any external perturbations. All the N vectors V i are bulk-modes for
α = π/2, |G| = 3 and �1 = 0.5 and for clarity, we only plot five of
them in (a) as the rest of them have similar behavior.

boundaries, otherwise known as the skin effect. Skin effect,
viz, the unusual localization of a large number of eigenstates at
the boundaries [29,31,32,34,54], a consequence of nonrecip-
rocal coupling, leads to pronounced sensitivity of the bulk to
boundary conditions. In Fig. 8(a), we plot |Rfull

i |, the absolute
value of the N components of the column matrix (equally
spaced between 0 and 1) representing |Rfull

i 〉 for α = π/2
clearly demonstrating the accumulation of eigenstates at the
boundaries of the system owing to the nonreciprocal nature of
dissipative coupling. On the contrary, α = 0 does not incur
any nonreciprocity in coupling, culminating in the absence
of skin effect as depicted in Fig. 8(b). In stark contrast to
Figs. 8(a), 8(b) the condition α = π/2 and |G| = �1 results
in �+ → 0, i.e., extreme nonreciprocity and skin effect. This
is manifested in Fig. 8(c), showcasing the remarkably high
localization of the right eigenvectors at the left edge.

VI. CONCLUSIONS

In conclusion, we considered SSH models with a dissipa-
tive form of coupling between the subsystems and discussed
some of the interesting physics ensuing from such models.
In particular, we provided two distinct schemes for the real-
ization of DSSH models in the context of bosonic systems
and electrical LCR resonators. We showed that a collection
of resistively coupled LCR resonators mimic the topology
of DSSH models by solving the Kirchhoff’s equation for
voltages. In the framework of bosonic systems, we observed
that a system of noninteracting oscillators interacting with
an engineered bath of modes possessing considerably small
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FIG. 8. (a) The absolute value of the eigenvectors (equally
spaced between 0 and 1) |Rfull

i 〉 for α = π/2, |G| = 3, �1 = 0.5,
clearly demonstrating the eigenmodes, all of which are concentrated
on the left edge of the system; (b) absolute value of the eigenvectors
|Rfull

i 〉 for α = 0, |G| = 3, �1 = 0.5 with no nonreciprocity in cou-
plings leading to the absence of edge effects; (c) plot of the absolute
value of the eigenvectors |Rfull

i 〉 (for the region between zero and
0.15) with α = π/2, |G| = 3, �1 = 3 with �+ → 0 giving rise to
extreme nonreciprocity and amplification of edge population when
compared to (a). The quantity |Rfull

i | is negligibly small beyond 0.15
in (c) and analogous to Fig. 7(a), for clarity, we have only plotted V i

for i = 1–5 in (b). The number of unit cells N = 25, �2 = 2, γ = 3.

lifetimes compared to other system parameters is equivalent
to a DSSH model. Further, by enabling the coherent interac-
tion between the oscillators under consideration, we showed
that the system affords nonreciprocal dissipative couplings
eliciting topological transitions governed by the phase of the
coherent interaction strength and skin effect. Note that our
analyses are generic, relevant to a large class of systems, espe-
cially in microwave to optical settings and merits immediate
realization in the experiments.
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APPENDIX A: KIRCHHOF’S EQUATIONS FOR THE
CIRCUIT DSSH MODEL

We begin by considering the two blocks of LCR circuits, in
other words, a dimer, coupled through a resistor as depicted in
Fig. 9. After the choice of direction of currents as illustrated
in the figure, we use the well-known Kirchoff’s circuit laws to
explicate the dimer dynamics.

IRc1 = IL1 + IC1 + IR1 = −(IL2 + IC2 + IR2 ), (A1)

FIG. 9. The unit cell of the circuit SSH model described in
Fig. 3. The blue arrows represent the chosen direction currents in
the system.

Vn = −Ln
dILn

dt
= − 1

Cn

∫ t

0
ICn (t ′)dt ′ = −IR1 R1, (A2)

V1 − V2 = IRc1 Rc1, (A3)

where n = 1, 2. Employing Eq. (A2) and Eq. (A3) into
Eq. (A1), we obtain

V̈i + 1

Ci

(
1

Rc1
+ 1

Ri

)
V̇i + Vi

LiCi
= V̇j

Rc1Ci
, i �= j. (A4)

Upon redefining ωi = 1√
LiCi

, �i = 1
Rc1Ci

and γi = 1
RiCi

Eq. (A4)
reduces to

V̈i + (γi + �i )Vi + ω2
i Vi = �iV̇j, i �= j. (A5)

The Eq. (A5) can be further simplified if we assume Vi(t ) =
1
2 ui(t )e−iω0t + c.c., where ω0 = 1

2 (ω1 + ω2) and ui(t ) is a
slowly varying envelope. In addition, we assume that k � ωi,
ω1 close to ω2 and C1 = C2. Under these conditions, the
Eq. (A5) can be approximated to(

u̇1

u̇2

)
= −i

1

2

(
ω1 − ω2 − i(γ1 + �1) i�1

i�1 ω2 − ω1 − i(γ2 + �1)

)

×
(

u1

u2

)
. (A6)

Extending the analysis to the full system in Fig. 3, we obtain
Eq. (15).

APPENDIX B: WEAK COUPLING DOMAIN FOR
THE DSSH MODEL

Consider the dynamics of the mode a1 from Eq. (20) in the
frame rotating at frequency ωa,1 provided by

ȧ1 = −κ1a1 − ig(b1 − c1). (B1)

Formally integrating the above equation renders

a1(t ) = a1(0)e−κ1t − i
∫ t

0
g[b1(t ′) − c1(t ′)]e−κ1(t−t ′ ). (B2)

Note, however, we are interested in the dynamics of the sys-
tem at t such that 1

κ1
� t � 1

γ
, 1

g . Therefore, the first term
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on the RHS of the above equation fades in importance. Ad-
ditionally, b1 and c1 possessing larger decay times can be
taken out of the integral from the second term on the RHS
of Eq. (B2) culminating in a1(t ) = −ig (b1−c1 )

κ1
. Subsequently,

we can use this expression to adiabatically eliminate a1 from

the dynamical equation of motions for b1 and c1. By the
same token, one can also eliminate the mode d1 to obtain an
effective interaction between b1 and c1. Upon extending the
analysis into the full system given in Eq. (20) and moving
into the Fourier domain, we obtain Eq. (21).
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