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Topological insulators are unique materials possessing forbidden topological gap and behaving similar to usual
insulators in their bulk, but at the same time supporting localized in-gap states at their edges that demonstrate
exceptional robustness, because they are protected by topology of the system and cannot be destroyed by local
disorder or edge perturbations. Topological insulators discovered in different areas of physics, including optics,
acoustics, and physics of Bose-Einstein and polariton condensates, usually employ potential landscapes (or
lattices), designed such as to feature specific degeneracies in their linear modal spectra, that can be lifted by
various physical effects or controllable deformations of the potential, leading to opening of the topological gap,
where edge states appear. In this work, using binary Bose-Einstein condensate we propose a type of topological
insulator that does not explicitly use specially designed potential landscape, but instead utilizes spatially inhomo-
geneous Rabi coupling between two components, in the form of a one- or two-dimensional Su-Schrieffer-Heeger
structure, combined with Zeeman splitting. Such Rabi lattices reveal the appearance of topologically nontrivial
phases (including higher-order ones) controlled by spatial shift of the domains with enhanced coupling between
condensates within unit cells of the structure, where localized topological states appear at the edges or in the
corners of truncated Rabi lattice. We also show that the properties of edge states, their spatial localization, and
location of their chemical potential within topological gap can be controlled by interatomic interactions that lead
to formation of gap topological edge solitons bifurcating from linear edge states. Such solitons in condensates
with inhomogeneous Rabi coupling appear as very robust nonlinear topological objects that do not require any
threshold norm for their formation even in two-dimensional geometries, and that can exist in stable form for both
attractive and repulsive interactions. Our results demonstrate considerable enhancement of stability of solitons in
topological Rabi lattices in comparison with trivial Rabi lattices. They open additional prospects for realization
of topologically nontrivial phases by spatial engineering of coupling in multicomponent systems.
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I. INTRODUCTION

The phenomenon of topological insulators and closely as-
sociated with it formation of topologically protected edge
states attracts nowadays enormous interest in diverse areas
of science beyond solid-state physics, where such materials
were initially discovered [1,2]. Topological insulators were
observed in mechanics [3], acoustics [4–6], on different lin-
ear [7–10], and nonlinear [11] photonic platforms, including
photonic crystals [12–16] and waveguide arrays [17–21], in
low-dimensional systems [22], in dissipative polariton con-
densates in microcavities [23–28], and in atomic systems in
optical lattices [29–39]. Most of these realizations of topo-
logical insulators employ specially designed potentials, where
spectra of linear eigenmodes possess degeneracies, such as
Dirac points, that split under the action of certain physical
effects (for example, in the presence of spin-orbit coupling
and Zeeman splitting in atomic systems [40,41] or due to
waveguide twisting in photonic systems [17]) or upon control-
lable deformation of the potential, preserving its periodicity
(such as introduction of detuning of sublattices forming
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potential in valley-Hall systems [20]) leading to opening of
the topological gap in linear spectrum, where edge states may
appear if the insulator is truncated. Among the paradigmatic
and simplest systems supporting topological edge states are
the Su-Schrieffer-Heeger (SSH)-like structures [42], created
recently also in atomic systems [33–35], and their exten-
sions to two-dimensional geometries representing examples
of higher-order topological insulators (see, e.g., Ref. [43–47]
and recent review, Ref. [48]).

If the medium, where the topologically nontrivial structure
is created, is in addition nonlinear, the possibilities for control
of evolution of topological edge states expand substantially,
since nonlinear response allows one to tune the location of
edge states in the gap offering control over their localization
degree [49], see also the review, Ref. [11]. Strong confine-
ment of topological edge states leads to the enhancement of
parametric interactions involving such states, as was already
observed experimentally [50–52]. In nonlinear medium, non-
trivial topological phases can be induced by large-amplitude
excitations [53–56], even if linear structure is topologically
trivial. Most remarkably, nonlinear topological systems can
also support a broad spectrum of topological edge solitons,
usually bifurcating from linear edge states, as reported in var-
ious SSH-like atomic [57–59], mechanical [60], conservative
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[61–67], and dissipative [68–70] chains, in Floquet systems
supporting unidirectional solitons [71–79], topological fiber
loops [80], valley-Hall systems [81–83], photonic graphene
[84], and higher-order insulators [85–87], to mention a few
examples.

