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Multipartite entanglement in the measurement-induced phase transition of the quantum Ising chain
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External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition
characterized by a change in behavior of the entanglement entropy from an area law to an unbounded growth.
In this paper, we show that this transition extends beyond bipartite correlations to multipartite entanglement.
Using the quantum Fisher information, we investigate the entanglement dynamics of a continuously monitored
quantum Ising chain. Multipartite entanglement exhibits the same phase boundaries observed for the entropy
in the postselected no-click trajectory. Instead, quantum jumps give rise to a more complex behavior that still
features the transition, but adds the possibility of having a third phase with logarithmic entropy but bounded
multipartiteness.
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I. INTRODUCTION

In recent years, entanglement has become a key tool in
condensed-matter and statistical physics [1]. Interesting quan-
tum phenomena, such as quantum criticality or topological
order, often give rise to peculiar behavior of entanglement too.
For this reason, entanglement now plays an important role in
understanding and classifying quantum many-body systems.
This approach has lead to numerous theoretical insights, such
as probing quantum phase transitions [2,3], understanding
thermalization [4], and extracting information on topological
properties [5–7]. In addition to its theoretical significance,
entanglement is a fundamental resource of practical experi-
mental use. For example, entangled states can enhance the
precision of phase estimation in quantum metrology [8,9]
and are essential for implementing most quantum computing
protocols, with relevant applications in quantum cryptogra-
phy [10,11], optimization [12,13], and simulation [14].

Measurement-induced phase transitions [15–21] are a no-
table example of entanglement as a diagnostic tool for
quantum criticality in a dynamical setting. Monitoring a
system throughout its dynamics can alter its entanglement
properties. Specifically, the rate of measurements performed
on the system drives a transition from an area law phase to an
entangling phase, typically with either volume law [22–27] or
logarithmic [28–32] entanglement entropy depending on the
model. The two phases have also been related to a qualitative
change in the dynamical purification of a mixed state [33–36].
Many features, including critical exponents [16,37,38], hints
of conformal symmetry at criticality [39–41], and connections
to the percolation universality class [16,42–44], suggest that at
least some versions of this phenomenon can be traced back
to standard second-order phase transitions. Despite all this
progress, an exhaustive characterization of the transition is
still missing. For instance, it is still unclear whether there
exists a local order parameter and what it would look like in
that case. In addition, even though some proposals have been
put forward [45–48], observing the transition in an experi-
mental implementation remains an extremely challenging task

due to the exponential complexity of postselecting quantum
trajectories.

So far, measurement-induced transitions have been mainly
characterized on the basis of bipartite entanglement. Never-
theless, the structure of multipartite correlations is potentially
richer [49–51] and could give new insight for the character-
ization of the different phases. In this paper, we investigate
multipartite entanglement in a continuously monitored quan-
tum Ising chain by means of the quantum Fisher information
(QFI), which witnesses many-body correlations [52–55]. We
first investigate the no-click limit [26,29,56] to gain theoret-
ical insight on the measurement-induced transition, and we
prove that the QFI manifests the same phase diagram as the
entropy. In the logarithmic phase, the QFI density features
power-law growth fQ ∼ Lp, corresponding to growing mul-
tipartiteness with system size, whereas it remains bounded in
the area phase (see Fig. 1). We then consider the full dynamics
with quantum jumps, revealing that, in general, the behavior
of the QFI is more complex. We still observe a transition
between extended and limited multipartiteness, but we also
find a new region with bounded multipartite entanglement yet
logarithmic entanglement entropy.

The rest of this paper is organized as follows. In Sec. II,
we introduce the quantum Ising chain and the monitoring
protocol we consider, as well as the QFI and its relation to
multipartite entanglement. Then, Sec. III presents our results
relative to the no-click limit, whereas Sec. IV covers the
case of the full dynamics involving quantum jumps. Last, we
summarize our findings in Sec. V.

II. MODEL, MEASUREMENT PROTOCOL,
AND QUANTUM FISHER INFORMATION

Below, we consider measurement-induced phase transi-
tions in a quantum Ising chain in a transverse field,

Ĥ0 = −J
∑

j

σ̂ x
j σ̂

x
j+1 − h

∑
j

σ̂ z
j , (1)
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with L lattice sites and periodic boundary conditions.
Throughout this paper, we set J = 1. Within the formalism of
positive-operator-valued measures [57–61], we characterize
entirely the measurement protocol by assigning suitable Kraus
operators Âm, m = 1, . . . , M, satisfying

∑
m Â†

mÂm = 1̂. In
detail, given a state |ψt 〉, the evolved state |ψt+dt 〉 is obtained
by applying a projector Âm to |ψt 〉 and restoring the norm to 1.
The choice of the Kraus operator is performed randomly with
probabilities set by pm = 〈Â†

mÂm〉t (where 〈Ô〉t = 〈ψt |Ô|ψt 〉).
In our case, we assume to measure the z component of each
spin randomly and independently of all others with a fixed rate
γ . Since the full protocol can be broken down into single-site
measurements, we use the local Kraus operators

