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Localization and spectrum of quasiparticles in a disordered fermionic Dicke model
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We study a fermionic two-band model with the interband transition resonantly coupled to a cavity. This model
was recently proposed to explain cavity-enhanced charge transport, but a thorough characterization of the closed
system, in particular localization of various excitations, is lacking. In this paper, using exact diagonalization, we
characterize the system by its spectrum under various filling factors and variable disorder. As in the Dicke model,
the effective light-matter coupling scales with the square root of the system size. However, there is an additional
factor that decreases with increasing doping density. The transition from the weak-coupling regime to the strong-
coupling regime occurs when the effective light-matter coupling is larger than the electronic bandwidth. Here, the
formation of exciton-polaritons is accompanied by the formation of bound excitons. Photon spectral functions
exhibit significant weights on the in-gap states between the polaritons, even without disorder. Finally, while
the localization of electron-hole excitations in a disordered system is lifted by strong coupling, the same is not
true for free charges, which remain localized at strong and even ultrastrong coupling. Based on this finding, we
discuss scenarios for the observed enhanced charge transport.
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I. INTRODUCTION

Strong and ultrastrong coupling between light and matter
has opened up new avenues in chemistry and physics [1–4].
In these regimes, various fundamental matter excitations can
hybridize with photons to form so-called polaritons, and hence
the basic properties of a physical system can be altered. For
example, polaron-photon coupling can modify chemical re-
action paths and enhance or reduce the reaction rate [5–8].
Bose-Einstein condensation and lasing is observed in a system
of exciton-polaritons [9–13]. Further possible applications in-
clude quantum information processing [14,15] and material
engineering [16–21]. The physical platform is not limited to
an optical cavity. Similar effects can be achieved in circuit
[22] or plasmonic [23–26] quantum electrodynamics.

Among the various applications is the manipulation of
transport processes in organic materials. For example, strong
light-matter coupling can enhance energy transfer processes
[27–30]. The underlying mechanism is by now well un-
derstood in terms of a cavity-mediated long-range hopping
of excitons [31–35]. Important steps towards manipulating
charge transport were taken by experiments in the Ebbesen
group [36,37]. Here, the strong coupling between a surface
plasmon and organic semiconductors (both n type and p
type) enhances the electric conductivity. Since electrons in
organic semiconductors, in general, suffer from large static
and dynamic disorder, their mobility is ascribed to incoher-
ent diffusive transport [38–41]. The enhancement of electric
conductivity indicates a novel type of transport mechanism,
because effective long-range hopping, as in the case of exci-
tons, is impossible [42]. Thus, it is an important problem to
understand the microscopic processes.

By now, a few theoretical studies have manifested the en-
hanced electronic transport via strong light-matter coupling.

In Refs. [43,44], a mechanism is described where the coupling
opens up an additional transport channel through another
band. At the same time, the role of source and drain terminals
are emphasized. The original publication on the experiment
maintains that the electronic wavefunctions are delocalized
as a result of the strong hybridization of excitons and plas-
mons, which presumably enhances the electronic conductivity
[36]. However, the mechanism behind this delocalization re-
mained an open question. Further studies have considered, the
charge transfer rates from donors to acceptors [45] or between
molecules of the same type [42].

In this paper, we study disordered two-band electrons
strongly coupled to a cavity mode in order to elucidate the
relationship among the excitation spectrum, localization, and
the mobility. By exact diagonalization, we first calculate the
energy spectrum of the model and clarify the effects of the
rotating-wave approximation (RWA), electron filling, and dis-
order. We show that, while the spectrum at half-filling depends
on the light-matter coupling g through g̃ = g

√
L as in the

Dicke model, the doping modifies the scaling form.
There are various regimes depending on the strength of the

light-matter coupling. At weak coupling g̃, few eigenstates
have a significant photon content. As g̃ increases, there is an
intermediate point g̃macro, below which the cavity excitation is
shared by a macroscopic number of states. Shortly after this
point, cavity-mediated electron-hole attraction leads to the
formation of excitons. The threshold for the strong-coupling
regime g̃SC

th is then marked by the formation of well-defined
exciton-polariton states; it occurs when the effective coupling
g̃ is larger than the bandwidth W . All of these effects are
captured by the RWA. In the ultrastrong-coupling regime,
g̃ � g̃USC

th , where the RWA breaks down, the mixing of
states with different photon numbers becomes important.
Deep inside the ultrastrong-coupling regime, there may
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exist a transition to a superradiant phase, which is, however,
inhibited by the diamagnetic term in the Hamiltonian [46–51].
For realistic parameters for organic semiconductors, these
energy scales follow

g̃macro < g̃SC
th � g̃USC

th � g̃SR
c . (1)

We shall mainly focus on the strong- and ultrastrong-coupling
regimes sufficiently below g̃SR

c .
We further investigate the generalized inverse participation

ratio, which quantifies the localization of different kinds of
quasiparticles. It is shown that the localized charges, i.e., elec-
trons and holes, remain localized under coupling to a cavity
mode, and their transport behavior is marginally affected.
In contrast, electron-hole excitations localized by disorder
can be delocalized due to the light-matter coupling, as also
shown in previous studies [31,32]. Thus, we consider that
the enhancement of electric conductivity is achieved through
exciton-polariton formation and speculate that the dissocia-
tion of the exciton at the electrodes play an important role.

The rest of the paper is organized as follows. In Sec. II,
we present the model and explain the structure of the Hilbert
space. The employed method is briefly discussed as well. Sec-
tion III shows the energy spectrum of the model and compares
various effects of the RWA, disorder, and doping. In Sec. IV,
we discuss the local density of states of various excitation and
elaborate on the formation of excitons and exciton-polaritons.
The localization properties of electrons and excitons under
strong coupling are discussed in Sec. V by inverse participa-
tion ratios. Section VI concludes the paper.

II. MODEL

As a model of a one-dimensional organic semiconductor
coupled to cavity photons or surface plasmons, we consider
the following Hamiltonian

H = Hel + Hcav + Hel-cav, (2)

consisting of a purely electronic part, a bosonic part, and an
interaction term. These are, respectively, given by

Hel = −
∑
ν,r

Jν,r (c†
ν,rcν,r+1 + c†

ν,r+1cν,r ) +
∑
ν,r

εν,rnν,r,

(3a)

Hcav = ωca†a + D(a + a†)2, (3b)

Hel-cav = g(a + a†)
∑

r

[c†
2,rc1,r + c†

1,rc2,r], (3c)

and schematically shown in Fig. 1. The labels represent lat-
tice site (r = 1, . . . , L), lower and upper molecular orbital
(ν = 1, 2), and cavity (c). The hopping and on-site terms of
the electrons can be site-dependent due to static disorder, i.e.,
Jν,r = Jν + δJν,r and εν,r = εν + δεν,r . Note that the electrons
are spinless, since at the fillings considered below interaction
effects between different species are not important. We fix the
cavity frequency to be resonant with the average molecular
excitation energy, ωc = ε2 − ε1. Further terms correspond to
the pA and A2 terms in the continuum minimal coupling
Hamiltonian, projected to the most relevant molecular orbitals
[47]. To be consistent with the lower bound given by the
Thomas-Reiche-Kuhn sum rule, we set the coefficient D of

FIG. 1. Schematic of the model indicating the cavity levels (left,
blue) and the average local electronic levels (right, gray), where the
cavity frequency ωc and the electronic energy gap ε2 − ε1 are on
resonance. The hopping strengths J1,2 differ between both bands and
the light-matter coupling g can induce processes where electron-hole
excitations are created (red dashed arrows) or annihilated (red solid
arrows).

the A2 term to be on the order of the lower bound, D ∼ Lg2/ωc

[46].
The model represents a fermionic generalization of the

Dicke model where each lattice site has four instead of two
states, including doubly occupied and completely unoccupied
molecules [44]. The Hilbert space H can, thus, be block diag-
onalized according to the total electron number 0 � N � 2L,
which is conserved by the Hamiltonian, i.e., H = ⊕

N HN .
The analogy to the Dicke model is most pronounced in the
half-filled case N = L, where the electronic ground state at
g = 0 consists of the fully occupied lower orbitals and empty
upper orbitals. In every other sector HN �=L, any state involves
doubly occupied or empty molecules. These molecules can
be considered as carrying a conduction electron or a hole.
In the present paper, the electron number is mainly restricted
to N = L − 1, L, L + 1, i.e., the undoped, single-electron, or
single-hole states.