As mentioned above, usually topological systems rely
on specially designed potentials, so the principal question
arises whether the system with nontrivial topological prop-
erties can be realized without designing special potential
landscape. In this work we propose such a system that is
represented by a binary [88–89] Bose-Einstein condensate
(BEC) with spatially inhomogeneous and topologically non-
trivial Rabi coupling landscape between components. A linear
interconversion (Rabi coupling) between the species, usually
represented by two different spin atomic states, can be realized
experimentally with existing techniques, for example, by ap-
plying a resonant electromagnetic field to condensate [90,91].
Remarkably, Rabi coupling can be made spatially inhomoge-
neous: When it is periodic, it creates so-called Rabi lattice,
where nontopological one-dimensional gap solitons can form
[92]. Rabi coupling can be also made periodic in time [93]
imposing stabilizing action on multidimensional solitons even
for attractive interactions.

Here we predict that when Rabi coupling landscape in bi-
nary BEC has the form of SSH lattice, whose unit cells feature
two domains (spots) with enhanced coupling between species,
one can realize topologically nontrivial phase by shifting these
domains towards the edges of the unit cell. In this topological
phase, localized states emerge at the edges of truncated Rabi
lattice. We consider both one- (1D) and two-dimensional (2D)
versions of Rabi lattices, the latter being the first example of
higher-order topological insulator created by inhomogeneous
Rabi coupling and supporting topological corner modes. The
topological nature of these states is confirmed by calculation
of topological invariants for bands of SSH Rabi lattice. More-
over, we show that in the presence of attractive or repulsive
interactions this system supports topological edge solitons
bifurcating in the gap from linear edge states. Such soli-
tons show unexpected enhanced stability even in comparison
with 1D gap solitons in nontopological Rabi lattices [92]
and even in 2D settings, illustrating strong stabilizing role
of inhomogeneous coupling, that is particularly important in
multidimensional geometries [94–96].

II. THE MODEL

The evolution of two components of binary BEC in
the presence of spatially inhomogeneous Rabi coupling and
Zeeman splitting can be described by the dimensionless
Gross-Pitaevskii equation for the mean-field wave function
�(x, y, t ) = (ψ+, ψ−)T:

i
∂�

∂t
= −1

2
∇2� − σ1R(x, y)� + σ3�� + g(�†�)�, (1)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian; σ1 and σ3

are the Pauli matrices; � accounts for amplitude of Zeeman
splitting that introduces the asymmetry between two com-
ponents; the parameter g characterizes the strength of the
intra- and interspecies interactions that for simplicity is as-
sumed here equal and attractive (repulsive) for g < 0 (g > 0).

We assume that no external potential is explicitly present in
the system, but that nontrivial topology arises from spatial
modulation of the Rabi coupling between ψ+ and ψ− com-
ponents described by the function R(x, y). As the simplest
possible structures, we consider 1D or 2D SSH Rabi lattices,
consisting of spots with locally increased coupling strength
[see Figs. 1(a) and 5(a) for examples of such lattices], i.e.,
R(x, y) = ρ

∑
m,n e−[(x−xm )2+(y−yn )2]/σ 2

, with amplitude ρ = 8
and characteristic width σ = 0.5, where nodes (xm, yn) of the
lattice are arranged such as to form 1D line or 2D square SSH
structures. Further we consider both zero and nonzero values
of Zeeman splitting.