Â(0)
j = (1̂ − L̂ j ) +

√
1 − γ dt L̂ j, (2a)

Â(1)
j =

√
γ dtL̂ j, (2b)

where L̂ j = 1
2 (1̂ + σ̂ z

j ). Â(0)
j has a probability p(0)

j = O(1) and
implements an infinitesimal projection towards a local spin
state with down z component. In contrast, Â(1)

j represents
a rare but sudden jump to the state with up z compo-
nent, occurring with p(1)

j = O(γ dt ). The interplay of these
Kraus operators can induce nontrivial magnetization dynam-
ics [62,63]. Using this generalized measurement protocol, the
dynamics of the system is ruled by the stochastic Schrödinger
equation [64,65]

d|ψt 〉 = −iĤdt |ψt 〉 +
∑

j

dξ j,t

⎛
⎜⎝ L̂ j√

〈L̂ j〉t

− 1

⎞
⎟⎠|ψt 〉, (3)

where

Ĥ = Ĥ0 − i
γ

4

∑
j

(
σ̂ z

j − 〈
σ̂ z

j

〉
t

)
(4)

is a non-Hermitian Hamiltonian [66] describing an effective
nonunitary evolution in the absence of jumps, whereas the
functions dξ j,t = 0, 1 are increments of independent Pois-
son processes satisfying dξ j,t = γ dt〈L̂ j〉t . For details on the
derivation of Eq. (3), we refer the reader to Ref. [29].

This model has already been considered in Ref. [67] from
the perspective of the entanglement entropy. The scope of our
study is to investigate the QFI in the stationary state of the
dynamics generated by Eq. (3). The QFI is a key quantity in
the theory of phase estimation [8,68,69], as it determines the
best achievable precision in quantum metrology applications.
This quantity, accessible through measurements of dynamical
susceptibilities [70,71], is sensitive to the number of entangled
degrees of freedom in the state and can thus be used to witness
entanglement. When evaluated on pure states, the QFI of an
observable Ô takes a simple form proportional to its variance,
namely,

FQ[Ô] = 4(〈Ô2〉 − 〈Ô〉2). (5)

As shown in Refs. [52,53], the QFI sets rigorous bounds
to multipartite entanglement when Ô = Ô[{n j}] = 1

2

∑
j n j ·

σ̂ j = 1
2

∑
j

∑
α=x,y,z nα

j σ̂
α
j , where n j are unit vectors. Substi-

tuting this expression, the QFI takes the form

FQ[Ô[{n j}]] =
∑

α,β=x,y,z

∑
i, j

nα
i Cα,β

i, j nβ
j , (6)

where Cα,β
i, j = 〈σ̂ α

i σ̂
β
j 〉 − 〈σ̂ α

i 〉〈σ̂ β
j 〉 are connected spin-spin

correlators. If the density of QFI fQ = FQ/L is larger than
some divider k of L, then the state is (k + 1)-partite entan-
gled. The strictest lower bound is obtained by finding the unit
vectors {n j}opt that maximize FQ. The optimization problem
is equivalent to the search of the ground state of a classical
Hamiltonian Hcl = −FQ[Ô[{n j}]] with vector spin variables
n j , where the correlation functions play the role of two-body
couplings.

III. NO-CLICK LIMIT

Let us start our analysis from the no-click limit, namely,
the specific quantum trajectory in which all dξ j,t are zero at
all times and no quantum jump occurs. At long times, the
dynamics converges to a stationary state, which coincides
with the vacuum state of the non-Hermitian quasiparticles
that diagonalize Ĥ [72]. Even though this trajectory is ex-
ponentially unlikely, it can provide information on what can
be expected in generic realizations of the full dynamics. For
instance, Ref. [73] shows that the no-click limit of our model
manifests the entanglement transition from area to logarith-
mic law. The logarithmic scaling of the entanglement entropy
in the stationary state is linked to the absence of a gap in
the decay rate of elementary excitations. For |h| < 1 and
γ < γc(h) = 4

√
1 − h2, the imaginary part of the quasiparti-

cle spectrum is gapless, and the entanglement entropy follows
a logarithmic law. In contrast, it is gapped outside this region,
and the entropy obeys an area law.

The two phases also feature a difference in their correlation
functions. The correlators Cα,β

i, j decay exponentially with the
distance | j − i| in the gapped phase, whereas they have a
power-law envelope, modulated by sinelike oscillations, in the
gapless phase [72]. This difference impacts the QFI in the two
phases: as mentioned, the maximization of the QFI is mapped
into the minimization of a classical Hamiltonian Hcl in which
the correlation functions set the interactions. In the gapped
phase, all correlators are exponential, and thus Hcl is a short-
range Hamiltonian; as a consequence, we have F max

Q ∼ L, and
f max
Q is intensive. Instead, in the gapless phase the power-law

decay of correlations opens up the possibility of a long-range
Hcl. If the correlation functions decay slowly enough, one may
expect a superextensive scaling of the QFI with the system
size, resulting in f max