Each of these sectors can be characterized by the total
number of excitations M = nc + nexc, where nc represents the
number of photons and nexc is the number of excited electrons.
For N � L, the latter is equal to the number of electrons
in the upper orbitals, i.e., nexc = ∑

r〈c†
2,rc2,r〉 � N , while for

N � L it is given by the number of holes or unoccupied lower
orbitals, i.e., nexc = ∑

r〈c1,rc†
1,r〉 � 2L − N .

While the Hamiltonian does not conserve M, it does con-
serve the parity M(mod 2), which corresponds to the Z2

symmetry given by the transformation

a ↔ −a, cν, j ↔ −cν, j . (4)

The problem is simplified when the photonic part of the
Hamiltonian in Eq. (3b) is diagonalized through a Bogoli-
ubov transformation (CITE), α = ua + va†. The transformed
Hamiltonian is given by

Hcav = �α†α + K, (5a)

Hel-cav =
√

ωc

�
g(α + α†)

∑
r

[c†
2,rc1,r + c†

1,rc2,r], (5b)

where � = √
ωc(ωc + 2D) = ωc

√
1 + 4Lg2/ω2

c and K =
K (ω, D) is a constant [47]. Since a + a† = (u − v)(α + α†),
the light-matter coupling term is rescaled by the factor u −
v = √

ωc/�. The transformed Hamiltonian fulfills the same
symmetries as the original one in terms of α, and one can simi-
larly define the quantity M = 〈α†α〉 + nexc. Now the RWA can
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be applied to the coupling Hamiltonian in Eq. (5b),

HRWA
el-cav =

√
ωc

�
g
∑

r

[αc†
2,rc1,r + α†c†

1,rc2,r], (6)

and M is conserved. The omitted terms are counter-rotating
terms, which couple sectors of different M.

A similar approximation can be made in terms of the
bare photonic operators. This is not the RWA, since the bare
operators do not correspond to eigenmodes of the cavity
Hamiltonian, and the results become less precise at strong
couplings. However, by including higher M sectors, the ob-
servables in this representation converge to the same values
as in the Bogoliubov representation. In the following, we use
the Bogoliubov representation only in situations where we
are limited to the (M = 1) sector for finite-size scaling of
matter-related quantities, because it fully accounts for the A2

term.
Throughout the paper, the model parameters are chosen

to be realistic for the experimentally relevant organic mate-
rials [36]. In units of the average hopping J2 in the upper
band, we have J1 = −J2/2, as an ad hoc choice reflecting
the commonly asymmetric hopping of between upper orbitals
compared to lower orbitals [38]. These parameters determine
the charge mobilities, along with disorder and dephasing
terms. Furthermore, the dominating energy scale in organic
semiconductors is the band gap, which is ten to a hundred
times larger than the bandwidths. We chose the centers of
the comparatively narrow bands to be on resonance with the
cavity mode, i.e., ε2 − ε1 = ωc = 66J2. In the transport exper-
iments of Ref. [36], this gap was approximately equal to 2 eV,
suppressing thermal excitation of charges.

For the disordered cases, we use normally distributed
random variables with standard deviations σJ2,r = 0.2J2σ ,
σJ1,r = 0.5J2σ , σε2,r = 3J2σ , σε2,r = 5J2σ as suggested in
Ref. [36]. Here, e.g., σJ2,r is the standard deviation of δJ2,r . The
parameter 0 � σ � 1 is used to tune the disorder strength. For
σ = 1 the bandwidth W is thus mostly governed by disorder.
Similarly to the choice of the hopping parameters, the above
choice of disorder corresponds to higher mobility in the up-
per band. Furthermore, it ensures a small localization length,
which facilitates the use of exact methods to study mobility in
small systems.

III. ENERGY EIGENSTATES

In this section we study the energy spectrum, and how it
depends on filling, disorder, and the presence of the counter-
rotating terms. It shall be demonstrated that the spectrum of
our Hamiltonian depends on the light-matter coupling g and
the system size L mainly through the combination of

g̃ ≡ g
√

L(1 − nd), (7)

where nd = |(N − L)/L| is the doping density, i.e., the density
of conduction electrons or holes. This scaling form is similar
to the one in the Dicke model, where the effective light-matter
coupling is given by g

√
L, despite the difference of the local

Hilbert spaces. In simple terms, the reason for this scaling fac-
tor is that only those molecular states with one electron, either
in the upper or the lower orbital, couple to the cavity, while

the doubly occupied and empty states do not. Accordingly,
L(1 − nd) is the number of molecules that can couple to the
cavity, and the the coefficient D of the A2 term is set to [47]

D = L(1 − nd)
g2

ωc
. (8)

To further substantiate this scaling behavior, it is instructive
to consider the single-excitation sector (M = 1). In the case of
zero disorder, electronic eigenstates are given by plane waves,
b†

ν,k = L−1/2 ∑
r eikrc†

ν,r . This renders the coupling Hamilto-
nian as

Hel-cav = g(a + a†)

(∑
k

b†
2,kb1,k + H.c.

)
. (9)

The mode created by

B† =
∑

k

b†
2,kb1,k (10)

is commonly called the bright mode, as it couples to the cavity,
while the modes that are orthogonal to it are dark modes.

Let |G〉 = |FS〉 ⊗ |0〉c denote the ground state at g = 0
where |FS〉 = ∏

(ν,k)∈FS b†
ν,k |0〉el is the Fermi sea with a given

electron number N , and |0〉el/c represent the electronic and
cavity vacua. The norm of the state B† |FS〉 is given by

||B† |FS〉 || =
√

L(1 − nd). (11)

In order to express the light-matter coupling as a matrix
element of Hel-cav between orthonormal states in the single-
excitation sector, one has to use

|B; 0〉 = 1√
L(1 − nd)

B† ⊗ 1 |G〉 ,

(12)
|0; 1〉 = 1 ⊗ a† |G〉 ,

as states with a single matter exciation or a single cavity
exciation. Thus, the matrix element attains the anticipated
scaling factor from Eq. (7),

〈0; 1|Hel-cav|B; 0〉 = g
√

L(1 − nd). (13)

When the effective coupling g̃ is significantly larger than
the electronic bandwidths W , the eigenstates of the single-
excitation sector can be well approximated in terms of upper
and lower polaritons (UP and LP)

|P±〉 ∼ |B; 0〉 ± |0; 1〉 , (14)

as well as dark states. Counter-rotating terms have the effect
of dressing these states with higher odd excitation numbers
(DUP and DLP, where D stands for “dressed”). In our model,
the collective excitation can be considered as an exciton-
polariton; electrons and holes from these excitons via a
cavity-induced attractive interaction as shown below.