It should be stressed that by introducing the matrix S:

S = 1

21/2

(
1 −1
1 1

)
, S−1 = 1

21/2

(
1 1

−1 1

)
, (2)

which diagonalizes the Pauli matrix σ1, i.e., Sσ1S−1 =
−σ3, one can transform Eq. (1) [by multiplying it with
matrix S and introducing the wave function � = S� =
2−1/2(ψ+ − ψ−, ψ+ + ψ−)T] into the equation for this new
wave function:

i
∂�

∂t
= −1

2
∇2� + σ3R(x, y)� + σ1�� + g(�†�)�, (3)

where nonlinear term maintains its functional form because
Manakov nonlinearity is considered here. This transformation
shows that the system with inhomogeneous Rabi coupling
between two components is formally analogous to the system
with specific Zeeman SSH-like lattice (to the best of our
knowledge topological solitons in lattices of this type were
never explored previously) with uniform coupling between
components whose strength is determined by the amplitude
of Zeeman splitting � from the original Eq. (1).

On the other hand, by introducing the matrix Q with
coordinate-dependent elements:

Q = (�2 + R2)−1/2

2

(
� + (�2 + R2)1/2 −R
(�2 + R2)1/2 − � R

)
, (4)

whose inverse is given by

Q−1 = R−1

(
R R

� − (�2 + R2)1/2
� + (�2 + R2)1/2

)
,

(5)

which diagonalizes the entire matrix −σ1R + σ3� from evo-
lution Eq. (1), i.e., Q(−σ1R + σ3�)Q−1 = (�2 + R2)1/2

σ3,
after multiplication of the latter equation with coordinate-
dependent matrix Q and introduction of new wave function
X = Q�, one can rewrite Eq. (1) in the following alternative
form:

i
∂X
∂t

= − 1

2
∇2X − Q∇Q−1∇X − 1

2
Q∇2Q−1X

+ (�2 + R2)
1/2

σ3X + gQ([Q−1X]
†Q−1X)Q−1X.

(6)

Equation (6) shows that the system can be also con-
sidered as a system with Zeeman SSH-like lattice, but
with coordinate-dependent coupling defined by Q∇Q−1 and
Q∇2Q−1 matrices, whose elements are significant because
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FIG. 1. (a) Schematic illustrations of truncated Rabi lattice R(x, y) with shifts s = −0.4 (top), s = 0 (middle), and s = +0.4 (bottom).
The red dashed rectangle indicates the lattice unit cell. Linear spectrum of truncated Rabi lattice versus shift s for Zeeman splitting � = 0 (b)
and � = 1(c). Edge states are shown with red dots. Examples of profiles of linear eigenmodes of the Rabi lattice in topological (d), (f), (g), (i)
and nontopological (e), (h) phases corresponding to the blue dots in (b) and (c). Both w+ and w− components are shown.

they involve derivatives of the function R that contains
strongly localized spots (these matrix elements are rather
cumbersome and are not presented here). This highlights that
the effect of inhomogeneous Rabi coupling in Eq. (1) is not
equivalent to the presence of the usual potential. Moreover,
because matrix Q is not a unitary matrix, the latter system will
be also characterized by the inhomogeneous cubic nonlinear-
ity that will impact soliton solutions. Further we concentrate
on topological properties of the system (1).

The unit cell of the 1D SSH Rabi lattice includes two spots
(dimer), where coupling between BEC species is enhanced
[Fig. 1(a)]. The width of the unit cell is further set as dx =
4. To introduce nontrivial topology into this system, we shift
the “sites” in each unit cell by the distance s in the opposite
directions from the locations corresponding to equal spacing
dx/2 between all sites of the lattice (middle panel). For s <

0 [top panel in Fig. 1(a)] two sites in each dimer approach
each other, while for s > 0 [bottom panel in Fig. 1(a)] they
are moving away from each other towards the borders of the
unit cell. We consider a 1D lattice with 11 unit cells.