Q ∼ Lp with p > 0. Recalling the connec-
tion between the QFI density and multipartite entanglement,
this implies that the degree of multipartiteness of entangle-
ment is bounded in the area phase, whereas it diverges as ∼Lp

in the logarithmic phase.
We now test numerically this hypothesis. We find the

vacuum (steady) state by solving the model using the Jordan-
Wigner map [74]. The spin-spin correlators are computed
using the methods described in Refs. [75,76], exploiting the
Gaussian structure of the state [72]. Finally, the maximization
of the QFI is performed with a classical simulated annealing
algorithm [77,78]. For each choice of the parameters h and
γ , we evaluate the maximal QFI at different system sizes,
and we fit the scaling of f max

Q to extrapolate the exponent p.
Figure 1 shows p in the parameter space. Based on whether
p = 0 or p > 0, we distinguish two phases, which overlap
very well with the area and logarithmic phases diagnosed
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FIG. 1. Exponent p of fQ ∼ Lp as a function of h and γ in the
no-click limit. The dashed curve corresponds to the critical line
γc(h) that separates the gapped and gapless phases. The exponent
is extrapolated by fitting data for L = 40–170.

by the entanglement entropy. This result indicates that the
entanglement transition in the no-click limit is witnessed by
multipartite entanglement. Our numerical results suggest that
p might be a universal function of γ /γc(h) for all values of
h [72]. We point out that the effective central charge of the
entanglement entropy behaves similarly, being a function of
γ /γc(h) only [73].

Surprisingly, despite the translational symmetry of the
system, the operator maximizing the QFI is not translation-
ally invariant. In the gapless phase the optimal {n j}opt are
approximately aligned along the longitudinal direction and
alternate between +x and −x with a wave vector k = π − k∗,
where k∗ is the momentum at which the gap of the quasi-
particle decay rate closes. This is understood in terms of
correlation functions. We observe numerically that Cx,x

i, j is the
slowest-decaying spin-spin correlator, and it oscillates with
a periodicity set precisely by π − k∗ [72]. This correlation
function rules the leading-order behavior of f max

Q with L, and
thus the optimal configuration {n j}opt must maximize its con-
tribution in Eq. (6). Assuming the asymptotic ansatz Cx,x

i, j ∼
cos[(π − k∗)|i − j|]/|i − j|λ with λ < 1, which we find to be
a good fit, and considering for simplicity a periodic configu-
ration nx

j = cos[(π − k∗)|i − j|], we obtain a contribution to
the QFI that scales as L2−λ: this yields a finite p = 1 − λ > 0.

The operator Ô[{n j}opt] that maximizes the QFI can be
interpreted as a local order parameter due to its fluctuations,
which are superextensive exclusively in the critical gapless
phase. This identification holds, for instance, for the quantum
Ising chain Ĥ0, where the order parameter

∑
j σ̂

x
j maximizes

the QFI, providing f max
Q ∼ L3/4 at the critical point [70]. We

believe this characterization is reasonable, since we cannot
pinpoint any conventional order parameter Ô that changes
from 〈Ô〉 = 0 to 〈Ô〉 �= 0 when crossing the phase boundary.

IV. DYNAMICS WITH QUANTUM JUMPS

The results on the QFI found in the no-click limit extend
only partially to the full dynamics produced by Eq. (3). As we

FIG. 2. Disorder-averaged stationary QFI density and entangle-
ment entropy, as functions of L, for h = 0.2 and multiple values of γ .
Large (left panels) and small (right panels) values of γ are presented
separately to help visualization. The stationary values are evaluated
as long-time averages.

show in this section, bipartite and multipartite entanglement
do not manifest equivalent behavior and thus provide distinct
information and phase boundaries. In particular, we observe a
region featuring logarithmic entanglement entropy but inten-
sive fQ, which possibly corresponds to a new phase.

In our numerics, we start from a product state |ψ0〉 with all
spins along the positive z direction, and we characterize its dy-
namics using only the correlation matrices of Jordan-Wigner
fermions [72], exploiting the preservation of the Gaussian
nature of the state along each quantum trajectory. We com-
pute the maximal QFI using simulated annealing, as in the
no-click limit. Since this quantity depends on the previous
history of quantum jumps, we repeat the procedure multiple
times independently and take a statistical average. To make
a comparison, we also evaluate the entanglement entropy,
defined as S
 = −Tr(ρ̂
 ln ρ̂
), where ρ̂
 is the reduced density
matrix associated with a compact subsystem of 
 spins, using
the method described in Ref. [74].

We now illustrate our results for a given h < 1, though sim-
ilar results are obtained qualitatively for other values of h [72].
At large values of γ , the average maximal QFI density satu-
rates to an intensive value at long times. When γ is reduced
below γc(h) (γc ≈ 4 for h = 0.2), f max

Q (∞) appears to grow
indefinitely with the system size L. This is highlighted in the
left panels of Fig. 2, which portray the scaling of the stationary
value with L. Our numerics suggest that the crossover of fQ

from an intensive to a size-dependent value occurs at the same
γc at which S
 transitions from area to logarithmic law, even
though it is hard to determine the critical measurement rate
precisely. The growth of the QFI density below γc is consistent
with a power law ∼Lp, as in the no-click limit.