A second analytical approach that yields a scaling behavior
as in Eq. (7) is the mean-filed approximation of the cavity
field. Within this approximation, there is a superradiant quan-
tum phase transition that breaks the parity symmetry of Eq. (4)
when the A2 term is neglected. The quantum critical point
lies at

gMF,SR
c ∼ 1√

L(1 − nd)
. (15)
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FIG. 2. Energy spectrum of the model for L = 6 computed for up to M = 8 excitations, although only up to M = 4 are shown. Half-filling
N = L [(a), (c)] and a lightly doped case N = L + 1 [(b), (d)] are compared. The upper row [(a), (b)] shows the homogeneous case, whereas
the lower row [(c), (d)] shows disorder-averaged spectra where σ = 1, i.e., σJ2,r = 0.2J2, σJ1,r = 0.5J2, σε2,r = 3J2, σε2,r = 5J2. Colors indicate
sectors of even (blue) and odd (purple) parity. For comparison, the single-excitation sector is shown with the RWA (black). Arrows in panel
(a) indicate the lower/upper polariton (LP/UP) and the dressed lower polariton (DLP).

For the calculation, we have taken the zero-temperature
limit, followed by the flat band limit. Details are given in
Appendix A.

A. Full energy spectrum

In order to understand the effect of light-matter coupling
on the energy levels, we compute the full spectrum for a
small system size L = 6 by exact diagonalization, such that
the low-energy part is converged with respect to the number of
excitations M, even when g is large. Here, we find that it is suf-
ficient to include M = 8 excitations to capture the corrections
to the lowest-energy states induced by the counter-rotating
terms for g̃ � 0.8ωc. The results are converged irrespective
of whether we use the bare cavity modes or the Bogoliubov
modes.

Energy levels corresponding to the lowest excitation num-
bers, M � 4, are shown with respect to appropriately rescaled
coupling strengths in Fig. 2. The immediate and most im-
portant conclusion from these spectra is that there are barely
qualitative differences between half-filling N = L [Figs. 2(a)
and 2(c) for the homogeneous and the disordered model] and
a “doped” state with one conduction electron, i.e., N = L + 1
[Figs. 2(b) and 2(d)].

All cases have in common that there are three regimes
determined by the effective coupling g̃. First, focusing on the
single-excitation sector (M = 1), the polariton states appear
when g̃ is larger than a threshold that is determined by the
bandwidth,

g̃ > g̃SC
th � W, (16)

marking the regime of strong coupling. However, the details
of this transition are not fully clear from the spectrum and will
be investigated more carefully in Sec. IV B. Next, for

g̃ � g̃USC
th ≈ 0.2ωc, (17)

the exact energies show significant deviation compared to the
RWA solutions (black lines). In this regime of ultrastrong cou-
pling, the ground state and the polaritons [indicated by arrows
in Fig. 2(a)] are significantly dressed by higher excitations,
as will be corroborated in Sec. III C. We note that g̃USC

th is
insensitive to the amount of disorder, while g̃SC

th depends on
the disorder strength. Moreover, as shown below, the polariton
formation is subject to severe finite-size effects in the presence
of disorder. Thus, g̃SC

th can be larger than g̃USC
th when disorder

is extremely large.
The main effect of doping on the spectrum is to increase

the number of states. The ground state as well as polaritons
[indicated by arrows in Fig. 2(a)] are replaced by L nearly
degenerate states forming bands [see Fig. 2(b)]. All of these
bands appear to have a g-independent bandwidth, which we
confirm below in Sec. IV C. This last observation suggests
that conduction electrons are unaffected by the light-matter
coupling. Indeed, this is plausible, because doubly occupied
and completely empty lattice sites, i.e., charged sites, do not
couple to the cavity.

Finally, the disorder-averaged spectra [Figs. 2(c) and 2(d)]
fulfill all the same properties as described above. The dif-
ference compared to the homogeneous cases is that now the
bandwidth W is not determined by the hopping J2 but by
the width of distributions of δJ2 and δε2. As we show below,
the disorder changes the properties of the states between the
UP and LP such that all of them appear in the one-photon
excitation spectrum. By contrast, in the homogeneous case
only a subset of these states couple to the cavity.

B. Vacuum Rabi splitting

In order to assess more thoroughly the scaling of the
spectrum with g and L, the vacuum Rabi splitting �R, i.e.,
the difference in energy of the upper and lower polaritons is
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FIG. 3. Vacuum Rabi splitting �R as a function of the rescaled
light-matter coupling in an undoped system (a) and with a single
conduction electron (b). A comparison is made between the homoge-
neous (full lines) and disorder-averaged (dashed lines, σ = 1) case,
between the RWA (orange) and corrections involving M = 3 exci-
tations (purple), and between L = 6, 10, 14 (increasing line width).
For the undoped case with the RWA, we additionally show results
up to L = 80 (black) in (a). The inset in (b) shows the data (homo-
geneous, doped) from the indicated window with the x-axis scaling
like

√
L instead of

√
L + 1. The lines correspond to L = 14 (thick)

and L = 10 (thin), as indicated by the arrows.

depicted in Fig. 3. We compute the lowest and highest energy
of the (M = 1) sector using the Lanczos method.

At weak coupling, whether doped or not, there is always a
region where the Rabi splitting is apparently constant (blurred
lines in Fig. 3). This regime is determined by the maxima and
minima of the energies of the fermionic part of the model.
Here, the Rabi splitting cannot be properly defined, because
there is no clear separation of the polaritons from the other
energy levels.

We note that, in the disordered case, the bandwith W =
W (L) increases with the system size [see especially Fig. 3(a)].
The reason is that the diagonal entries of the Hamiltonian
corresponding to single-exciton states are given by sums of
random variables,

ε2,r +
∑
r′′ �=r′

ε1,r′′ (18)

with one contribution from an electron at site r in the upper
band, and L − 1 contributions from electrons in the lower
band. These have a system size-dependent standard devia-
tion

√
σ 2

ε2
+ (L − 1)σ 2

ε1
∼ √

L. As we will see in Sec. IV B,
this leads to severe finite-size effects regarding the formation
of idealized exciton-polaritons as given in Eq. (14). In real
materials, L does not correspond to the sample size, but to
the coherence length of exciton-polaritons. Nevertheless, our
results show that a large static disorder can be a hindrance to
exciton-polariton formation.

On the other hand, for sufficiently strong coupling, we see
the disordered and homogeneous cases collapse onto the same
trajectories. Corrections by higher excitation numbers become
relevant around g

√
L(1 − nd) � g̃USC

th ≈ 0.2ωc, as expected,
but they do not affect the results described here.

A comparison of different system sizes confirms our scal-
ing assumption. For L = 10 (thin) and L = 14 (thick), the
lines are on top of each other, when plotted against the
rescaled coupling g̃ = g

√
L for the undoped case in Fig. 3(a),

FIG. 4. Cavity occupation number in the ground state for (a) the
undoped and (b) the doped system with doping density nd = 1/7.
One of the doped cases is also shown in (a) for comparison (dashed
line). Corrections up to M = 6 (purple) are taken into account and
compared to M = 4, 2 (red, orange). The system size is L = 7 (all
cases) and L = 14 (only for Mmax = 2). Black dotted lines corre-
spond to the disordered cases with σ = 1. For the same M and the
same doping, lines with different L and σ lie on top of each other.
The inset of (b) shows the case Mmax = 2 against the microscopic
coupling strength g/ωc, such that L = 7, 14 can be distinguished.

and g̃ = g
√

L − 1 for the case with a single conduction elec-
tron in Fig. 3(b). The inset in Fig. 3(b) shows that this is not
the case when the data for a single electron is plotted against
g̃ = g

√
L.