We also consider 2D generalization of this system. The
square unit cell of the 2D SSH Rabi lattice includes already
four spots [see Fig. 5(a)] and it has dimensions dx × dy. Fur-
ther we consider square unit cell with dx = dy = 4 and assume
that pairs of spots on the diagonals of the unit cell can be
shifted (from the locations that correspond to the 2D lattice
with identical spacing dx/2 = dy/2 between all sites) in the
opposite directions along the diagonals (in this case the shift
of lattice sites along the x and y axes is identical and is equal
to s). For s > 0 [Fig. 5(b)] the sites shift towards the corners

of the unit cell, while at s < 0 they shift towards the center
of the unit cell. In the 2D case the Rabi SSH lattice that we
consider had 5 × 5 unit cells (i.e., 100 spots where coupling
between components is enhanced).

III. LINEAR EDGE STATES AND ZAK PHASE FOR 1D
RABI SSH LATTICE

The shift of sites in the 1D Rabi SSH lattice has a
profound effect on its linear spectrum and may induce topo-
logical phase. To show this, it is instructive to calculate
linear eigenmodes of the 1D lattice that can be found in
the form �(x, y, t ) = w(x, y)e−iμt , where w = (w+,w−)T de-
scribes the profile of the eigenmode with chemical potential
(eigenvalue) μ, with w± being real functions. Such modes
satisfy the linear equation

μw = −1

2
∇2w − σ1R(x, y)w + σ3�w, (7)

obtained from Eq. (1) using the above substitution and set-
ting g = 0. We solved it using plane-wave expansion method.
Figures 1(b) and 1(c) show two representative dependences
of the eigenvalues of all lattice modes on the shift s in the
absence (� = 0) and in the presence (� = 1) of Zeeman
splitting, respectively. One can see two bands in the spectrum
(a consequence of the fact that there are two sites in the unit
cell). Black dots correspond to extended bulk states. Red dots
correspond to edge states emerging in the gap in topologically
nontrivial regime at s > 0. At s < 0 the gap opens as well, but
without edge states in it, since in this case the system remains
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FIG. 2. Two lowest bands of the 1D Rabi lattice for s = −0.4 (a)
and s = +0.4 (b), at Zeeman splitting � = 1. Winding numbers for
each band are shown with red letters in each panel. (c) Asymmetry
ratio R± for linear edge states, defined as per Eq. (9), versus � in
topological regime at s = 0.4.

nontopological. The appearance of topological edge states is
associated with a nonzero topological invariant of the system
– the winding number, related to the Zak phase – that can be
calculated for each band n of periodic (nontruncated) lattice
using the expression [97]:

Cn = i

2π

∫
BZ

〈uk,n(x, y)|∂k|uk,n(x, y)〉dk, (8)

where uk,n(x, y) = uk,n(x + dx, y) is the x-periodic part of
the Bloch function �(x, y, t ) = uk,n(x, y)eikx−iμt of Rabi lat-
tice, k is the Bloch momentum, uk,n = (ukn+, ukn−)T , and
the integration is carried over the first Brillouin zone. Typi-
cal dependences μ(k) for two lowest bands are presented in
Figs. 2(a) and 2(b) for negative and positive shifts s at � = 1.
When s � 0 the winding number is zero for both bands – con-
sequently, no edge states appear in the spectrum of truncated
Rabi lattice in Fig. 1(c) in this regime. In contrast, for s > 0
one gets nonzero winding numbers C1 = +1 and C2 = −1
for the lowest two bands [see Fig. 2(b)], that indicates that
edge states can emerge in this regime in the topological gap
between these two bands. This picture holds for various values
of Zeeman splitting � > 0. Increasing � leads to a downshift
of the spectrum in Fig. 1(c) and to a slight broadening of the
bands, while their structure does not change qualitatively.