When γ is reduced further, we observe a new effect com-
pletely at odds with the no-click limit. The steady-state QFI
density transitions back to an intensive value, as illustrated in
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the right panels of Fig. 2. The entanglement entropy shows
also a contrasting behavior by developing a volume law at
small γ . Our numerics suggest, however, that the entropy
crossover takes place at lower γ as compared to the QFI, and
it could be interpreted as a finite-size effect occurring at γ ∼
1/L [28], where the dynamics is approximately unitary and
jumps are rare. These results may then indicate the presence
of a third phase at low γ , featuring logarithmic entanglement
entropy but only few-partite quantum correlations.

We point out that often states with volume law entangle-
ment entropy have a bounded QFI density, especially in the
long-time unitary dynamics following a quantum quench [79].
This intuition might indicate that the intensive scaling of fQ at
small γ is also a finite-size effect. While we cannot rule out
this possibility, this seems to be at odds with our numerics,
showing that the average QFI density is smaller at larger
values of L, where finite-size effects are less relevant.

As in the no-click limit, the behavior of the QFI can be
related to the shape of spin-spin correlation functions. Focus-
ing on single quantum trajectories in the long-time regime,
where f max

Q (t ) has already reached saturation, we define the
new distance-dependent correlators

C̃α,β


 = 1

L

∑
i

∣∣Cα,β

i,i+


∣∣. (7)

Numerically, we observe that all C̃α,β


 are exponential at
large γ > γc, whereas they decay as power laws at smaller
γ [72]. This crossover already indicates a qualitative differ-
ence between the two regimes. The power-law correlators
also suggest that the entangling phase is an extended criti-
cal region, compatible with the observation of a logarithmic
entanglement entropy.

Given the analogy with the no-click limit, we expect that
the average maximal QFI density diverges for L → ∞ if these
power laws decay slowly enough, namely, C̃α,β


 ∼ |
|−λα,β

with λα,β < 1. We check if typical trajectories with this
property exist by simulating M independent realizations, com-
puting their exponents at some long time, and counting the
number M< of them with at least one λα,β < 1. Notice that the
exponents are time dependent, because individual quantum
trajectories do not relax to stationary states, and thus we repeat
the analysis at multiple times. As shown in Fig. 3, in the region
γ � 4 we estimate that a finite fraction of the ensemble of all
trajectories yields slow-decaying correlators, thus producing
the scaling behavior of f max

Q (∞). At small γ , we observe that
M</M vanishes, meaning that no random realization can sup-
port extended multipartiteness. This explains why fQ returns
intensive at low measurement rates, but our limited sample of
M = 100 trajectories is not sufficient to establish whether or
not a sharp transition takes place.

The interpretation of Ô[{n j}opt] as the order parameter
is less straightforward in the presence of jumps. For each
random realization and at each time, the QFI is maximized
by a different operator, making it impossible to design a
unique, trajectory-independent order parameter. However, this
operator may still characterize criticality for each individual
trajectory.

Some previous works in the literature [80–83] characterize
measurement-induced phase transitions using the fluctuations

0 1 2 3 4
γ

0.0

0.2

0.4

M
<
/M

t = 200

t = 201

t = 202

t = 203

t = 204

FIG. 3. Fraction M</M of trajectories with exponents λα,β < 1,
for M = 100, h = 0.2, and multiple values of γ . Different curves
correspond to different times t = 200, 201, 202, 203, and 204 (light
to dark colors) at which the exponents are measured. Data are for
L = 256, and the power laws are fitted for L = 10–100.

of observables, rather than entanglement. Since our in-
vestigation revolves around quantum fluctuations too, we
now compare our paper with these studies, clarifying that
our results are fundamentally different. First, Refs. [80,81]
demonstrate that the fluctuations of the total charge of a sub-
system (e.g., half of the chain) manifest a phase transition,
shifting from intensive to extensive when tuning the mea-
surement rate. Unfortunately, no information on multipartite
entanglement can be gained from this result, as the observable
under investigation is not in the required form of Ô[{n j}],
defined below Eq. (5). One may also be interested in the
multipartite entanglement content of a subsystem alone, but
in this case the QFI takes a more complicated form than
Eq. (5) and is no longer directly related to quantum fluctu-
ations. In contrast, Refs. [82,83] do consider fluctuations of
globally defined operators. Nevertheless, the models treated
in these works are not spin systems as considered in the
original Refs. [52,53] that connect the QFI to multipartite
entanglement. Still leaving aside this technicality, these papers
observe a transition from zero to intensive fluctuations, and
both cases correspond to a vanishing QFI density. In contrast,
our work features a shift from extensive to superextensive
variance, explicitly demonstrating extended multipartiteness
of quantum correlations.