C. Cavity population of the dressed vacuum

Here, we quantify the dressing of eigenstates by the
counter-rotating terms in the ultrastrong-coupling regime. We
show the cavity occupation number nc = 〈0|a†a|0〉 in Fig. 4,
where |0〉 depends on g. To check convergence, M = 2, 4, 6
are compared. Indeed, up to g̃ ∼ 0.2ωc it is sufficient, to take
into account up to Mmax = 2 excitations, whereas Mmax =
4 is sufficient up to g̃ ∼ 0.4ωc. The former corresponds to
first-order perturbation theory in g̃ for the ground state, and
therefore to a correction ∼g̃2 of the photon number.

Disorder has no influence on the photon content of the
ground state (black dotted lines in Fig. 4). Indeed, the exci-
tation gap from the noninteracting vacuum |FS〉 ⊗ |0〉 to the
(M = 2) sector is approximately 2ωc, i.e., far away from res-
onance. Hence, the fluctuations of the molecular energy levels
have only negligible influence. Meanwhile, resonant effects,
such as the formation of exciton-polaritons that occur within
the (M = 1) sector, are very sensitive to these fluctuations.

We further find that the photon number scales with the
combination g̃ = g

√
L(1 − nd), as well. Indeed, the lines for

L = 7 and L = 14 lie exactly on top of each other, and the
undoped case in Fig. 4(a) behaves like the doped case with
nd = 1/7 in Fig. 4(b). This means that the doping reduces the
effective coupling strength g̃ at a given microscopic coupling
strength g [see dashed line in panel (a)]. In a nonequi-
librium scenario with variable total electron number, this
doping-dependent coupling opens up a way of measuring the
ground-state photons through electroluminescence, as demon-
strated in Ref. [52]. Our results suggest that this phenomenon
is insensitive to disorder.
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IV. LOCAL DENSITIES OF STATE

So far, we have considered only the energy eigenvalues and
the ground-state photon number. However, the contributions
of various physical excitations to these eigenstates are non-
trivial. Besides cavity photons and conduction electrons and
holes, there are excitations like the bright mode created by the
operator in Eq. (10) and other electron-hole (e-h) excitations.
In order to quantify these contributions, one can define various
local densities of states (LDOS).

The general form of the LDOS derives from an autocorre-
lation function in frequency space of a local operator A [53],

GA(ω + iγ ) = −i
∫ ∞

0
〈A†(t )A〉 ei(ω+iγ )t dt

= −i
∫ ∞

0
〈eiHt A†e−iHt A〉 ei(ω+iγ )t dt, (19)

where we have added a finite broadening γ for convergence.
While the expectation value can be taken with respect to any
state, presently the ground state is a good choice, i.e., 〈. . .〉 =
〈0| . . . |0〉, such that

GA(ω + iγ ) = 〈0|A† 1

ω + iγ − H + E0
A|0〉 , (20)

where E0 = 〈0|H |0〉 is the energy of the ground state. The
LDOS is defined as the imaginary part thereof, along with a
normalization factor,

ρA(ω + iγ ) = − 1

π
Im GA(ω + iγ ). (21)

In order to compute the LDOS, we employ the Lanczos
algorithm for the ground state and a continued fraction ex-
pansion for finding the projection of the state (ω + iγ − H +
E0)−1A |0〉 onto A |0〉 [54,55].

In this section, we focus on the half-filling case, N = L.
The ground state is the dressed vacuum [see Fig. 4] of the
interacting system of fermions and cavity. Starting from this
ground state, we consider the LDOS of the cavity

ρcav = ρa† (22)

of electrons and holes at site j,

ρel
j = ρc†

2, j

ρh
j = ρc1, j , , (23)

and for e-h excitations,

ρeh
j,r = ρc†

2, j+r c1, j
. (24)

There are two coordinates for an e-h excitations, which we
cast as the center of mass (COM) j and the relative coordinate
r of the electron-hole pair. Due to the periodic boundary
condition, it is permissible to choose the COM as the position
of the hole, which simplifies notation. Further insight can be
gained by considering a coarse-grained LDOS for each of
these coordinates by tracing out the other one,

ρCOM
j =

∑
r

ρeh
j,r,

ρrel
r =

∑
j

ρeh
j,r . (25)

FIG. 5. Log-scale cavity LDOS ρcav for (a) the homogeneous
case with broadening γ = J2/L and (b) a single disorder realiza-
tion with γ = σε2/L and σ = 1, i.e., σJ2,r = 0.2J2, σJ1,r = 0.5J2,
σε2,r = 3J2, σε2,r = 5J2. The system size is L = 6, and up to M = 5
excitations are taken into account. White (gray) dotted lines indicate
the energy of the dressed UP and LP for M = 3 (M = 1), as well as
the center of the region of in-gap states in panel (a).

Finally, we can define the total density of states (DOS)
for electrons, holes and e-h excitations, by summing over all
coordinates, i.e.,

DOSel/h =
∑

j

ρel/h
j ,

DOSeh =
∑

j,r

ρeh
j,r . (26)

We note that these are still more sparse than the total density of
states of the Hamiltonian, D(ω) = ∑

n δ(En − ω) with spec-
trum {En}, because some states may have little or no weight
with respect to the excitations in Eq. (25).

The photonic and exciton LDOS employed here are not
directly accessible experimentally, since they contain virtual
excitations [1]. For instance, the integrated cavity LDOS in
the limit of zero broadening (δ = 0),∫

ω

ρcav(ω)dω = 1 + 〈0|a†a|0〉 , (27)

consists of two contributions. First, the single photon in the
(M = 1) sector, which is directly measurable in photoab-
sorption experiments. Second, the vacuum fluctuations of the
ground state, which are only measurable indirectly [1,52].
In the present context, we focus on the former, and on the
positions of the peaks in the spectral function. The virtual
photons contribute less than 5% to the integrated LDOS, as
can be seen in Fig. 4.

A. Photonic spectral function

The LDOS of the cavity ρcav is depicted in Fig. 5 as a
function of the coupling g̃ = g

√
L and frequency ω for (a)

the homogeneous case and (b) for the disordered case with
up to M = 5 excitations. Here, as in the rest of this section,
the broadening γ is chosen such that individual states are
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FIG. 6. Upper panels [(a), (c), and (e)] show data for the homogeneous case, lower panels [(b), (d), and (f)] show data for the disordered
case with σ = 0.5, i.e., σJ2,r = 0.1J2, σJ1,r = 0.25J2, σε2,r = 1.5J2, σε2,r = 2.5J2. The disorder averages in the bottom row are obtained from
2000 realizations. The Bogoliubov representation is used in all cases. Left panels [(a) and (b)]: Exciton LDOS ρrel

r with relative coordinate
r = 0, 1, 2, 3 at g̃/ωc = 0.3 and N = L = 6 for (a) γ = J2/L and (b) γ = σε2/L. Up to M = 5 excitations are taken into account. Thin black
lines represent the RWA with M = 1. Middle panels [(c) and (d)]: electron-hole correlation function C(0), number of holes nh, and number of
photons nc are plotted for the states of the largest (solid lines), second largest (dashed lines) and third largest (dotted lines) number of photons.
The system size is L = 79. On the right [(e) and (f)], the electron-hole correlation functions C(r) = CLP(r) of the second state are shown as a
function of the relative coordinate r for L = 39 for various values of g̃ indicated by the colorbar.

resolved depending on the bandwidth and the system size.
Even for relatively large couplings, the DLP/DUP for M = 5
and M = 3 (white dotted lines) are very close, indicating the
convergence of or calculations in terms of M.