Examples of linear modes supported by truncated Rabi
lattice are presented in Figs. 1(d)–1(i). These modes corre-
spond to the blue dots in Figs. 1(b) and 1(c) and they are
enumerated accordingly. Here we show both w+ and w−
components that feature a similar degree of localization. The
modes are normalized such that

∫∫ 〈w|w〉dxdy = 1. Because
our lattice contains an integer number of the unit cells, the
edge states emerge simultaneously at both edges of the lattice,
leading to their out-of-phase [Figs. 1(d) and 1(f)] and in-phase
[Figs. 1(g) and 1(i)] combinations. Since we consider large
lattices, these combinations are practically degenerate and
have nearly identical chemical potentials μ for not too small
shifts s of the lattice sites. The localization of topological edge
states shown in Figs. 1(d), 1(f), 1(g), and 1(i) increases with

increase of s. All modes belonging to bulk bands [Figs. 1(e)
and 1(h)] are delocalized. It should be mentioned that due to
symmetry of Eq. (7), at � = 0 the w± components feature
exactly the same shapes, while nonzero � introduces the
asymmetry between them, c.f. Figs. 1(d) and 1(f). The latter
can be quantified by the parameter

R± = N±
N+ + N−

, (9)

defined through norms of two components N± = ∫∫
w2

±dxdy
of solution. The dependences R±(�) are depicted in Fig. 2(c),
and they show that for positive � the w− component becomes
stronger than the w+ one, while for negative � the situation is
reversed. Increasing |�| leads to more and more pronounced
asymmetry.

IV. EDGE SOLITONS IN 1D RABI SSH LATTICE

Having shown that Rabi SSH lattice can support local-
ized linear edge states of topological origin, we now turn
to their nonlinear generalizations; edge solitons that can bi-
furcate from linear edge states in topological gap under the
action of interatomic interactions. Such solitons, �(x, y, t ) =
w(x, y)e−iμt , where w = (w+,w−)T, can be obtained from the
nonlinear equation following from Eq. (1) using the Newton
method:

μw = −1

2
∇2w − σ1R(x, y)w + σ3�w + g(w†w)w. (10)

Here we consider both repulsive and attractive interactions
corresponding to g = +1 and g = −1, respectively. Edge soli-
ton families characterized by the dependence of total norm
N = ∫∫ 〈w|w〉dxdy on chemical potential μ are presented in
Fig. 3(a) for representative case of � = 1, s = 0.4, where red
lines correspond to repulsive interactions, while black and
blue lines correspond to attractive interactions. Grey areas
in Fig. 3(a) correspond to allowed bands. One can see that
edge solitons bifurcate from linear edge states, as their norm
vanishes exactly in the point of bifurcation. The sign of inter-
actions determines the direction of bifurcation. The norm of
soliton increases away from the bifurcation point, until soliton
enters into one of the allowed bands (depending on sign of g),
where it couples with bulk modes and exhibits delocalization.
Localization of solitons can be characterized by the form-
factor χ (the quantity that is inversely proportional to soliton
width) calculated using the formula

χ2 = N−2
∫∫

〈w|w〉2dxdy. (11)

The larger the form factor, the better the localization of
soliton. Representative dependences χ (μ) are presented in
Fig. 3(b). In the bifurcation point the form factor of the soli-
ton coincides with that of the linear edge state. Close to the
bifurcation point attractive interactions (black line) initially
lead to enhancement of soliton localization, while repulsive
interactions (red line) lead to slight soliton expansion. The
form factor notably decreases inside allowed bands, where
soliton acquires long tails due to coupling with bulk modes.

Properties similar to properties of solitons in inhomoge-
neous Rabi coupling landscapes were encountered for 1D
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FIG. 3. Families of edge solitons in 1D Rabi SSH lattice and their profiles. Norm N (a) and form factor χ (b) versus chemical potential
μ for different families of solitons bifurcating from linear topological edge states, as well as solitons in semi-infinite gap. Red (black or blue)
curves correspond to g = +1 (g = −1), grey regions show bulk bands. (c)–(h) Representative profiles of solitons corresponding to the colored
dots in (a), among them (d) displays the x cross section of the soliton to highlight the structure of soliton tails. All branches shown with solid
lines correspond to stable states. In all cases � = 1, s = 0.4.