V. CONCLUSIONS

In this paper, we investigated the measurement-induced
phase transition of a quantum Ising chain from the point of
view of multipartite entanglement as witnessed by the QFI.
In the postselected trajectory without quantum jumps, the
multipartiteness of quantum correlations changes from limited
to extended, reproducing the same phase diagram obtained
from the entanglement entropy. When quantum jumps are
introduced, the entanglement entropy and the QFI manifest
distinct behaviors, and we observe a new region with bounded
QFI density yet logarithmic entanglement entropy emerges
at low γ . Our findings hint at the exciting possibility that
this might be a new phase. We stress that, in general, the
entanglement entropy and the QFI should not be expected
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to necessarily behave in the same way, as they probe very
different aspects of entanglement: While the former quantifies
the strength of bipartite correlations, the latter is a measure of
the number of irreducibly entangled degrees of freedom in the
system.

The experimental observation of the QFI in monitored
systems is unfortunately plagued by the same postselection
problem that affects also the entanglement entropy. However,
if a new technique to reliably reproduce arbitrary quantum
trajectories was discovered, the QFI would then be easily
accessible, by measuring either the spin-spin correlators or the
fluctuations of operators Ô.

We believe our study paves the way to future investigations
on the role of multipartite entanglement in measurement-
induced phase transitions. A topic of immediate interest is
to establish whether or not the region with intensive QFI
density at low γ is indeed a stable phase. More broadly, we

are still lacking a theoretical understanding of the whole phase
diagram. Beyond our model, it will be interesting to study how
multipartite entanglement behaves in different instances of
the entanglement transition, including circuit models, systems
with projective measurements, and, in particular, models with
a volume phase.

ACKNOWLEDGMENTS

The authors are grateful to X. Turkeshi, M. Schiró, R.
Fazio, S. Pappalardi, A. Russomanno, and G. Piccitto for
stimulating discussions. A.P. also thanks D. Piccioni for
providing useful advice on numerical methods. A.S. would
like to acknowledge support from PNRR MUR Project “Su-
perconducting quantum-classical linked computing systems
(SuperLink)”, in the frame of QuantERA2 ERANET CO-
FUND in Quantum Technologies, CUP B53C22003320005.

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[2] P. Calabrese and J. Cardy, Entanglement entropy and quantum
field theory, J. Stat. Mech. (2004) P06002.

[3] N. Laflorencie, Quantum entanglement in condensed matter
systems, Phys. Rep. 646, 1 (2016).

[4] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, Quantum thermalization through
entanglement in an isolated many-body system, Science 353,
794 (2016).

[5] A. Hamma, R. Ionicioiu, and P. Zanardi, Ground state entangle-
ment and geometric entropy in the Kitaev model, Phys. Lett. A
337, 22 (2005).

[6] A. Kitaev and J. Preskill, Topological entanglement entropy,
Phys. Rev. Lett. 96, 110404 (2006).

[7] M. Levin and X.-G. Wen, Detecting topological order in
a ground state wave function, Phys. Rev. Lett. 96, 110405
(2006).

[8] L. Pezzé and A. Smerzi, Quantum theory of phase estimation,
in Atom Interferometry, Proceedings of the International School
of Physics “Enrico Fermi”, Course 188, Varenna, edited by
G. M. Tino and M. A. Kasevich (IOS Press, Amsterdam, 2014),
p. 691.

[9] L. Pezzé, A. Smerzi, M. K. Oberthaler, R. Schmied, and
P. Treutlein, Quantum metrology with nonclassical states of
atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[10] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum
cryptography, Rev. Mod. Phys. 74, 145 (2002).

[11] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[12] G. E. Santoro and E. Tosatti, Optimization using quantum
mechanics: quantum annealing through adiabatic evolution,
J. Phys. A: Math. Gen. 39, R393 (2006).

[13] T. Albash and D. A. Lidar, Adiabatic quantum computation,
Rev. Mod. Phys. 90, 015002 (2018).

[14] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[15] Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect
and the many-body entanglement transition, Phys. Rev. B 98,
205136 (2018).

[16] B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced
phase transitions in the dynamics of entanglement, Phys. Rev.
X 9, 031009 (2019).

[17] Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven en-
tanglement transition in hybrid quantum circuits, Phys. Rev. B
100, 134306 (2019).

[18] Y. Bao, S. Choi, and E. Altman, Theory of the phase transition
in random unitary circuits with measurements, Phys. Rev. B
101, 104301 (2020).

[19] M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A. Huse, and
V. Khemani, Entanglement phase transitions in measurement-
only dynamics, Phys. Rev. X 11, 011030 (2021).

[20] S. Sang and T. H. Hsieh, Measurement-protected quantum
phases, Phys. Rev. Res. 3, 023200 (2021).

[21] M. Coppola, E. Tirrito, D. Karevski, and M. Collura, Growth
of entanglement entropy under local projective measurements,
Phys. Rev. B 105, 094303 (2022).

[22] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Quantum error
correction in scrambling dynamics and measurement-induced
phase transition, Phys. Rev. Lett. 125, 030505 (2020).

[23] X. Turkeshi, R. Fazio, and M. Dalmonte, Measurement-induced
criticality in (2 + 1)-dimensional hybrid quantum circuits,
Phys. Rev. B 102, 014315 (2020).

[24] Q. Tang and W. Zhu, Measurement-induced phase transition:
A case study in the nonintegrable model by density-matrix
renormalization group calculations, Phys. Rev. Res. 2, 013022
(2020).