Interestingly, the cavity LDOS in Fig. 5(a) indicates that,
even at vanishing disorder, there exist in-gap states with sig-
nificant photon contents up to g̃ ∼ 0.1ωc, which is not clear
from the mere spectrum of Fig. 2. This is in contrast to pure
exciton or spin-half models, like the Dicke model, where these
in-gap states are completely dark for vanishing disorder. The
reason for these bright in-gap states is that the dispersion re-
lations of the conduction and valence bands are not the same,
i.e., J1 �= J2. As a consequence, the bright mode operator of
Eqs. (10) creates a superposition of nondegenerate eigenstates
b†

2,kb1,k |FS〉 of Hel with energies 2(J2 − J1) cos(k) + ε2 − ε1.
Only in the limit where the coupling is much larger than the
spread of these energies, i.e., g̃ � |J2 − J1|, can we approx-
imately describe the polaritons in terms of a single matter
excitation, as in Eq. (14). Conversely, the in-gap states have
a significant overlap with the bright mode at intermediate
coupling strengths.

The distinctive feature of ρcav in the disordered system,
shown in Fig. 4(b) for a single disorder realization, is a
larger number of peaks. Indeed, if the bright mode operator
is expressed in the electronic eigenstates of the disordered
Hamiltonian, one obtains a superposition of L2 instead of L
states, i.e.,

B† =
∑
n,m

Bnmd†
2,nd1,m. (28)

Here dν,m = ∑
j U (ν)

mr cν,r is an eigenstate and the coefficient
for the coupling between states in the lower and upper band is
given by Bnm = ∑

r,s(U
(2)
mr )†U (1)

ns .
In principle, each of these excitations contributes to ρcav.

However, only ∼L of the peaks in Fig. 5(b) are pronounced.

We can understand this as a consequence of Anderson local-
ization: There is an approximate correspondence between the
tight-binding orbitals created by c†

ν,r and the present eigen-
states. With appropriately ordered indices, the elements of the
basis transformation matrix are exponentially bounded, i.e.,
|Umr | ∼ exp (−ξ |m − r|) with localization length ξ . Since the
bright mode contains only e-h excitations at relative distance
r = 0, it overlaps mainly with such pairs of electron and hole
eigenstates. The results in Fig. 5(b) suggest that the localiza-
tion length ξ is on the order of the lattice spacing. Finally,
we remark that the bright in-gap states may be related to the
semilocalized dark states discussed in Ref. [56].

B. Exciton density of states and e-h correlations

To expand on the previous analysis, we show the LDOS
for e-h excitations ρrel

r for different relative distances r at
g̃ = 0.3ωc in Figs. 6(a) and 6(b). At the polariton peaks,
there are clearly contributions from nonzero distances r �= 0.
However, they fall off exponentially as ρrel

r ∼ e−r/, which
is especially striking in the polariton peaks corresponding
to the homogeneous case in Fig. 6(a). This suggests that
the polariton-formation is accompanied by the formation of
excitons characterized by a Bohr radius . Furthermore, the
RWA [black lines in Fig. 6(a)] merely shifts the peak posi-
tion, whereas it does not affect the exponential relation. Thus,
exciton-polariton formation is a resonant phenomenon.

We make the notion of exciton formation more precise by
explicitly considering the electron-hole correlation function

C(r) =
∑

j

〈(1 − n1, j )n2, j+r〉 , (29)

see Figs. 6(c)–6(e). Here, we restrict ourselves to the
single-excitation sector (M = 1) by using the Bogoliubov rep-
resentation and the RWA, as is justified by Fig. 6(a). This
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allows the full diagonalization even at large system sizes L ∼
100 while fully taking into account the A2 term. Moreover,
we compute the photon numbers nc for each of the obtained
eigenstates. By choosing the states with the three largest val-
ues of nc, we pick up the two polaritons and one additional
state, even when they are still hidden in terms of the energy
spectrum. Indeed, in the disordered case, there is always a
chance to find an outlier of energy E < ELP or E > EUP.

In Figs. 6(c) and 6(d), we show the e-h correlation function
C(0) at relative distance r = 0 (green lines) with the photon
number nc (red lines) and the number of holes nh = ∑

j (1 −
n1, j ) (black lines), where nν, j = 〈c†

ν, jcν, j〉. Within the RWA,
the photon number is given by

nc = (u2 + v2) 〈α†α〉 + v2, (30)

where α(†) are the Bogoliubov operators. By choice of the
undoped subspace with N = L, the number of conduction
electrons is equal to the number of holes, ne = nh. The re-
striction to M = 1 implies 0 � ne/h � 1.

In all the cases the state of the highest photon number (solid
lines) starts from nc = 1 and nh = 0 at g̃ = 0, where it is given
by |FS〉 ⊗ |1〉. Meanwhile, the second state (dashed lines) and
third state (dotted lines) start from nc = 0 and nh = 1. As
shown in Figs. 6(e) and 6(f) for the second state, the hole
is uncorrelated with the conduction electron [C(0) ≈ 1/L] at
g̃ = 0. For the homogeneous case, this is a property of the
two-body Bloch states b†

2,kb1,k′ |FS〉. In the disordered system,
on the other hand, it is a consequence of the averaging over
disorder realizations.

Concerning the opposite limit of large coupling, we find
that the first and second state can be clearly identified as
the UP and LP. Hole and photon numbers deviate from
the symmetric situation where nh ≈ nc ≈ 1/2, because the
A2 term shifts the cavity frequency off resonance to � =√

ωc(ωc + 2D). Meanwhile, the photon number of the third
state essentially vanishes despite the v2 in Eq. (30). In the
UP and LP, electrons and holes are almost perfectly correlated
C(0)/

√
nhne ≈ 1. In this strong-coupling regime, the correla-

tion function C(r) indeed shows an exponential decay [see
Figs. 6(e) and 6(f)], as expected from the behavior of the
LDOS ρrel

r . These spatially correlated electrons and holes can
be regarded as excitons.

Between the limits, there is a transition region with non-
analyticities of the observables as a clear signature of level
crossings in the homogeneous case in Fig. 6(c). Such features
are washed out by the disorder averaging [see Fig. 6(d)].
In both cases, however, there is a certain coupling strength
g̃macro < g̃SC

th such that the cavity excitation is distributed al-
most equally among a macroscopic number of states for g̃ <

g̃macro. A finite-size analysis presented in Appendix B leads
us to conjecture that this point marks a well-defined phase
transition; below g̃macro the transition is indicated by nc → 0
for L → ∞ for the state with the largest photon number. How-
ever, the disorder strength may have to be rescaled depending
on the system size. This is a consequence of the system size
dependent bandwidth W (L) as found in Sec. III B.

In the subsequent region of polariton formation, g̃macro <

g̃ � g̃SC
th , where the photon and hole numbers are still signif-

icantly below the value of 1/2, the e-h correlation function

FIG. 7. DOS with broadening γ = J2/L for holes (left) and elec-
trons (right) for various values of the coupling

√
Lg at L = 6 with

up to M = 6 excitations. Panels (a) and (b) show the homogeneous
case, panels (c) and (d) show the disordered case σ = 1. The black
dotted line represents the DOS without the A2 term (D = 0) where
the ground state |0〉 is computed for an effective coupling g̃ = √

Lg =
0.3, but a rescaled effective coupling g̃′ = √

L − 1g = 0.3 is used for
the computation of the DOS.

is already close to 1/2. Thus, the exciton formation precedes
the exciton-polariton formation. Moreover, when disorder is
present, the polariton formation, like g̃macro, seems to shift to
larger couplings as L is increased, g̃SC

th = g̃SC
th (L), as is also

shown in Appendix B. Both of these effects induce features in
the inverse participation ratios presented in Sec. V.