optical edge solitons in the usual SSH lattices without Rabi
coupling, e.g., in Refs. [62,63] illustrating bifurcation of soli-
tons from linear edge states under the action of nonlinearity
for the lattice consisting of dimers, and in Ref. [64] for the
lattice consisting of trimers. All these works considered scalar
systems with usual SSH-like optical potentials, in contrast
to spinor system considered here. Nevertheless, 1D solitons
obtained in Refs. [62–64] show qualitatively similar behavior
to solitons in atomic systems with inhomogeneous Rabi cou-
pling considered here, namely, their amplitude also increases
away from the bifurcation point and they delocalize when
their propagation constants shift into allowed bands of the
system.

In addition to edge solitons in topological gap [the region
between two allowed grey bands in Fig. 3(a)], we also found
edge solitons in the semi-infinite gap for attractive interac-

tions. While topological solitons are thresholdless and exist
even when their norm N → 0, solitons in the semi-infinite
gap exist above threshold norm, even though one of the fam-
ilies (the one with lower norm) looks like a continuation
of the edge soliton family in semi-infinite gap. It should be
stressed that solitons in topological and semi-infinite gaps
differ in their internal structure. Representative soliton pro-
files are shown in Figs. 3(c)–3(h), whose labels correspond
to labels near the dots in Fig. 3(a). Figures 3(c)–3(f) display
solitons inside the topological gap, while Figs. 3(g) and 3(h)
show solitons in the semi-infinite gap. We use the continuous
model in our simulations that takes into account all details
of Rabi coupling landscape and complex interplay between
nonlinearity and dispersion (i.e., we are far from tight-binding
model assuming invariable modal shapes and considering only
varying amplitudes on different “sites” of SSH-like structure).

FIG. 4. Stable evolution of edge solitons from topological gap at μ = −1.85 for repulsive interactions (a), at μ = −2.85 for attractive
interactions (b), and evolution of stable soliton from black branch in semi-infinite gap with μ = −3.1 for attractive interactions (c). Only |ψ−|
distributions are shown. Corresponding maximal amplitudes of both components are shown in the top row as functions of time. In all cases
s = 0.4, � = 1.
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For this reason the y profile of soliton changes in accordance
with the local value of amplitude [see an example of x cross
section of the profile for a topological soliton denoted by
point “d” in Fig. 3(d)]. For � = 1 the solitons have unequal
w+ and w− components, by analogy with properties of linear
modes in this system. Gradual formation of long tails inside
the lattice for μ values close to the edges of the topological
gap is particularly well visible in Fig. 3(d). In solitons from the
topological gap, the field changes its sign in sites belonging
to neighboring dimers [Fig. 3(c)], but in solitons from the
semi-infinite gap the field does not change its sign in the
above sites [Figs. 3(g) and 3(h)]. Notice also that two soliton
families found in the semi-infinite gap merge near the gap
edge.

To confirm stability of solitons discussed above we mod-
eled their evolution in the presence of various initial weak
perturbations using Gross-Pitaevskii Eq. (1). The evolution of
such perturbed states up to times t ∼ 104 indicate that for our
parameters all branches of solitons found in the gaps (topo-
logical or semi-infinite ones) are stable, including the weakly
localized states near the topological gap edges. Examples of
stable evolution of solitons belonging to the topological (semi-
infinite) gap are shown in Figs. 4(a) and 4(b) [Fig. 4(c)]. Only
the initial (middle row) and final distributions (bottom row)
are shown here for |ψ−| component, while top row shows
evolution of maximal amplitude a± = max |ψ±| with time.
As one can see, such states are robust, including a weakly
localized state in Fig. 4(a). The stability of such states is a
noteworthy result, especially in attractive BEC, taking into
account that it is achieved only due to modulation of coupling,
without using usual external potentials.