[25] T. Boorman, M. Szyniszewski, H. Schomerus, and A. Romito,
Diagnostics of entanglement dynamics in noisy and disordered
spin chains via the measurement-induced steady-state entangle-
ment transition, Phys. Rev. B 105, 144202 (2022).

[26] Y. Le Gal, X. Turkeshi, and M. Schirò, Volume-to-area law en-
tanglement transition in a non-Hermitian free fermionic chain,
SciPost Phys. 14, 138 (2023).

[27] P. Sierant and X. Turkeshi, Controlling entanglement at absorb-
ing state phase transitions in random circuits, Phys. Rev. Lett.
130, 120402 (2023).

[28] O. Alberton, M. Buchhold, and S. Diehl, Entanglement tran-
sition in a monitored free-fermion chain: From extended
criticality to area law, Phys. Rev. Lett. 126, 170602 (2021).

184302-5

https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1016/j.physleta.2005.01.060
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1088/0305-4470/39/36/R01
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevX.11.011030
https://doi.org/10.1103/PhysRevResearch.3.023200
https://doi.org/10.1103/PhysRevB.105.094303
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevB.102.014315
https://doi.org/10.1103/PhysRevResearch.2.013022
https://doi.org/10.1103/PhysRevB.105.144202
https://doi.org/10.21468/SciPostPhys.14.5.138
https://doi.org/10.1103/PhysRevLett.130.120402
https://doi.org/10.1103/PhysRevLett.126.170602


ALESSIO PAVIGLIANITI AND ALESSANDRO SILVA PHYSICAL REVIEW B 108, 184302 (2023)

[29] X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte, and M. Schiró,
Measurement-induced entanglement transitions in the quantum
Ising chain: From infinite to zero clicks, Phys. Rev. B 103,
224210 (2021).

[30] G. Piccitto, A. Russomanno, and D. Rossini, Entanglement
transitions in the quantum Ising chain: A comparison between
different unravelings of the same Lindbladian, Phys. Rev. B
105, 064305 (2022).

[31] M. Szyniszewski, O. Lunt, and A. Pal, Disordered monitored
free fermions, Phys. Rev. B 108, 165126 (2022).

[32] T. Botzung, S. Diehl, and M. Müller, Engineered dissipation
induced entanglement transition in quantum spin chains: From
logarithmic growth to area law, Phys. Rev. B 104, 184422
(2021).

[33] M. J. Gullans and D. A. Huse, Dynamical purification phase
transition induced by quantum measurements, Phys. Rev. X 10,
041020 (2020).

[34] S. Gopalakrishnan and M. J. Gullans, Entanglement and pu-
rification transitions in non-Hermitian quantum mechanics,
Phys. Rev. Lett. 126, 170503 (2021).

[35] Y. Kuno, T. Orito, and I. Ichinose, Purification and scram-
bling in a chaotic Hamiltonian dynamics with measurements,
Phys. Rev. B 106, 214304 (2022).

[36] S. P. Kelly, U. Poschinger, F. Schmidt-Kaler, M. P. A. Fisher,
and J. Marino, Coherence requirements for quantum communi-
cation from hybrid circuit dynamics, arXiv:2210.11547.

[37] A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan, D. A.
Huse, and J. H. Pixley, Critical properties of the measurement-
induced transition in random quantum circuits, Phys. Rev. B
101, 060301(R) (2020).

[38] X. Turkeshi, Measurement-induced criticality as a data-
structure transition, Phys. Rev. B 106, 144313 (2022).

[39] C.-M. Jian, Y.-Z. You, R. Vasseur, and A. W. W. Ludwig,
Measurement-induced criticality in random quantum circuits,
Phys. Rev. B 101, 104302 (2020).

[40] M. Block, Y. Bao, S. Choi, E. Altman, and N. Y. Yao,
Measurement-induced transition in long-range interacting
quantum circuits, Phys. Rev. Lett. 128, 010604 (2022).

[41] S. Sharma, X. Turkeshi, R. Fazio, and M. Dalmonte,
Measurement-induced criticality in extended and long-range
unitary circuits, SciPost Phys. Core 5, 023 (2022).

[42] O. Lunt, M. Szyniszewski, and A. Pal, Measurement-
induced criticality and entanglement clusters: A study
of one-dimensional and two-dimensional Clifford circuits,
Phys. Rev. B 104, 155111 (2021).

[43] P. Sierant, M. Schirò, M. Lewenstein, and X. Turkeshi,
Measurement-induced phase transitions in (d + 1)-dimensional
stabilizer circuits, Phys. Rev. B 106, 214316 (2022).

[44] Z. Weinstein, S. P. Kelly, J. Marino, and E. Altman,
Scrambling transition in a radiative random unitary circuit,
arXiv:2210.14242.

[45] S. Goto and I. Danshita, Measurement-induced transitions of
the entanglement scaling law in ultracold gases with control-
lable dissipation, Phys. Rev. A 102, 033316 (2020).

[46] C. Noel, P. Niroula, D. Zhu, A. Risinger, L. Egan, D. Biswas,
M. Cetina, A. V. Gorshkov, M. J. Gullans, D. A. Huse, and C.
Monroe, Measurement-induced quantum phases realized in a
trapped-ion quantum computer, Nat. Phys. 18, 760 (2022).