C. Electron and hole density of states

Besides excitons and cavity photons, which are coupled by
Hel-cav, one may wonder how individual electrons and holes
are affected by the cavity. In the original experimental study
on cavity-enhanced charge transport [36], it was suggested
that electronic states delocalize under strong light-matter cou-
pling. Another study [43] proposed a mechanism where the
mobility of holes increases due to an additional hopping chan-
nel through the upper band. While we address the former
suggestion in the following section, we now discuss the latter
in the framework of the electron- and hole-DOS.

The DOS of the charged degrees of freedom in homoge-
neous and disordered systems are shown in Fig. 7. Differences
in electronic and hole bandwidths are, respectively, due to
different hopping parameters Jν and standard deviations of
the random variables δJν and δεν . The main effect of the light-
matter coupling is a shift in energy relative to the ground state.
However, this is solely due to a combination of the A2 term
and the fact the microscopic coupling strength g is the same
for the computation of the ground states, where g̃ = g

√
L,

and for the LDOS ρel/h, where g̃ = g
√

L − 1 because of the
charge. If g is rescaled appropriately and D is set to zero, the
energy shift vanishes [see black dotted line in Fig. 7(b)].

More importantly, the bandwidths are not affected by the
light-matter coupling. This indicates that, within the present
model of a closed system, there is no increase in charge
mobilities. We come back to this in Sec. V. Furthermore,
bandwidths of electrons and holes are affected in the same
manner, which implies that an extra hopping channel for holes
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FIG. 8. GIPR for (a) the COM of e-h excitations in the state of
second highest photon number (LP), and (b) for electrons (nontrans-
parent lines) and holes (transparent lines). Homogeneous (solid lines)
and disordered (dashed lines) cases are compared. In (a) we restrict
the calculations to the M = 1 sector and use γ = 0, and in (b) we
include up to M = 2 excitations with γ = J2/L. The case g̃ = 0.15
is highlighted as a black line in (a).

cannot be at play here, in contrast to the open system studied
in Ref. [43].

V. LOCALIZATION

Having characterized the eigenstates in terms of excitations
of various degrees of freedom, we now discuss the conduction
properties in terms of the localization of these excitations. As
a measure of localization, we employ the generalized inverse
participation ratio (GIPR) [57] based on the (possibly coarse-
grained) LDOS introduced above,

G(ω + iγ ) =
∑

j ρ j (ω + iγ )2(∑
j ρ j (ω + iγ )

)2 . (31)

The denominator ensures normalization, such that cases with
different total DOS can be compared, whereas the numerator
measures how states close to an energy ω are distributed over
a set of local excitations.

The footprint of localization is that the GIPR is constant
under finite-size scaling. Indeed, in the totally localized limit,
we have ρ j ∼ δ j, j0 , whereas in the delocalized limit we have
ρ j ∼ 1/L for all j, supposing the summation includes L terms.
For the GIPR, it follows that

G(L) ∼
{

const. (localized)
1/L (delocalized/extended) . (32)

Here, as shown in Fig. 8, we consider electrons, holes, and
e-h excitations with COM j,

Gel/h =
∑

j

(
ρel/h

j

)2

(DOSel/h)2
,

GCOM =
∑

j

(
ρCOM

j

)2

(DOSCOM)2
. (33)

More specifically, for electrons, we chose the frequency as
the cavity frequency ω = ωc, which corresponds to states in
the upper band, as shown by the electronic DOS in Figs. 7(b)
and 7(d). Similarly, for holes, the frequency is ω = 0. Finally,

for e-h excitations, we are especially interested in the lower
polariton. Therefore, the choice of a frequency depends on the
coupling strength, i.e., ωLP(g̃), which can be extracted from
Fig. 5.

Furthermore, the broadening γ , needs to be adjusted de-
pending on the system size. The subtle details of this issue
have been elaborated in Ref. [57] for a simple model system.
Following these results, we chose γ ∼ 1/L for electrons and
holes. For e-h excitation, the state |n2nd〉 with second high-
est photon number by exact diagonalization as in Sec. IV B,
which corresponds to ω = ωLP and zero broadening, γ = 0.
The LDOS in Eqs. (25) and (33) is then given by

ρeh
j,r (ωLP) = 〈n2nd|(1 − n1, j )n2, j+r |n2nd〉 , (34)

i.e., in contrast to the correlation function C(r) we average
over the relative instead of the COM coordinate. The disorder
is the same as in Fig. 6.

First, we discuss the case of e-h excitations, which is
depicted in Fig. 8(a). At vanishing coupling (dark purple),
disorder leads to localization while excitations in the homoge-
neous system are delocalized. As the coupling increases, the
effect of disorder is lifted (yellow), and the states become de-
localized. This observation is in line with previous studies that
found enhanced exciton mobilities under strong light-matter
coupling [31,32]. We have confirmed for small system sizes
that effects beyond the RWA play no essential role.

In addition, there is an intermediate regime of coupling
strengths exemplified by the black dashed line for g̃ ≈ 0.15
in Fig. 8(a). Here, we see GCOM(ωLP) ∼ 1/L for small L,
while the GIPR becomes constant for larger L. This fact is ex-
plained in terms of Fig. 6(d) and Appendix B, where we found
a system-size-dependent threshold value g̃SC

th (L) for exciton
and exciton-polariton formation, i.e., for the strong-coupling
regime; The GIPR falls off, while g̃ > g̃SC

th (L). However, this
trend halts when g̃ < g̃SC

th (L), where the L-dependent disorder
is so large that the system is no longer in the regime of strong
coupling. From Fig. 6(d), it is appears that g̃SC

th (L = 79) >

0.15, and this is indeed where the GIPR starts to become
constant (g̃ = 0.15 and 1/L ≈ 0.0125).

Second, for individual charges [see Fig. 8(b)], we find that
strong coupling has no effect on the localization. Electrons
(nontransparent lines) as well as holes (transparent lines)
remain localized in the presence of disorder. The merely
quantitative difference between the GIPR of electrons and
holes is due to our choice of larger disorder fields in the
lower band compared to the upper band. This observation is in
agreement with the fact that bandwidths of electrons and holes
are unaffected by strong coupling [see Fig. 7]. Thus, while the
states can be significantly dressed by photons and excitons
at large coupling, the (de)localized charges are essentially
independent of such excitations. The only possible effect of
exciton-dressing is a decreasing charge mobility due to the
Pauli principle. However, these interactions become irrelevant
in our model at large L, because the density of excitons de-
creases with 1/L.

VI. CONCLUSIONS

In this paper, we have investigated the relationship between
the excitation spectrum and localization of disordered two-
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band electrons coupled to a cavity mode. We have shown
that the model is a close analog of the Dicke model where
electron and hole doping modify the scaling form of the
energy spectrum. The transition towards strong coupling is
preceded by a regime where the cavity excitation is shared by
a macroscopic number of eigenstates, resulting from a compe-
tition between the electronic bandwidth and the light-matter
coupling. Exciton-polaritons form as the coupling is further
increased. Importantly, this hybridization of light and matter
leads to the delocalization of excitons, which would other-
wise be trapped by disorder. On the other hand, in contrast
to previous studies indicating the delocalization of electronic
wavefunctions, the inverse participation ratios show that elec-
trons and holes are still localized. The only effect is a shift
of the energies of these states due to virtual excitations in the
ultrastrong-coupling regime.