V. LINEAR CORNER STATES SUPPORTED BY 2D RABI
SSH LATTICE

In this section we consider 2D generalization of the Rabi
SSH lattice. As mentioned above, unit cells of such lattices
contain four sites, whose shift along the diagonal of the unit
cell allows one to realize topologically nontrivial structure,
see Figs. 5(a)–5(c) illustrating uniform lattice, topologically
nontrivial structure obtained at s > 0, and topologically trivial
structure with s < 0, respectively. The 2D Rabi SSH lattice is
a realization of higher-order topological insulator and it af-
fords the possibility of studying the properties of corner states
supported by inhomogeneous coupling landscape R(x, y).
Such corner states emerge in truncated 2D lattices for positive
shifts s > 0, when sites in the unit lattice cells are displaced
towards their corners. The transformation of the linear spec-
trum of the 2D Rabi lattice as a function of s is presented in
Fig. 5(d). The lattice that we consider here contains 5 × 5 unit
cells, each cell involves four domains with locally increased
coupling. At s > 0 one can observe the appearance of four
bulk bands and one edge band in the spectrum. The strongly
localized corner states depicted in Fig. 5(d) by red dots emerge
only at sufficiently large shift s > 0.35, in the third gap. No
localized states were found in nontopological regime at s < 0.
Representative examples of linear states corresponding to the
blue dots in Fig. 5(d) are presented in Figs. 5(e)–5(h). Among
them, Fig. 5(e) illustrates an example of bulk mode at s = 0,
the edge mode is shown in Fig. 5(f) (the eigenvalues of such

FIG. 5. Examples of 2D Rabi SSH lattices corresponding to
shifts s = 0 (a), s = 0.4 (b), and s = −0.4 (c). The red dashed rectan-
gle indicates the lattice unit cell. (d) Transformation of the spectrum
of linear modes of 2D Rabi lattice with increasing shift of its sites
s for Zeeman splitting � = 1. Eigenvalues of bulk and edge modes
are shown black, while eigenvalues of topological corner modes are
shown red. Representative extended modes of Rabi lattice (e), (f)
corresponding to dots 1 and 2 in (d), and topological modes (g), (h)
corresponding to dots 3 and 4 in (d).

modes actually also form the band in the spectrum), while
Figs. 5(g) and 5(h) display two different examples of topo-
logical corner states at s = 0.4. Due to C4 discrete rotational
symmetry of the lattice, there exist four practically degenerate
corner states; here we show only two of them. Just as in the
1D case, nonzero Zeeman splitting � introduces asymmetry
between w+ and w− components.

Topological properties of the 2D Rabi SSH lattice are char-
acterized by so-called 2D polarization, defined for a periodic
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FIG. 6. Norm N (a) and form factor χ (b) versus chemical potential μ for different families of corner solitons bifurcating from linear
topological corner state for � = 1 and s = 0.4. Red (black or blue) curves corresponding to g = +1 (g = −1), shaded regions show bulk and
edge bands. Panels (c)–(h) display examples of solitons in different gaps of the spectrum corresponding to the dots in panel (a). Branches
shown with solid lines are stable, while those shown with dashed lines are unstable.

lattice as [98]:

Px = i

S

∫∫
BZ

〈uk,n(x, y)|∂kx |uk,n(x, y)〉dkxdky,

Py = i

S

∫∫
BZ

〈uk,n(x, y)|∂ky |uk,n(x, y)〉dkxdky, (12)

where uk,n(x, y) = uk,n(x + dx, y + dy) is the periodic part of
the 2D Bloch function � = uk,neikxx+ikyy−iμt of the lattice,
and S is the area of the first Brillouin zone, k = (kx, ky) is
the Bloch momentum. The topologically nontrivial phase is
characterized by nonzero polarization Px = Py = 1/2 for the
topologically nontrivial gap where the corner state appears,
while in nontopological regime polarization is zero, for details
see Ref. [98].