[47] M. Buchhold, T. Müller, and S. Diehl, Revealing measurement-
induced phase transitions by pre-selection, arXiv:2208.10506.

[48] J. M. Koh, S.-N. Sun, M. Motta, and A. J. Minnich,
Measurement-induced entanglement phase transition on a su-
perconducting quantum processor with mid-circuit readout,
Nat. Phys. 19, 1314 (2023).

[49] M. Hofmann, A. Osterloh, and O. Gühne, Scaling of genuine
multiparticle entanglement close to a quantum phase transition,
Phys. Rev. B 89, 134101 (2014).

[50] F. Carollo and V. Alba, Entangled multiplets and spreading of
quantum correlations in a continuously monitored tight-binding
chain, Phys. Rev. B 106, L220304 (2022).

[51] S. Sang, Y. Li, T. Zhou, X. Chen, T. H. Hsieh, and M. P. A.
Fisher, Entanglement negativity at measurement-induced criti-
cality, PRX Quantum 2, 030313 (2021).

[52] G. Tóth, Multipartite entanglement and high-precision metrol-
ogy, Phys. Rev. A 85, 022322 (2012).

[53] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W.
Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Fisher
information and multiparticle entanglement, Phys. Rev. A 85,
022321 (2012).

[54] L. Pezzé, M. Gabbrielli, L. Lepori, and A. Smerzi, Multipartite
entanglement in topological quantum phases, Phys. Rev. Lett.
119, 250401 (2017).

[55] M. Brenes, S. Pappalardi, J. Goold, and A. Silva, Multipartite
entanglement structure in the eigenstate thermalization hypoth-
esis, Phys. Rev. Lett. 124, 040605 (2020).

[56] C. Zerba and A. Silva, Measurement phase transitions in the
no-click limit as quantum phase transitions of a non-Hermitian
vacuum, SciPost Phys. Core 6, 051 (2023).

[57] H. M. Wiseman, Quantum trajectories and quantum
measurement theory, Quantum Semiclassical Opt. 8, 205
(1996).

[58] S. E. Ahnert and M. C. Payne, General implementa-
tion of all possible positive-operator-value measurements of
single-photon polarization states, Phys. Rev. A 71, 012330
(2005).

[59] T. A. Brun, A simple model of quantum trajectories, Am. J.
Phys. 70, 719 (2002).

[60] K. Jacobs and D. A. Steck, A straightforward introduction to
continuous quantum measurement, Contemp. Phys. 47, 279
(2006).

[61] B. Svensson, Pedagogical review of quantum measurement the-
ory with an emphasis on weak measurements, Quanta 2, 18
(2013).

[62] L. P. García-Pintos, D. Tielas, and A. del Campo, Spontaneous
symmetry breaking induced by quantum monitoring, Phys. Rev.
Lett. 123, 090403 (2019).

[63] E. Tirrito, A. Santini, R. Fazio, and M. Collura, Full counting
statistics as probe of measurement-induced transitions in the
quantum Ising chain, SciPost Phys. 15, 096 (2023).

[64] J. Dalibard, Y. Castin, and K. Mølmer, Wave-function approach
to dissipative processes in quantum optics, Phys. Rev. Lett. 68,
580 (1992).

[65] A. J. Daley, Quantum trajectories and open many-body quan-
tum systems, Adv. Phys. 63, 77 (2014).

[66] J. M. Hickey, S. Genway, I. Lesanovsky, and J. P. Garrahan,
Time-integrated observables as order parameters for full count-

184302-6

https://doi.org/10.1103/PhysRevB.103.224210
https://doi.org/10.1103/PhysRevB.105.064305
https://doi.org/10.1103/PhysRevB.108.165126
https://doi.org/10.1103/PhysRevB.104.184422
https://doi.org/10.1103/PhysRevX.10.041020
https://doi.org/10.1103/PhysRevLett.126.170503
https://doi.org/10.1103/PhysRevB.106.214304
http://arxiv.org/abs/arXiv:2210.11547
https://doi.org/10.1103/PhysRevB.101.060301
https://doi.org/10.1103/PhysRevB.106.144313
https://doi.org/10.1103/PhysRevB.101.104302
https://doi.org/10.1103/PhysRevLett.128.010604
https://doi.org/10.21468/SciPostPhysCore.5.2.023
https://doi.org/10.1103/PhysRevB.104.155111
https://doi.org/10.1103/PhysRevB.106.214316
http://arxiv.org/abs/arXiv:2210.14242
https://doi.org/10.1103/PhysRevA.102.033316
https://doi.org/10.1038/s41567-022-01619-7
http://arxiv.org/abs/arXiv:2208.10506
https://doi.org/10.1038/s41567-023-02076-6
https://doi.org/10.1103/PhysRevB.89.134101
https://doi.org/10.1103/PhysRevB.106.L220304
https://doi.org/10.1103/PRXQuantum.2.030313
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevLett.119.250401
https://doi.org/10.1103/PhysRevLett.124.040605
https://doi.org/10.21468/SciPostPhysCore.6.3.051
https://doi.org/10.1088/1355-5111/8/1/015
https://doi.org/10.1103/PhysRevA.71.012330
https://doi.org/10.1119/1.1475328
https://doi.org/10.1080/00107510601101934
https://doi.org/10.12743/quanta.v2i1.12
https://doi.org/10.1103/PhysRevLett.123.090403
https://doi.org/10.21468/SciPostPhys.15.3.096
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1080/00018732.2014.933502


MULTIPARTITE ENTANGLEMENT IN THE … PHYSICAL REVIEW B 108, 184302 (2023)

ing statistics transitions in closed quantum systems, Phys. Rev.
B 87, 184303 (2013).