The design of efficient solid-state devices based on strong
light-matter coupling is an exciting prospect. Our results
offer insights into cavity controlled charge transport from
the perspective of a closed system. One may speculate that
electric conductivity is enhanced indirectly through high mo-
bility exciton-polaritons in combination with a dissociation
of the excitons at the electrodes. By reducing disorder or the
bandwidth, the coupling strength needed to reach the strong-
coupling regime is lowered, making flat band systems good
candidates. Finally, the energy shifts induced by ultrastrong
coupling are important when the material is coupled to elec-
trodes. In the future, it will be interesting to explore how the
localization of different quasiparticles in a cavity is affected
by dissipation and spacial dimensionality.
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APPENDIX A: MEAN-FIELD THEORY
AND SUPERRADIANT TRANSITION

A mean-field theory of our model can be developed in
analogy to the Dicke model. As we show in the following,
when the A2 term is neglected, a superradiant phase transition
appears that scales as

√
L(1 − nd) as stated in Eq. (A19)

in the main text. Assuming that the cavity is in a coherent
state |α〉, defined by a |α〉 = α |α〉, a parametrized family of
Hamiltonians for the electrons is obtained,

H (α) = Hel + ωc|α|2 + g(α + α∗)
∑

r

[c†
2,rc1,r + c†

1,rc2,r]

+ D(α + α∗)2, (A1)

which leads to the respective partition functions Z (α) and free
energies F (α). In the following, α is assumed to be real. In
this section, we also neglect the A2 term. Its importance is
demonstrated below in Appendix A 3.

In the Dicke model, a superradiant phase is defined such
that the photon number increases faster than the square root

of the system size [58,59]. Thus, one introduces a rescaled
order parameter, as well as a rescaled coupling strength,

α̃ = α√
L

, g̃ =
√

Lg. (A2)

The critical point g̃c is defined by

lim
L→∞

α̃

{= 0 for g̃ � g̃c

> 0 for g̃ > g̃c.
(A3)

However, in the present fermionic model, it would be more
accurate to replace the system size with the number of emit-
ters, which is influenced by doping. Thus, we will introduce a
rescaled α later on. Note that the calculations can be done be-
fore or after the rescaling. The only change to the Hamiltonian
is a rescaling of the cavity energy and the trivial replacement
αg → α̃g̃ in the interaction term.

For simplicity, let us focus on the homogeneous case,
where the electronic Hamiltonian is diagonalized by plane-
wave modes with the dispersion relation

Eν,k = −2Jν cos(k) + εν. (A4)

In this case, the mean-field Hamiltonian splits into a direct
sum of terms for each wavenumber,

H (α) =ωcα
2 +

∑
k

(E2,kb†
2,kb2,k + E1,kb†

1,kb1,k

+ 2gα[b†
2,kb1,k + b†

1,kb2,k]). (A5)

The eigenvalues are

E±
k (α) = εk ± Kk (α)

= E2,k + E1,k

2
±

√
(E2,k − E1,k )2

4
+ 4g2α2 (A6)

representing hybridized states of the upper and lower band.
For convenience in the following, we also introduce

δk = E2,k − E1,k

2
. (A7)

To keep the derivation more general, and to express the
partition function as a product of contributions from each
wavenumber and orbital, we introduce a chemical potential μ

and work in the grad canonical ensemble at finite temperature
(the zero-temperature limit is derived later on). Thus, the
partition function is given by

Z (α) = Tr{e−β(H (α)−μN )}
= e−βωcα

2
∏

k

(1 + e−β(E+
k (α)−μ) )(1 + e−β(E−

k (α)−μ) ).

(A8)

We can then calculate the free energy F (α) = −β−1 ln Z (α)
as

F (α) = ωcα
2 − 1

β

∑
k

ln(1 + e−β(E+
k (α)+E−

k (α)−2μ)

+ e−β(E+
k (α)−μ) + e−β(E−

k (α)−μ) )

= ωcα
2 − 1

β

∑
k

ln(2e−β(εk−μ)[cosh(β(εk − μ))

+ cosh(βKk (α))]), (A9)
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where we have grouped the first two and last two terms from
inside the bracket into a cosh, respectively, and used the ab-
breviations from Eqs. (A6) and (A7).

1. Critical point of the superradiant transition

The saddle-point condition for a critical point is

∂

∂α
F (α)

∣∣∣∣
α=0

= 0,
∂2

∂α2
F (α)

∣∣∣∣
α=0

= 0. (A10)

To evaluate these, one needs to compute the derivatives of
Kk (α), i.e.,

K ′
k (α) = 4g2α

Kk (α)
, K ′′

k (α) = 4g2

Kk (α)
− 4g2αK ′

k (α)

Kk (α)2
. (A11)

At α = 0, these simplify to

K ′
k (0) = 0, K ′′

k (0) = 4g2

δk
. (A12)

For the first derivative of the free energy at α = 0, the sit-
uation is trivial, since F ′(0) = K ′

k (0) = 0. On the other hand,
for the second derivative, we obtain

2ωc =
∑

k

K ′′
k (0) sinh (βKk (0))

cosh (β(εk − μ)) + cosh (βKk (0))

= 4g2
∑

k

sinh (βδk )

δk[cosh (β(εk − μ)) + cosh (βδk )]
,

(A13)

which can be solved for the critical value gc,

gc =
√

ωc

2

1∑
k

sinh (βδk )
δk [cosh (β(εk−μ))+cosh (βδk )]

. (A14)

Let us compare this expression to the Dicke model for N
emitters,

HDicke = ωcα
2 +

N∑
j=1

�σ+
j σ−

j + 2gα
N∑

j=1

(σ+ + σ−),

(A15)

which has its mean-field critical point at

gDicke
c =

√√√√ ωc

2N

�
2 cosh

(
β�

2

)
sinh

(
β�

2

) . (A16)

Note that gc ∼ √
N

−1
. Had the calculation been carried out

using α̃ and g̃ from Eq. (A2), the transition would be indepen-
dent of the system size.

There are two essential differences between the two mod-
els. First, all two-level emitters of the Dicke model are
degenerate with excitation energy �, while the asymmet-
ric dispersion of upper and lower band in the fermionic
model lead to k-dependent excitation energies 2δk . Second,
an additional term in the denominator of the denominator
of Eq. (A14) controls the total particle number through the
chemical potential.

In order to obtain a formula in terms of the total particle
number instead of the chemical potential, we consider the

zero-temperature limit in combination with a flat-band limit.
The flat-band limit is justified, since the band gap is signifi-
cantly larger than the bandwidth, but it has to be taken after the
zero-temperature limit, because otherwise the bands would
be either full or empty. In order to take the zero-temperature
limit, we compare the arguments of the sinh and cosh in
Eq. (A14), since

lim
β→∞

cosh (β(εk − μ))

sinh (βδk )
=

⎧⎨
⎩

∞ if |εk − μ| > δk

0 if |εk − μ| < δk

1 if |εk − μ| = δk .

(A17)

Neglecting the last case of equality, the only contributions to
the sum over k in the denominator of Eq. (A14) come from
|εk − μ| < δk , where

lim
β→∞

1
cosh (β(εk−μ))

sinh (βδk ) + 1
= 1. (A18)

Correspondingly, the critical coupling of Eq. (A14) is simpli-
fied to

gc =
√√√√ωc

2

1∑
k with|εk−μ|<δk

1
δk

. (A19)

The condition in the sum can be expanded as

|εk − μ| < δk ⇔
{

E1,k = εk − δk < μ if εk > μ

E2,k = εk + δk > μ if εk < μ.