VI. TOPOLOGICAL CORNER SOLITONS
IN 2D RABI SSH LATTICE

In this section we obtain the families of 2D topological cor-
ner solitons that can bifurcate from their linear counterparts
at g �= 0. Their profiles are described by Eq. (10) with the
R(x, y) function describing the 2D Rabi lattice. Norm N of
corner states as a function of chemical potential μ is shown
in Fig. 6(a) in different gaps of the spectrum. Corner solitons
belonging to red (black or blue) branches are supported by
repulsive (attractive) interatomic interactions. Corner solitons
bifurcate from linear corner states in the right outermost gap in
Fig. 6(a). As in the 1D case, when a corner soliton enters into
the bulk or edge band, it strongly couples with corresponding

states and becomes delocalized. This is accompanied by a
rapid growth of the norm. The branches of the corner solitons
found for attractive nonlinearity in all gaps to the left of
topological gap exist above the threshold norm. Such branches
may join with other branches near gap edges, see, for example,
the dashed blue curve joining with the black one in Fig. 6(a).
The dependence of soliton form factor χ on the chemical
potential μ is shown in Fig. 6(b). One can observe overall
growth of the localization of the corner soliton with decrease
of μ, interrupted by the regions of abrupt delocalization, when
μ enters into the bands. For example, solitons deeply in the
semi-infinite gap [see example in Fig. 6(h)] are well localized,
but they have different structure of tails from corner solitons in
right topological gap. Examples of corner solitons from differ-
ent gaps are shown in Figs. 6(c)–6(h). Among them, solitons
from topological gap feature staggered tails, see Figs. 6(c)
and 6(d) that are most pronounced in repulsive BEC. Solitons
from black and blue branches in the second gap (from the left)
in Fig. 6(a) differ in population of edge sites adjacent to the
corner one, for example, in the state shown in Fig. 6(g) this
population is much stronger than for state in Fig. 6(f) for the
same μ. Notice that in all solitons shown here w+ and w−
components have different amplitudes due to nonzero Zeeman
splitting.

Direct simulations of the evolution of perturbed corner
solitons show that the majority of obtained branches are stable
in both attractive and repulsive BEC. This is an interesting re-
sult once again confirming that spatially inhomogeneous Rabi
coupling has a strong stabilizing action, in particular for states
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FIG. 7. Examples of stable evolution of corner solitons (a) with μ = −1.90 in repulsive BEC and (b) with μ = −2.70 in attractive BEC.
(c) Example of unstable evolution of soliton with μ = −3.56 belonging to blue branch in Fig. 6(a) in the attractive case. Peak amplitudes
a± = max |ψ±| are shown as functions of time in the left column, while right panels compare initial and final profiles of ψ− component.

of topological origin. An example of the stable evolution of
soliton with μ = −1.9 supported in the topological gap by
repulsive interactions is shown in Fig. 7(a), while evolution of
stable soliton from the adjacent gap with μ = −2.7 supported
by attractive interactions is depicted in Fig. 7(b). In both
cases, corner solitons survive over long time intervals and
their amplitude shows only small oscillations due to initially
imposed perturbation. The example of decay of a soliton with
μ = −3.56 from blue dashed branch in an attractive medium
is shown in Fig. 7(c), where one can see irregular amplitude
jumps and radiation into the bulk of the lattice.

VII. CONCLUSIONS

Summarizing, we proposed a system, where nontrivial
topology can be created by spatial modulation of Rabi cou-
pling strength between two BEC species. If such modulation
forms a 1D or 2D SSH lattice, the latter can support localized
edge or corner modes, whose existence is guaranteed by the

nontrivial topology of the bands of such Rabi lattice, despite
the fact that we do not explicitly use an external linear po-
tential. In the presence of attractive or repulsive interatomic
interactions, such edge and corner states give rise to excep-
tionally robust edge and corner solitons, whose stability is
a result of spatial modulation of the coupling strength. Our
study paves the way for realization of new topological phases
in atomic systems.
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