[67] X. Turkeshi, M. Dalmonte, R. Fazio and M. Schiró, Entan-
glement transitions from stochastic resetting of non-Hermitian
quasiparticles, Phys. Rev. B 105, L241114 (2022).

[68] J. Liu, H. Yuan, X.-M. Lu, and X. Wang, Quantum Fisher
information matrix and multiparameter estimation, J. Phys. A:
Math. Theor. 53, 023001 (2020).

[69] M. Yu, Y. Liu, P. Yang, M. Gong, Q. Cao, S. Zhang, H.
Liu, M. Heyl, T. Ozawa, N. Goldman, and J. Cai, Quantum
Fisher information measurement and verification of the quan-
tum Cramér–Rao bound in a solid-state qubit, npj Quantum Inf.
8, 56 (2022).

[70] P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Measur-
ing multipartite entanglement through dynamic susceptibilities,
Nat. Phys. 12, 778 (2016).

[71] R. Costa de Almeida and P. Hauke, From entanglement certi-
fication with quench dynamics to multipartite entanglement of
interacting fermions, Phys. Rev. Res. 3, L032051 (2021).

[72] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.184302 for a detailed discussion on the
diagonalization of the non-Hermitian Hamiltonian, for a de-
scription of the numerical implementation of the dynamics, for
details on the computation of correlation functions with related
numerical simulations, and for additional numerical results on
the QFI and the entanglement entropy.

[73] X. Turkeshi and M. Schiró, Entanglement and correlation
spreading in non-Hermitian spin chains, Phys. Rev. B 107,
L020403 (2023).

[74] G. B. Mbeng, A. Russomanno, and G. E. Santoro, The quantum
Ising chain for beginners, arXiv:2009.09208.

[75] E. R. Caianiello and S. Fubini, On the algorithm of Dirac spurs,
Nuovo Cimento 9, 1218 (1952).

[76] E. Barouch and B. M. McCoy, Statistical mechanics of the
XY Model. II. Spin-correlation functions, Phys. Rev. A 3, 786
(1971).

[77] D. Bertsimas and J. Tsitsiklis, Simulated annealing, Stat. Sci. 8,
10 (1993).

[78] S. Ledesma, G. Aviña, and R. Sanchez, Practical considerations
for simulated annealing implementation, in Simulated Anneal-
ing (IntechOpen, Rijeka, 2008), Chap. 20.

[79] S. Pappalardi, A. Russomanno, A. Silva, and R. Fazio, Mul-
tipartite entanglement after a quantum quench, J. Stat. Mech.
(2017) 053104.

[80] H. Oshima and Y. Fuji, Charge fluctuation and charge-resolved
entanglement in a monitored quantum circuit with U (1) sym-
metry, Phys. Rev. B 107, 014308 (2023).

[81] G. Martín-Vázquez, T. Tolppanen, and M. Silveri, Phase transi-
tions induced by standard and predetermined measurements in
transmon arrays, arXiv:2302.02934.

[82] U. Agrawal, A. Zabalo, K. Chen, J. H. Wilson, A. C. Potter,
J. H. Pixley, S. Gopalakrishnan, and R. Vasseur, Entanglement
and charge-sharpening transitions in U(1) symmetric monitored
quantum circuits, Phys. Rev. X 12, 041002 (2022).

[83] F. Barratt, U. Agrawal, S. Gopalakrishnan, D. A. Huse, R.
Vasseur, and A. C. Potter, Field theory of charge sharpening
in symmetric monitored quantum circuits, Phys. Rev. Lett. 129,
120604 (2022).

184302-7

https://doi.org/10.1103/PhysRevB.87.184303
https://doi.org/10.1103/PhysRevB.105.L241114
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1038/s41534-022-00547-x
https://doi.org/10.1038/nphys3700
https://doi.org/10.1103/PhysRevResearch.3.L032051
http://link.aps.org/supplemental/10.1103/PhysRevB.108.184302
https://doi.org/10.1103/PhysRevB.107.L020403
http://arxiv.org/abs/arXiv:2009.09208
https://doi.org/10.1007/BF02782927
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1088/1742-5468/aa6809
https://doi.org/10.1103/PhysRevB.107.014308
http://arxiv.org/abs/arXiv:2302.02934
https://doi.org/10.1103/PhysRevX.12.041002
https://doi.org/10.1103/PhysRevLett.129.120604