(A20)

We see that the chemical potential has to lie between the
upper and lower Bloch state of a specific wave number, i.e.,
the lower Bloch state is occupied while the upper one is
not. Therefore, there are L(1 − nd) terms in the sum, where
nd = |N − L|/L is the doping density as defined in the main
text.

Finally, by taking the flat band limit Eν,k = Eν , which
implies δk = δ, we arrive at the generalized scaling form of
the critical coupling,

gc ≈
√

ωcδ

2
· 1

L(1 − nd)
2δ=ωc−−−−−→

resonance

ωc

2

1√
L(1 − nd)

.

(A21)

By comparison, the simpler zero-temperature limit of the
Dicke model is

gDicke
c =

√
ωc�

4N
�=ωc−−−−−→

resonance

ωc

2

1√
N

. (A22)

With the rescaled coupling strength and order parameter
from Eq. (A2), one obtains critical point of the fermionic
model that is independent of L,

g̃MF,SR
c ≈

√
ωcδ

2
· 1

(1 − nd)
. (A23)

2. Critical exponent β

The correspondence to the Dicke model can be extended by
showing that the superradiant transitions belong to the same
universality class. Here, we compute just the critical exponent
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β, which relates the order parameter α to the coupling strength
for g > gc. By minimizing the free energy, ∂

∂α
F (α) = 0, we

obtain

0 =
(

ωc

2

1∑
k

1
Kk (α)

sinh (βKk (α))
[cosh (β(εk−μ))+cosh (βKk (α))]

− g2

)
, (A24)

where we have inserted the first derivative of Kk (α) from
Eq. (A11).

Here, we can use the zero-temperature limit and flat-band
approximation as we did for the critical point. While the
chemical potential depends on α, the particle number is fixed,
so we arrive at the same type of expression as in Eq. (A21),
only with K (α) = Kk (α) instead of δ:

0 = ωc

2

K (α)

L(1 − nd)
− g2

≈ g2
c − g2 + 2ωc

δL(1 − nd)
α2g2. (A25)

In the second step, we have inserted the Taylor expansion of
K (α),

Kk (α) ≈ δk

(
1 + 4g2α2

δ2
k

+ O
((

4gα

δk

)4
))

(A26)

and g2
c = ωcδ/(2L(1 − nd)) from Eq. (A21).

From Eq. (A25) it follows that, in the vicinity of the critical
point, α scales as

α ∼
√

g2 − g2
c ∼ √

g − gc. (A27)

Therefore, we find a critical exponent β = 1
2 , just as in the

Dicke model.

3. No-go theorem

The well-known no-go theorem [46,48] for the superradi-
ant transition due to the A2 term is unsurprisingly also fulfilled
in the fermionic model. Within the mean field approximation,
the only modification is a renormalization of the cavity fre-
quency. With real α as above, we have

ω′
c = ωc + 4D. (A28)

Inserting this into the saddle point condition (A13), and taking
the zero-temperature and flat-band limits as above, we obtain

ωc = 2g2 L(1 − nd)

δ
− 4D, (A29)

We recall that the coefficient D is bounded from below
due to the Thomas-Reiche-Kuhn sum rule [46]. In the present
situation there are L(1 − nd) dipole excitation of energy 2δ.
Hence, the bound is given by

D > L(1 − nd)
g2

2δ
. (A30)

Defining the g-independent coefficient D̃ = D/g2, this
leads to a modified expression for the critical coupling

[cf. Eq. (A21)],

gc =
√

ωc

2

(
1

L(1−nd )
δ

− 2D̃

)
, (A31)

where the lower bound on D̃ is precisely the point where gc

becomes imaginary. Therefore, the superradiant transition is
forbidden.

APPENDIX B: FINITE-SIZE ANALYSIS
OF THE STRONG-COUPLING TRANSITION

Here, we consider the possibility that the transition at
g̃macro from Sec. IV B in the main text is well defined in the
thermodynamic limit. This transition would be driven by a
competition of the effective light-matter coupling g̃ and the
bandwidth W of the exciton states. The larger W , the larger
the critical coupling g̃macro

c . As shown in the following, in the
disordered case one has to rescale the disorder depending on
the system size to obtain such a well-defined limit.

We define the transition by considering the eigenstate
|E〉 with the highest photon number nc. In other words,
〈E |a†a|E〉 > 〈E ′|a†a|E ′〉 for all eigenstates |E ′〉 �= |E〉. Be-
low the transition, the cavity excitation is distributed across

FIG. 9. Finite-size scaling of the cavity photon number nc of the
state with the largest photon number in the (M = 1) sector in terms
of the Bogoliubov modes as a function of the coupling strength g̃
(see Fig. 6 in the main text). Panel (a) shows data for the homo-
geneous case, σ = 0, while panel (b) shows data for the disordered
case with σ = 0.5, i.e., σJ2,r = 0.1J2, σJ1,r = 0.25J2, σε2,r = 1.5J2,
σε2,r = 2.5J2. In panel (c) the standard deviation σε1 of δε1 is rescaled
by a factor

√
(9 − 1/(L − 1), such that the cases L = 9 in (b) and

(c) are the same. The y axis in (b) and (c) is logarithmic. The disorder
averages are obtained from 200 realizations. The largest system size
is L = 79 (thick line), and the smaller system sizes are L = 9, 19, 39
(thin lines). In panel (b), we additionally show the case σ ′ = 1, which
has a larger bandwidth W .
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all eigenstates such that in the thermodynamic limit even the
photon number of |EL〉 vanishes,

lim
L→∞

〈EL|a†a|EL〉 = 0. (B1)

Here, we have indicated the system size dependence by a sub-
script L. Above the transition, on the other hand, this photon
number is finite.

The photon number nc in the state |EL〉 is presented in
Fig. 9. Indeed, both for the homogeneous case [Fig. 9(a)]
and the disorder-averaged cases [Figs. 9(b) and 9(c)], there
is a region of low g̃ > 0, where nc is systematically lowered
with the system size L. In the limit of large g̃, the observables
are independent of the system size. Moreover, we confirm the
dependence of the transition on the bandwidth by comparing
the cases σ = 0.5 and σ ′ = 1 in Fig. 9(b). For larger disorder,
the bandwidth of excitonic states is larger, and hence the
transition happens at larger couplings.

As discussed in Sec. III B of the main text, some contri-
butions to the diagonal elements of the Hamiltonian have a
standard deviation of√

σ 2
ε2

+ (L − 1)σ 2
ε1
. (B2)

To make these standard deviations independent of the system
size, we rescale the standard deviation of the on site energies
in the lower band to σ̃ε1 ∝ 1/

√
L − 1σε1 , and plot the corre-

sponding results in Fig. 9(c). This is expected to yield a system
size-independent bandwidth, since there are no other matrix
elements with system-size-dependent standard deviation.

Due to limitations of the system size it is not possi-
ble to precisely determine the critical coupling. Yet, for the
disordered case with system-size-dependent bandwidth in
Fig. 9(b), there is a clear trend that region of nc = 0 ex-
tends to arbitrarily large g̃ in the thermodynamic limit, i.e.,
g̃macro(L) → ∞ for Ł → ∞. On the other hand, the data for
rescaled case in Fig. 9(c), indicate that there is a well-defined
critical coupling in the range 0.05 < g̃macro

c < 0.1.
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